Исполнительный механизм системы управления и защиты реакторной установки

Изобретение относится к системам управления и защиты (СУЗ) ядерного реактора. Исполнительный механизм СУЗ ядерного реактора содержит привод и канал, внутри которого коаксиально расположена штанга. Штанга соединяет привод с рабочим органом, который расположен под активной зоной реактора с возможностью введения в активную зону реактора под действием привода и/или выталкивающей силы теплоносителя. Канал выполнен в виде направляющей трубы, внутри которой коаксиально расположены трубчатые теплоизоляционные элементы. Штанга расположена внутри трубчатых теплоизоляционных элементов, выполненных по крайней мере двухслойными и из по меньшей мере двух цилиндрических трубчатых элементов. Технический результат - повышение тепловой защищенности соединительных и корпусных частей исполнительного механизма СУЗ. 8 з.п. ф-лы, 6 ил.

 

Настоящее изобретение относится к ядерной технике и может быть применено в исполнительном механизме (ИМ) системы управления и защиты (СУЗ) обычного исполнения или высокотемпературной реакторной установки (РУ).

Близким по совокупности существенных признаков к изобретению является исполнительный механизм системы управления и защиты ядерного реактора, содержащий канал, внутри которого коаксиально расположена штанга, привод, соединенный посредством штанги с рабочим органом (РО), расположенным в теплоносителе активной зоны реактора с возможностью введения в активную зону реактора под действием привода и/или выталкивающей силы теплоносителя (см. «Безопасность ядерных технологий и окружающей среды», №1, 2012 г., с.66-71).

Известное устройство описано на функциональном уровне, без конкретизации конструкционного исполнения,. в связи с чем в РУ с высокими температурами возникают следующие проблемы, требующие решения:

- отсутствие защиты привода от высоких температур (до 540-640°C), что может привести к его ненадежному функционированию;

- наличие ударной нагрузки на привод при аварийном срабатывании;

- наличие изгибающих подвижную штангу сил, что может привести к застреванию и ненадежному функционированию;

- отсутствие радиационной защиты на пути от активной зоны к приводу.

Задачей, на решение которой направлено заявляемое изобретение, является создание надежного исполнительного механизма СУЗ РУ.

Техническим результатом настоящего изобретения является повышение тепловой защищенности соединительных и корпусных частей ИМ СУЗ. Кроме того, техническим результатом являются исключение ударных нагрузок непосредственно на привод ИМ, исключение искривления штанги и радиационная защита привода от потока нейтронов.

Указанный технический результат достигается тем, что в известном исполнительном механизме системы управления и защиты ядерного реактора, содержащем привод, канал, внутри которого коаксиально расположена штанга, соединяющая привод с рабочим органом, который расположен под активной зоной реактора с возможностью введения в активную зону реактора под действием привода и/или выталкивающей силы теплоносителя,

согласно изобретению канал выполнен в виде направляющей трубы, внутри которой коаксиально расположены трубчатые теплоизоляционные элементы, при этом штанга расположена внутри трубчатых теплоизоляционных элементов, выполненных по крайней мере двухслойными и из по меньшей мере двух цилиндрических трубчатых элементов.

Использование такой конструкции тепловой защиты позволяет во всех направлениях снизить теплопередачу со стороны реакторного пространства, что, в свою очередь, защищает привод от высоких температур и повышает надежность функционирования исполнительного механизма.

Помимо этого, слои и цилиндрические трубчатые элементы могут быть выполнены из металла и теплозащитного материала с низкой теплопроводностью, которые чередуются и по слоям и по цилиндрическим трубчатым элементам.

Кроме того, трубчатые теплоизоляционные элементы могут быть выполнены охлаждаемыми.

Кроме того, трубчатые теплоизоляционные элементы могут быть выполнены с возможностью подвода и отвода охлаждающей жидкости.

Кроме того, исполнительный механизм может быть снабжен радиационной защитой, установленной внутри штанги и внутри кольцевого пространства между штангой и направляющей трубой.

Кроме того, на внутренней стороне направляющей трубы может быть установлен подшипник.

Кроме того, штанга может быть снабжена упорами.

Кроме того, внутри направляющей трубы может быть коаксиально расположена вспомогательная труба.

Кроме того, на вспомогательной трубе может быть закреплен демпфер. Сущность изобретения поясняется следующими чертежами.

На фиг. 1 изображен ИМ СУЗ РУ (на этой и следующих фигурах изображены продольные сечения).

На фиг. 2 изображена кольцевая компоновка труб и теплоизоляционных элементов.

На фиг. 3 изображена компоновка теплоизоляционных элементов и радиационной защиты.

На фиг. 4 изображен демпфер.

На фиг. 5 изображены трубчатые элементы с чередованием материалов по слоям.

На фиг. 6 изображены чередующиеся цилиндрические трубчатые элементы.

ИМ СУЗ содержит направляющий канал, выполненный в виде направляющей трубы (1), сверху закрепленной на опорно-теплозащитной конструкции (2), а снизу погруженной в теплоноситель РУ (а). Сверху на направляющую трубу (1) установлен привод (3) с подвижным якорем (4), соединенным через байонет (5) с верхней частью подвижной штанги (6). Нижняя часть штанги также посредством байонета (7) соединена с рабочим органом (8). Внутри направляющей трубы (1) коаксиально ей расположена вспомогательная труба (9). Штанга (6) расположена коаксиально вспомогательной трубе (9) внутри нее. В верхней части направляющей трубы прикреплен демпфер с тарельчатыми пружинами (10). Вспомогательная труба (9) закреплена верхним концом на демпфере, а ниже ее на внутренней стороне направляющей трубы установлен уплотняющий подшипник (11). Штанга снабжена упорами (12), расположенными под демпфером (10). Внутри штанги установлена радиационная защита (13), а внутри кольцевого пространства между штангой и направляющей трубой у уплотняющего подшипника (11) установлена кольцевая радиационная защита (14). Между направляющей трубой, штангой и вспомогательной трубой расположены трубчатые теплоизоляционные элементы (15), (16).

Исполнительный механизм СУЗ РУ работает следующим образом.

Тепловой поток со стороны реакторного пространства распространяется по металлическим элементам конструкции труб к приводу, соединительным и другим частям ИМ СУЗ, что может привести к их ненадежному функционированию. Для повышения термического сопротивления соединительных и корпусных частей ИМ СУЗ обеспечивается ограничение теплового потока со стороны реакторного пространства посредством расположения между направляющей трубой (1), штангой (6) и вспомогательной трубой (9) трубчатых теплоизоляционных элементов (15), (16), выполненных по крайней мере двухслойными и из по меньшей мере двух цилиндрических трубчатых элементов.

Тепловая защита, выполненная указанным выше образом позволяет снижать величину теплового потока при прохождении каждого трубчатого теплоизоляционного элемента, тем самым защищая привод, соединительные и другие части ИМ СУЗ от высоких температур и повышая надежность функционирования исполнительного механизма.

Для дополнительного повышения термического сопротивления соединительных и корпусных частей ИМ СУЗ трубчатые теплоизоляционные элементы могут быть выполнены по крайней мере двухслойными и из по меньшей мере двух цилиндрических трубчатых элементов, причем слои и цилиндрические трубчатые элементы выполняются из металла и теплозащитного материала с низкой теплопроводностью, которые чередуются и по слоям и по цилиндрическим трубчатым элементам. При вышеуказанном чередовании металла и теплозащитного материала с низкой теплопроводностью в конструкции каждого из трубчатых теплоизоляционных элементов, расположение металлических и теплозащитных цилиндрических трубчатых элементов приобретает характер «шахматного порядка». При этом металлические цилиндрические трубчатые элементы соединяются между собой для создания несущей части каждого из трубчатых теплоизоляционных элементов, а теплозащитные цилиндрические трубчатые элементы фиксируются в промежутках между металлическими цилиндрическими трубчатыми элементами, образованных за счет «шахматного порядка».

Тепловая защита, выполненная указанным выше образом позволяет снизить величину теплового потока, проходящего через теплозащитные цилиндрические трубчатые элементы, и, тем самым, дополнительно повышает защиту привода от высоких температур и надежность функционирования исполнительного механизма.

Для дополнительного увеличения термического сопротивления соединительных и корпусных частей ИМ СУЗ трубчатые теплоизоляционные элементы могут быть выполнены охлаждаемыми и с возможностью подвода и отвода охлаждающей жидкости. Это позволит еще больше снизить величину теплового потока, проходящего через трубчатые теплоизоляционные элементы.

ИМ СУЗ также может быть снабжен подшипником, который установлен на внутренней стороне направляющей трубы. Это позволит предохранить штангу от искривления, заедания и застревания.

Помимо этого ИМ СУЗ может быть снабжен демпфером, который закреплен на вспомогательной трубе, а штанга ИМ может быть снабжена упорами. Это позволит предохранить привод ИМ от ударной нагрузки непосредственно на него.

Кроме того, ИМ СУЗ может быть снабжен радиационной защитой, установленной внутри штанги и внутри кольцевого пространства между штангой и направляющей трубой. Это позволит обеспечить защиту привода ИМ от потока нейтронов со стороны активной зоны.

Таким образом, за счет использования в исполнительном механизме системы управления и защиты ядерного реактора вышеуказанных конструкционных элементов полностью обеспечивается достижение технического результата.

1. Исполнительный механизм системы управления и защиты ядерного реактора, содержащий привод, канал, внутри которого коаксиально расположена штанга, соединяющая привод с рабочим органом, который расположен под активной зоной реактора с возможностью введения в активную зону реактора под действием привода и/или выталкивающей силы теплоносителя, отличающийся тем, что канал выполнен в виде направляющей трубы, внутри которой коаксиально расположены трубчатые теплоизоляционные элементы, при этом штанга расположена внутри трубчатых теплоизоляционных элементов, выполненных по крайней мере двухслойными и из по меньшей мере двух цилиндрических трубчатых элементов.

2. Исполнительный механизм по п. 1, отличающийся тем, что слои и цилиндрические трубчатые элементы выполнены из металла и теплозащитного материала с низкой теплопроводностью, которые чередуются и по слоям и по трубчатым элементам.

3. Исполнительный механизм по п. 1, отличающийся тем, что трубчатые теплоизоляционные элементы выполнены охлаждаемыми.

4. Исполнительный механизм по п. 3, отличающийся тем, что трубчатые теплоизоляционные элементы выполнены с возможностью подвода и отвода охлаждающей жидкости.

5. Исполнительный механизм по п. 1, отличающийся тем, что снабжен радиационной защитой, установленной внутри штанги и внутри кольцевого пространства между штангой и направляющей трубой.

6. Исполнительный механизм по п. 1, отличающийся тем, что на внутренней стороне направляющей трубы установлен подшипник.

7. Исполнительный механизм по п. 1, отличающийся тем, что штанга снабжена упорами.

8. Исполнительный механизм по п. 1, отличающийся тем, что внутри направляющей трубы коаксиально расположена вспомогательная труба.

9. Исполнительный механизм по п. 8, отличающийся тем, что на вспомогательной трубе закреплен демпфер.



 

Похожие патенты:

Изобретение относится к ядерным реакторам деления на бегущей волне, имеющим спектр быстрых нейтронов. Изобретение характеризует сборку регулирования реактивности, систему регулирования реактивности, реактор ядерного деления на бегущей волне, способ регулирования реактивности в реакторе, способы управления реактором, способ и систему определения применения регулируемо подвижного стержня.

Изобретение относится к ядерной технике и предназначено для использования в качестве стержней управления и защиты ядерных реакторов, преимущественно в реакторах на быстрых нейтронах с металлическим теплоносителем, например натриевым, свинцовым, свинцово-висмутовым.

Изобретение относится к ядерной технике и предназначено для использования в качестве стержней управления и защиты ядерных реакторов, преимущественно в реакторах на быстрых нейтронах с металлическим теплоносителем.

Изобретение относится к ядерной технике, в частности к поглощающим элементам системы управления и защиты корпусного водоохлаждаемого ядерного реактора, и может быть использовано в регулирующих органах, выполненных в виде одиночных поглощающих элементов с различным поперечным сечением или сборок, содержащих набор поглощающих элементов (ПЭЛ) или набор топливных элементов и ПЭЛ.

Изобретение относится к области ядерной энергетики, в частности к конструкции ампулы облучательного устройства ядерного реактора, и предназначено для производства источников гамма-излучения.

Изобретение относится к области ядерной энергетики, касается, в частности, конструкции звена облучательного устройства для ядерных канальных реакторов и может использоваться для производства гамма-источников из радиоактивного кобальта.

Изобретение относится к ядерной технике, в частности к устройствам системы управления и защиты, может быть использовано в регулирующих органах, выполненных в виде одиночных стержней с различным поперечным сечением или в виде сборок, содержащих набор регулирующих стержень или набор топливных и регулирующих стержней, предназначенных для компенсации избыточной реактивности.

Изобретение относится к ядерной технике, в частности к устройствам системы управления и защиты, может быть использовано в регулирующих органах, выполненных в виде одиночных стержней с различным поперечным сечением или в виде сборок, содержащих набор регулирующих стержень или набор топливных и регулирующих стержней, предназначенных для компенсации избыточной реактивности.

Изобретение относится к ядерной технике и предназначено для использования при управлении работой ядерного реактора, например реактора с водяным охлаждением с топливными кассетами квадратного или шестигранного сечения.

Изобретение относится к системам управления и защиты ядерных реакторов. Устройство управления стержнями (CRDM) содержит направляющий винт, двигатель, закрепленный на резьбе с направляющим винтом для линейного движения направляющего винта в направлении ввода или обратно в направлении изъятия, фиксирующее приспособление, соединенное с направляющим винтом и предназначенное для (i) сцепления с соединительным стержнем и (ii) расцепления от соединительного стержня, и разъединяющий механизм, предназначенный для селективного расцепления фиксирующего приспособления от соединительного стержня. При этом соединительный стержень может свободно двигаться по направлению введения когда отцеплен. Технический результат - повышение быстродействия и надежности устройства управления стержнями. 2 н. и 5 з.п. ф-лы, 25 ил.

Изобретение относится к ядерной технике, а более конкретно к системе управления и защиты ядерного реактора, и может быть применено в направляющих гильзах рабочего органа системы управления и защиты ядерного реактора (РО СУЗ) и в инструментах для установки, фиксации и извлечения гильз. Направляющая гильза РО СУЗ содержит чехол для размещения рабочего органа, элемент для прохода и размещения монтажного инструмента и цилиндрический хвостовик, которые неразъемно соединены между собой. Верхняя часть элемента для прохода и размещения монтажного инструмента выполнена с байонетными пазами для образования с ответными выступами монтажного инструмента верхнего байонетного узла. Хвостовик снабжен байонетной втулкой и подпружиненным штоком. Байонетная втулка выполнена с байонетными пазами для образования с ответными выступами втулки напорного коллектора нижнего байонетного узла. Монтажный инструмент содержит головку для захвата механизма перегрузки и хвостовик с выступами. Технический результат - упрощение монтажно-демонтажных работ. 2 н.п. ф-лы, 3 ил.

Изобретение относится к ядерной технике. Способ сборки поглощающего элемента (ПЭЛ) ядерного реактора включает подготовку оболочки в виде трубы, герметизацию ее аргоно-дуговой сваркой с одного торца с помощью нижнего наконечника, имеющего коническую форму, загрузку оболочки поглощающими материалами в виде таблеток или порошка, фиксацию поглощающего материала от осевого перемещения c установкой прокладки при порошкообразном состоянии поглощающего материала, герметизацию оболочки с другого торца контактно-стыковой сваркой с помощью верхнего наконечника, содержащего утяжеляющую часть. Фиксация поглощающего материала от осевого перемещения производится с помощью пружинного фиксатора, устанавливаемого в компенсационном объеме ПЭЛ. Изобретение позволяет увеличить надежность способа сборки ПЭЛ и повысить работоспособность при сохранении эффективности ПЭЛ. 2 з.п. ф-лы, 2 ил.
Наверх