Способ поиска неисправного блока в непрерывной динамической системе на основе смены позиции входного сигнала



Способ поиска неисправного блока в непрерывной динамической системе на основе смены позиции входного сигнала
Способ поиска неисправного блока в непрерывной динамической системе на основе смены позиции входного сигнала
Способ поиска неисправного блока в непрерывной динамической системе на основе смены позиции входного сигнала
Способ поиска неисправного блока в непрерывной динамической системе на основе смены позиции входного сигнала
Способ поиска неисправного блока в непрерывной динамической системе на основе смены позиции входного сигнала
Способ поиска неисправного блока в непрерывной динамической системе на основе смены позиции входного сигнала
Способ поиска неисправного блока в непрерывной динамической системе на основе смены позиции входного сигнала
Способ поиска неисправного блока в непрерывной динамической системе на основе смены позиции входного сигнала
Способ поиска неисправного блока в непрерывной динамической системе на основе смены позиции входного сигнала
Способ поиска неисправного блока в непрерывной динамической системе на основе смены позиции входного сигнала
Способ поиска неисправного блока в непрерывной динамической системе на основе смены позиции входного сигнала

 


Владельцы патента RU 2562429:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет" (RU)

Изобретение относится к контролю и диагностированию систем автоматического управления и их элементов. Технический результат - расширение функциональных возможностей способа путем применения рабочего диагностирования (без использования тестового воздействия) и уменьшение программных или аппаратных затрат на вычисление весовой функции. Он достигается тем, что в дополнение к известному способу определяют и регистрируют интегральные оценки выходных сигналов с номинальными характеристиками и сигналов m моделей для каждой из k контрольных точек, полученные в результате смены позиции входного сигнала на позицию после каждого из m блоков, для чего в момент подачи тестового или рабочего сигнала на вход системы с номинальными характеристиками одновременно начинают интегрирование выходных сигналов системы в каждой из k контрольных точек для весовой функции; определяют и регистрируют деформации интегральных оценок выходных сигналов модели; определяют нормированные значения деформаций интегральных оценок выходных сигналов модели; определяют деформации интегральных оценок выходных сигналов контролируемой системы для k контрольных точек; вычисляют нормированные значения деформаций интегральных оценок выходных сигналов контролируемой системы. 1 ил.

 

Изобретение относится к области контроля и диагностирования систем автоматического управления и их элементов.

Известен способ поиска неисправного блока в динамической системе. (Способ поиска неисправного блока в динамической системе: пат. 2451319 РФ: МПК7 G05B 23/02 (2006.01) / Воронин В.В., Киселев В.В., Шалобанов С.В., Шалобанов С.С. - №2011129533/08; заявл. 15.07.2011; опубл. 20.05.2012, Бюл. №14).

Недостатком этого способа является то, что он использует задание величин относительных отклонений параметров передаточных функций для моделей с пробными отклонениями.

Наиболее близким техническим решением (прототипом) является способ поиска неисправного блока в непрерывной динамической системе на основе смены позиции входного сигнала (Способ поиска неисправного блока в непрерывной динамической системе на основе смены позиции входного сигнала: пат. 2528135 РФ: МПК7 G05B 23/02 (2006.01) / Шалобанов С.С. - №2013144231/08; заявл. 01.10.2013; опубл. 10.09.2014, Бюл. №25).

Недостатком этого способа является то, что он обеспечивает определение дефектов только в режиме тестового диагностирования без применения рабочего и с более высокими вычислительными затратами из-за использования весовой функции.

Технической задачей, на решение которой направлено данное изобретение, является расширение функциональных возможностей способа путем применения рабочего диагностирования (без использования тестового воздействия) и уменьшение программных или аппаратных затрат на вычисление весовой функции.

Поставленная задача достигается тем, что регистрируют реакцию заведомо исправной системы fjном(t), j=1,…,k на интервале t∈[0, TK] в к контрольных точках и определяют интегральные оценки выходных сигналов Fjном(d), j=1,…,k системы, для чего в момент подачи тестового или рабочего сигнала на вход системы с номинальными характеристиками одновременно начинают интегрирование выходных сигналов этой системы для каждой из k контрольных точек с весовой функцией, равной среднему арифметическому значению модулей производных ее выходных сигналов в контрольных точках, где усреднение производится по числу контрольных точек. Для этого на первые входы k блоков перемножения подают выходные сигналы системы, на вторые входы блоков перемножения подают среднее арифметическое значение модулей производных по времени выходных сигналов, выходные сигналы k блоков перемножения подают на входы k блоков интегрирования, интегрирование завершают в момент времени TК, полученные в результате интегрирования оценки выходных сигналов Fjном(d), j=1,…, k регистрируют, одновременно определяют интегральные оценки выходных сигналов модели для каждой из k контрольных точек и каждой из m позиций входного сигнала, полученные в результате смены позиции входного сигнала после каждого из m блоков, для чего поочередно для каждого блока динамической системы перемещают место подачи входного сигнала на выход каждого блока, подают через сумматор входной сигнал и находят интегральные оценки выходных сигналов системы при том же рабочем или тестовом входном сигнале x(t), полученные в результате интегрирования оценки выходных сигналов для каждой из k контрольных точек и каждой из m моделей с различной (зафиксированной на выходах разных блоков) позицией входного сигнала Yji(d), j=1,…,k; i=1,…, m регистрируют, одновременно на вход контролируемой системы подают тестовый или рабочий сигнал x(t), определяют интегральные оценки выходных сигналов контролируемой системы для k контрольных точек Fj(d), j=1,…,k, полученные значения регистрируют, определяют деформации интегральных оценок выходных сигналов модели, полученные в результате перемещения позиции входного сигнала на позицию после каждого из соответствующих блоков ΔYji(d)=Yji(d)-Fjном(d), j=1,…,k; i=1,…, m, определяют нормированные значения деформаций интегральных оценок выходных сигналов модели, полученные в результате перемещения позиции входного сигнала на позицию после каждого из соответствующих блоков из соотношения

определяют деформации интегральных оценок выходных сигналов контролируемой системы для k контрольных точек ΔFj(d)=Fj(d)-Fjном(d), j=1,…,k, определяют нормированные значения деформаций интегральных оценок выходных сигналов контролируемой системы

определяют диагностические признаки

по минимуму значения диагностического признака определяют неисправный блок.

Сущность предлагаемого способа заключается в следующем.

Способ основан на использовании смены позиции входного сигнала непрерывной динамической системы. Для получения диагностических признаков динамических элементов используются интегральные оценки на временном интервале TК в k контрольных точках

Весовая функция в формуле (4) в виде среднего значения модулей производных сигналов в контрольных точках несет информацию о важности момента времени с точки зрения скорости изменения выходных сигналов во всех контрольных точках. Чем больше средняя скорость изменения выходных сигналов, тем с большим весом интегрируется выходной сигнал. Используя векторную интерпретацию выражения (3), запишем его в следующем виде

где φi(d) - угол между нормированным вектором (вектором единичной длины) деформаций интегральных оценок выходных сигналов объекта с элементами Δ F ^ j ( d ) и нормированным вектором (единичной длины) деформаций интегральных оценок выходных сигналов модели с элементами Δ Y ^ j i ( d ) , полученными в результате смены позиции входного сигнала i-го блока.

Таким образом, нормированный диагностический признак (3) представляет собой значение квадрата синуса угла, образованного в k-мерном пространстве (где k - число контрольных точек) нормированными векторами интегральных оценок выходных сигналов моделей с измененной позицией входного сигнала и реальной деформации интегральных оценок выходных сигналов объекта диагностирования.

Модель с измененной позицией входного сигнала после данного блока, минимизирующей значение диагностического признака (3), указывает на наличие дефекта в этом блоке. Область возможных значений диагностического признака лежит в интервале [0, 1].

Таким образом, предлагаемый способ поиска неисправного блока сводится к выполнению следующих операций:

1. В качестве динамической системы рассматривают систему, состоящую из произвольно соединенных динамических блоков с количеством рассматриваемых блоков m.

2. Предварительно определяют время контроля ТК≥ТПП, где ТПП - время переходного процесса системы. Время переходного процесса оценивают для номинальных значений параметров динамической системы.

3. Фиксируют число контрольных точек k.

4. Одновременно подают тестовый сигнал x(t) (единичный ступенчатый) или рабочий сигнал на вход системы управления с номинальными параметрами, на вход контролируемой системы, на входы m моделей, полученные в результате смены позиции входного сигнала на позицию после i-го блока каждого из m блоков для номинальных значений параметров передаточных функций блоков.

5. Одновременно регистрируют реакцию системы с номинальными характеристиками fjном(t), реакцию контролируемой системы fj(t), реакции моделей с измененной позицией входного сигнала на позицию после i-го блока Yji(t) в k контрольных точках j=1,…, k на интервале t∈[0, ТК].

6. Одновременно определяют интегральные оценки выходных сигналов Fjном(d), j=1,…, k системы с номинальными характеристиками, контролируемой системы Fj(d), j=1,…,k, моделей с измененной позицией входного сигнала на позицию после i-го блока Yji(d), j=1,…,k; i=1,…, m. Для этого в момент подачи входного сигнала одновременно начинают интегрирование выходных сигналов в каждой из k контрольных точек системы с номинальными характеристиками, контролируемой системы, моделей с измененной позицией входного сигнала, равной среднему арифметическому значению модулей производных сигналов в контрольных точках, где усреднение производится по числу контрольных точек, для чего выходные сигналы каждой системы подают на первые входы k блоков перемножения, на вторые входы блоков перемножения подают среднее арифметическое значение модулей производных выходных сигналов системы в контрольных точках, где усреднение производится по числу контрольных точек выходных сигналов системы, выходные сигналы k блоков перемножения подают на входы k блоков интегрирования, интегрирование завершают в момент времени TК, полученные в результате интегрирования оценки выходных сигналов Fjном(d), Fj(d), j=1,…,k, Yji(d), j=1,…, k; i=1,…, m регистрируют.

7. Определяют деформации интегральных оценок выходных сигналов модели, полученные в результате смены позиции входного сигнала на позицию после i-го блока каждого из m блоков для номинальных значений параметров передаточных функций блоков

ΔYji(d)=Yji(d)-Fjном(d), j=1,…, k, i=1,…, m.

8. Определяют нормированные значения деформаций интегральных оценок выходных сигналов модели, полученные в результате смены позиции входного сигнала на позицию после соответствующих блоков:

9. Определяют деформации интегральных оценок выходных сигналов контролируемой системы для k контрольных точек от номинальных значений ΔFj(d)=Fj(d)-Fjном(d), j=1,…,k

10. Вычисляют нормированные значения деформаций интегральных оценок выходных сигналов контролируемой системы по формуле:

11. Вычисляют диагностические признаки наличия неисправного блока по формуле (3).

12. По минимуму значения диагностического признака определяют дефектный блок.

Рассмотрим реализацию предлагаемого способа поиска дефекта блока для системы, структурная схема которой представлена на рисунке (см. Фигура. Структурная схема объекта диагностирования).

Передаточные функции блоков:

W 1 = k 1 ( T 1 p + 1 ) p ; W 2 = k 2 T 2 p + 1 ; W 3 = k 3 T 3 p + 1 ,

где номинальные значения параметров: T1=5 с; k1=1; k2=1; T2=1 с; k3=1; T3=5 с.

При моделировании в качестве входного сигнала будем использовать псевдослучайный сигнал (при моделировании использовался блок Band-Limited White Noise в среде Matlab). Время контроля TК выберем равным 10 с.

При поиске одиночного дефекта в виде отклонения коэффициента усиления k3=0.8 в третьем звене путем подачи псевдослучайного рабочего входного сигнала и TК=10 с, получены значения диагностических признаков на основе смены позиции входного сигнала при использовании трех контрольных точек, расположенных на выходах блоков: J1=0.143; J2=0.219; J3=0.065. Минимальное значение признака J3 однозначно указывает на наличие дефекта в третьем блоке, а разность между первым и третьим признаками может количественно характеризовать практическую (апостериорную) различимость этого дефекта ΔJ=J1-J3=0.078.

Минимальное значение диагностического признака во всех случаях правильно указывает на дефектный блок. Кроме того, заявляемый способ позволяет осуществлять диагностирование в условиях реального функционирования объекта диагностирования (рабочее диагностирование).

Способ поиска неисправного блока в непрерывной динамической системе на основе смены позиции входного сигнала, основанный на том, что фиксируют число динамических элементов, входящих в состав системы, определяют время контроля TК≥TПП, используют входной сигнал x(t) на интервале t∈[0,TК], фиксируют число k контрольных точек системы, регистрируют реакцию контролируемой системы fj(t), j=1, …, k, регистрируют реакцию системы с номинальными характеристиками fj ном(t), j=1, …, k на интервале t∈[0,TК] в k контрольных точках, подают сигнал x(t) на вход системы с номинальными характеристиками, на вход контролируемой системы, на входы m моделей с номинальными характеристиками, полученные в результате смены позиции входного сигнала на позицию после каждого из m блоков, для чего поочередно для каждого блока динамической системы перемещают позицию входного сигнала на позиции после каждого рассматриваемого блока, подают туда через сумматор входной сигнал x(t) и находят интегральные оценки выходных сигналов системы для входного сигнала x(t), определяют интегральные оценки выходных сигналов системы с номинальными характеристиками, для чего в момент подачи входного сигнала на вход системы с номинальными характеристиками начинают интегрирование сигналов системы в каждой из k контрольных точек, выходные сигналы k блоков перемножения подают на входы k блоков интегрирования, интегрирование завершают в момент времени TК, полученные в результате интегрирования оценки выходных сигналов регистрируют, определяют интегральные оценки выходных сигналов контролируемой системы для k контрольных точек, определяют деформации интегральных оценок выходных сигналов контролируемой системы для k контрольных точек от номинальных значений, определяют нормированные значения деформаций интегральных оценок выходных сигналов контролируемой системы, аналогично определяют интегральные оценки выходных сигналов m моделей для каждой из k контрольных точек, полученные в результате смены позиции входного сигнала на позицию после каждого из m блоков, полученные в результате интегрирования оценки выходных сигналов для каждой из k контрольных точек, каждой из m моделей с измененной позицией используют для вычисления диагностических признаков, определяют деформации интегральных оценок выходных сигналов модели, полученные в результате смены позиции входного сигнала на позицию после каждого из m блоков, определяют нормированные значения деформаций интегральных оценок выходных сигналов модели, полученные в результате смены позиции входного сигнала на позицию после каждого из m блоков, отличающийся тем, что одновременно подают тестовый или рабочий сигнал x(t) на вход системы с номинальными характеристиками, на вход контролируемой системы, на входы m моделей с номинальными характеристиками, полученные в результате смены позиции входного сигнала на позицию после каждого из m блоков, в качестве динамических характеристик системы используют интегральные оценки, полученные для весовой функции, равной среднему арифметическому модулей производных по времени от выходных сигналов системы в различных контрольных точках, из соотношения , определяют интегральные оценки выходных сигналов Fj ном(d), j=1, …, k системы с номинальными характеристиками, для чего в момент подачи тестового или рабочего сигнала на вход системы с номинальными характеристиками одновременно начинают интегрирование выходных сигналов системы в каждой из k контрольных точек для весовой функции, путем подачи на первые входы k блоков перемножения выходных сигналов системы на вторые входы блоков перемножения подают среднее арифметическое модулей производных по времени от выходных сигналов системы с номинальными характеристиками, выходные сигналы k блоков перемножения подают на входы k блоков интегрирования, интегрирование завершают в момент времени TК, полученные в результате интегрирования оценки выходных сигналов Fj ном(d), j=1, …, k регистрируют, аналогично определяют интегральные оценки выходных сигналов m моделей для каждой из k контрольных точек, полученные в результате смены позиции входного сигнала на позицию после каждого из m блоков, полученные в результате интегрирования оценки выходных сигналов для каждой из k контрольных точек, каждой из m моделей с измененной позицией входного сигнала Yji(d) j=1, …, k; i=1, …, m регистрируют, определяют деформации интегральных оценок выходных сигналов модели, полученные в результате смены позиции входного сигнала на позицию после каждого из m блоков ΔYji(d)=Yji(d)-Fj ном(d), j=1, …, k; i=1, …, m, определяют нормированные значения деформаций интегральных оценок выходных сигналов модели, полученные в результате смены позиции входного сигнала на позицию после каждого из m блоков по формуле , определяют деформации интегральных оценок выходных сигналов контролируемой системы для k контрольных точек от номинальных значений ΔFj(d)=Fj(d)-Fj ном(d), j=1, …, k, вычисляют нормированные значения деформаций интегральных оценок выходных сигналов контролируемой системы по формуле: , полученные нормированные значения интегральных оценок выходных сигналов используют для вычисления диагностических признаков .



 

Похожие патенты:

Изобретение относится к контролю и диагностированию систем автоматического управления. Технический результат - улучшение помехоустойчивости.

Изобретение относится к диагностике различных электронных продуктов. Технический результат - более точная настройка диагностики параметра, который является причиной неисправности, на основе информации о временной метке.

Изобретение относится к области радиотехники и может быть использовано для интеллектуального анализа оценки устойчивости инфокоммуникационной системы. Техническим результатом является повышение устойчивости функционирования системы связи при воздействии деструктивных электромагнитных излучений на ее структурные элементы за счет оперативной реконфигурации и обработки характера деструктивных воздействий.

Изобретение относится к портативным устройствам эксплуатационного обслуживания. Технический результат - упрощение взаимодействия со сложной структурой меню полевых устройств за счет использования запрограммированных “горячих” клавиш.

Изобретение относится к системам контроля или управления промышленными процессами, в которых полевые устройства используются для контроля и управления промышленным процессом.

Изобретение относится к способам для определения изменения параметра клапана для управления клапаном. Технический результат заключается в повышении точности диагностики клапанов в онлайн режимах.

Изобретение относится к способам контроля, управления и к контрольно-измерительной технике и может быть использовано в системах управления и контроля эксплуатации сложных технических объектов.

Изобретение относится к контрольному устройству распределительного шкафа, которое через промышленную сеть соединено с различными датчиками и/или исполнительными устройствами для контроля и управления различными функциями распределительного шкафа, такими как кондиционирование, регулирование влажности, контроль доступа.

Изобретение относится к контролю и диагностированию систем автоматического управления и их элементов. Технический результат - поиск неисправностей.

Изобретение относится к области контроля и диагностирования систем автоматического управления и их элементов. Техническим результатом является расширение функциональных возможностей способа за счет возможности поиска топологических дефектов.

Изобретение относится к области автоматики и вычислительной техники и может быть использовано для контроля и технической диагностики сложного технологического оборудования, в том числе - станочного оборудования и гибких производственных систем. Техническим результатом является обеспечение автоматического выбора значимых параметров из всего множества входных и выходных параметров за счет дополнительного обучения нейронной сети в процессе работы, за счет увеличения-уменьшения количества активных нейронов, не приводящего к ухудшению качества технической диагностики, а также за счет выбора избыточных нейронов и их активации при переобучении или при отказе нейронов сети. Устройство содержит датчики, вычислительную систему и устройства отображения сигналов диагностики. Вычислительная система содержит модуль, реализованный с возможностью интеллектуального анализа и содержащий динамическую модель, которая реализована на обученной нейронной сети, и модуль, реализованный с возможностью дополнительного обучения нейронной сети и выбора активных и избыточных нейронов. 2 н. и 3 з.п. ф-лы, 5 ил.

Изобретение относится к устройствам, системам и способам для систем управления процессом испытания, в частности, к устройствам, системам и способам для испытания системы аварийного останова в составе технологического оборудования или для испытания компонентов такой системы в составе технологического оборудования. Технический результат заключается в предотвращении дальнейшего поступления сырьевого материала через клапан в случае аварийной ситуации, что предотвращает дальнейшую подачу материала к остальным элементам технологической установки. Технический результат достигается за счет устройства пульта управления, системы и способа для проведения испытания, которые включают в себя получение сигнала запуска испытания; определение длительности сигнала запуска испытания; проверку соответствия длительности сигнала надлежащей для начала испытания длительности; начало испытания путем подачи сигнала начала испытания устройству контроллера клапана; передачу сигналов от устройства контроллера клапана; индикацию приема устройством пульта управления испытанием сигнала контроллера клапана от устройства контроллера клапана; при этом сигнал контроллера клапана является сигналом подтверждения испытания. 3 н. и 27 з.п. ф-лы, 7 ил.

Группа изобретений относится к области судовождения, а именно к способу управления движением судна с компенсацией медленно меняющихся внешних возмущений и системе, использующей данный способ. Для управления движением судна с компенсацией медленно меняющихся внешних возмущений используют задатчик курсового угла, приемник спутниковой навигационной системы, рулевой привод, электронную модель движения судна, регулятор-сумматор, интегратор, функциональный преобразователь, датчики угловых ускорений и угловых скоростей, судовой измеритель скорости, судовой многолучевой эхолот, электронную картографическую навигационную информационную систему. Получают управляющий сигнал на вход рулевого привода, используя следующие сигналы: заданного курса и оценки угла курса, невязки, угла перекладки руля, курса с приемника спутниковой навигационной системы. Достигается повышение точности управления движением судна по заданной траектории. 2 н.п. ф-лы, 1 ил.

Изобретение относится к средствам контроля устройств автоматики и телемеханики и может быть использовано, в частности, для контроля исправности силовых управляемых ключей преимущественно блоков безопасности. Ключевой элемент выполнен в виде последовательной цепи из не менее двух контролируемых ключей в виде полевых транзисторов, источника питания. Устройство содержит блок попарного сравнения напряжений на контролируемых ключах, выполненный с возможностью контроля и сравнения падения напряжений на открытых последовательно включенных контролируемых ключах. Повышается достоверность контроля ключей, обеспечивается непрерывность контроля. 3 з.п. ф-лы, 3 ил.

Группа изобретений относится к области автоматики и предназначена для обеспечения комплексной безопасности-защищенности сложных производств и используемых на них технологий. Техническим результатом является повышение безопасности. В объектно-ориентированном способе обеспечения комплексной безопасности-защищенности территориально распределенного промышленного комплекса учитывается ряд не принимавшихся ранее во внимание, но во многом определяющих безопасность специфических особенностей территориально распределенных промышленных комплексов (ТРПК). В числе таких особенностей - фактор территориального распределения компонент ТРПК, возможность их динамического взаимодействия как ближнего, так и дальнего порядков, возможность развития не только локальных аварий, но и наиболее тяжелых по последствиям системных дефектов, неисправностей и катастроф, значительные вариации в ходе эксплуатации режимов работы компонент и ТРПК в целом, практически равная значимость для обеспечения безопасности технического и функционального состояний ТРПК, возможность скачкообразных изменений состояния компонент и ТРПК, как самопроизвольных, так и целевых (например, после проведенных ремонтных работ) и т.п. 5 н. и 2 з.п. ф-лы, 5 ил.

Изобретение относится к системе и способу анализа и оценки состояния устройства обработки банкнот, выполненных с возможностью автоматического сбора информации об использовании. Достигаемый технический результат - возможность вырабатывать информацию об оценке состояния на основе статистической информации. Система анализа и оценки состояния устройства обработки банкнот включает в себя детектор информации (100) для обнаружения информации об использовании устройства обработки банкнот в реальном времени, устройство для оценки состояния (200) для выработки (i) статистической информации на основании обнаруженной информации об использовании устройства обработки банкнот и (ii) информации об оценке состояния, касающейся состояния устройства обработки банкнот и условий работы устройства обработки банкнот, с использованием статистической информации, и базу данных (300) для хранения одной или более из информации об использовании устройства обработки банкнот, статистической информации, выработанной на основании информации об использовании, и информации об оценке состояния, выработанной на основании статистической информации. 9 з.п. ф-лы, 4 ил.

Изобретение относится к средствам автоматики и телемеханики и может быть использовано, в частности, для контроля исправности силовых управляемых ключей преимущественно блоков безопасности. Устройство выполнено в виде последовательной цепи из не менее двух контролируемых ключей и источника питания и содержит блок попарного сравнения напряжений на контролируемых ключах. Оно снабжено также биполярным транзистором, включенным последовательно в цепь указанных ключей, при этом контролируемые ключи выполнены в виде полевых транзисторов. В цепь базы биполярного транзистора согласно включен высоковольтный диод. Повышается достоверность контроля ключей, обеспечивается возможность применения для одиночных ключей. 3 з.п. ф-лы, 2 ил.

Изобретение относится к передатчикам переменных параметров процесса, используемым в системах мониторинга и управления процессом. Технический результат - повышение быстродействия передатчика. Передатчик (10) переменных параметров процесса включает в себя память (16), которая хранит отфильтрованное значение датчика, которое вычислено на основании предыдущего принятого значения датчика, и отфильтрованное значение скорости изменения, которое вычислено на основании предыдущего значения скорости изменения. Передатчик (10) переменных параметров процесса также включает в себя контроллер (14), который принимает значение датчика и сравнивает его с отфильтрованным значением датчика, чтобы получить значение скорости изменения. Контроллер (14) также сравнивает значение скорости изменения с отфильтрованным значением скорости изменения, чтобы получить значение отклонения, и формирует выводимое указание, такое как выводимое предупреждение об отказе датчика, на основании значения отклонения. 3 н. и 17 з.п. ф-лы, 5 ил.

Изобретение относится к вычислительной технике. Технический результат - повышение быстродействия системы. Система содержит: модуль идентификации базового адреса данных эксплуатации воздушных судов авиакомпании; модуль идентификации относительного адреса данных эксплуатации воздушных судов одного типа; модуль селекции адреса параметров класса особых ситуаций (ОС); модуль вызова подпрограммы вычисления обратного значения суммарного налета; модуль регистрации параметров класса ОС; модуль селекции класса ОС без инцидентов; модуль селекции базового адреса параметров подклассов класса ОС; модуль распознавания ветви процедуры вычисления вероятностей возникновения ОС; модуль принятия решения об уровне безопасности полетов по суммарным вероятностям классов ОС; модуль принятия решения об уровне безопасности полетов по сигнальным вероятностям классов ОС; модуль идентификации сигнальных вероятностей подклассов класса ОС; модуль принятия решения об уровне безопасности полетов по сигнальным вероятностям подклассов класса ОС; модуль контроля завершения процедуры анализа массива подклассов класса ОС; и модуль контроля завершения процедуры анализа массива классов ОС. 15 ил., 4 табл.

Изобретение относится к области контроля и диагностирования систем автоматического управления и их элементов. Предварительно регистрируют реакцию заведомо исправной дискретной во времени системы для дискретных тактов диагностирования с дискретным постоянным шагом на интервале наблюдения в контрольных точках и определяют интегральные оценки выходных сигналов дискретной системы. Для этого в момент подачи тестового сигнала на вход дискретной системы с номинальными характеристиками одновременно начинают дискретное интегрирование выходных сигналов системы управления в каждой из контрольных точек с дискретными весами путем подачи на первые входы блоков перемножения выходных сигналов системы управления, на вторые входы блоков перемножения подают дискретный экспоненциальный сигнал, выходные сигналы блоков перемножения подают на входы блоков дискретного интегрирования. Дискретное интегрирование завершают в момент времени, полученные в результате интегрирования оценки выходных сигналов регистрируют, фиксируют число рассматриваемых одиночных дефектов блоков, определяют интегральные оценки выходных сигналов модели для каждой из контрольных точек и каждой из позиций входного сигнала, полученные в результате смены позиции входного сигнала после каждого из блоков. Для этого поочередно для каждого блока дискретной динамической системы перемещают место подачи входного сигнала на выход каждого блока, подают через сумматор входной сигнал и находят дискретные интегральные оценки выходных сигналов системы для тестового сигнала, полученные в результате дискретного интегрирования оценки выходных сигналов для каждой из контрольных точек и каждой из моделей с различной позицией входного сигнала регистрируют, определяют деформации интегральных оценок выходных сигналов дискретной модели, полученные в результате перемещения позиции входного сигнала на позицию после каждого из соответствующих блоков. Определяют нормированные значения деформаций интегральных оценок выходных сигналов дискретной модели, полученные в результате перемещения позиции входного сигнала на позицию после каждого из соответствующих блоков, замещают систему с номинальными характеристиками контролируемой. На вход системы подают аналогичный тестовый сигнал. Определяют интегральные оценки выходных сигналов контролируемой дискретной системы для контрольных точек. Определяют деформации интегральных оценок выходных сигналов контролируемой дискретной системы для контрольных точек от номинальных значений. Определяют нормированные значения деформаций интегральных оценок выходных сигналов контролируемой дискретной системы. Определяют диагностические признаки, по минимуму значения диагностического признака определяют порядковый номер дефектного блока. Технический результат заключается в возможности применения способа для поиска дефектов в дискретной динамической системе с произвольным соединением блоков. 1 ил.
Наверх