Опреснительная установка с получением холода и электроэнергии (варианты)



Опреснительная установка с получением холода и электроэнергии (варианты)
Опреснительная установка с получением холода и электроэнергии (варианты)
Опреснительная установка с получением холода и электроэнергии (варианты)

 


Владельцы патента RU 2562660:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Оренбургский государственный университет" (RU)

Изобретение относится к области энергетики, предназначено для одновременного получения пресной воды, холода и электроэнергии. Достигаемые технические результаты - более высокая экономия потребляемой электроэнергии, вплоть до полной компенсации энергозатрат на собственные нужды установки, сопровождающаяся снижением количества выбросов токсичных и парниковых газов судовой энергетической установки, больший коэффициент полезного действия, а также возможность получать холод - получены путем совмещения процесса опреснения воды с получением холода и электроэнергии. 3 н.п. ф-лы, 3 ил.

 

Изобретение относится к области энергетики, предназначено для одновременного получения пресной воды, холода и электроэнергии.

Известна судовая опреснительная установка, предназначенная для опреснения воды с помощью ступеней испарения (парогенераторы), каждая из которых выполнена в виде корпуса с сепаратором и испарителем поверхностного типа (со змеевиковой поверхностью нагрева), погруженным в объем морской воды данного корпуса, включающая конденсатор, насосы (рассольный, эжекторный и др.) и соединительные трубопроводы с разобщительной арматурой, при этом испаритель второй ступени испарения сообщен на входе посредством трубопровода с полостью верхней части корпуса первой ступени, а вход испарителя первой ступени испарения сообщен посредством трубопровода с источником греющей среды, конденсатор на входе сообщен посредством трубопровода с полостью верхней части корпуса второй ступени испарения, а отводящий трубопровод конденсатора имеет сообщение со сборником дистиллята, и на его протяжении установлены разобщительные клапаны, в днище корпуса каждой ступени испарения вмонтирован отводящий рассол трубопровод, на отводящем рассол трубопроводе корпуса второй ступени испарения установлен рассольный насос, а сам данный корпус имеет сообщение с источником морской воды, причем отводящий трубопровод испарителя второй ступени испарения имеет сообщение со сборником дистиллята (Установка типа ИКВ - 39/6М. Слесаренко В.Н., Слесаренко В.В. Судовые опреснительные установки. - Владивосток: МГУ, 2001. - 448 с., рис.2.10, рис.2.11, с.34-36).

Недостатками данной установки является то, что она не вырабатывает холод и электроэнергию, также удельный расход электроэнергии на вспомогательные механизмы достаточно высок и равен 1,4…24 кВт·час на тонну полученного дистиллята.

Известен компрессионный холодильный агрегат, содержащий соединенные в замкнутый циркуляционный контур хладагента компрессор, испаритель и теплообменный конденсатор водяного охлаждения (Иванов О.П. Конденсаторы и водоохлаждающие устройства. - Л.: Машиностроение, 1980. - 164 с.).

Недостатками этого устройства являются то, что оно не вырабатывает электроэнергию, не опресняет воду.

Технический результат, который получен при осуществлении изобретения, заключается в экономии потребляемой электроэнергии, а также получении холода и электроэнергии.

Задача решается тем, что в предлагаемой нами опреснительной установке с получением холода и электроэнергии установлены подающий и обратный трубопроводы в охлаждаемом объекте, минерализатор, регулирующий вентиль, осмотическая емкость, турбина, электрогенератор, вакуумный насос, который установлен в генераторе пара, а также установка содержит солнечный коллектор с насосом, прокачивающим теплонесущую жидкость.

Поставленная техническая задача в равной степени достигается также и другим вариантом опреснительной установки с получением холода и электроэнергии, по которому в предлагаемой нами опреснительной установке с получением холода и электроэнергии установлены подающий и обратный трубопроводы в охлаждаемом объекте, минерализатор, регулирующий вентиль, осмотическая емкость, турбина, электрогенератор, вакуумный насос, который установлен в генераторе пара, а также нагрев воды в генераторе пара производится с помощью выхлопа газотурбинной установки, состоящей из камеры сгорания, компрессора, газовой турбины и электрогенератора.

Поставленная техническая задача в равной степени достигается также и третьим вариантом опреснительной установки с получением холода и электроэнергии, по которому в предлагаемой нами опреснительной установке с получением холода и электроэнергии установлены подающий и обратный трубопроводы в охлаждаемом объекте, минерализатор, регулирующий вентиль, осмотическая емкость, турбина, электрогенератор, вакуумный насос, который установлен в генераторе пара, а также нагрев воды в генераторе пара производится с помощью выхлопа двигателя внутреннего сгорания, который вращает электрогенератор.

Данные установки позволяют одновременно производить электрическую энергию, холод и пресную воду для обеспечения тремя видами энергий промышленных и частных потребителей.

Заявляемая группа изобретений - опреснительная установка с получением холода и электроэнергии - поясняется следующими чертежами:

На фигуре 1 изображена опреснительная установка с получением холода и электроэнергии - вариант 1.

На фигуре 2 изображена опреснительная установка с получением холода и электроэнергии - вариант 2.

На фигуре 3 изображена опреснительная установка с получением холода и электроэнергии - вариант 3.

Установка для опреснения воды с получением холода и электроэнергии на фиг.1 состоит из насоса 1 для закачки морской воды в генератор пара 2 и осмотическую емкость 3. Генератор пара 2 снабжен сепаратором пара 4 и вакуумным насосом 5 для понижения давления. Нагрев морской воды в генераторе пара 2 производится с помощью теплонесущей жидкости солнечного коллектора 6, который нагревается солнечным излучением. Пар, пройдя сепаратор пара 4, поступает в конденсатор 7, где конденсируется в жидкость. Из конденсатора жидкость проходит через регулирующий вентиль 8 и поступает в испаритель 9, где происходит теплообмен между теплоносителем испарителя 9 и теплоносителем охлаждаемого объекта 10. Из охлаждаемого объекта 10 теплоноситель по подающему трубопроводу 11 направляется к потребителям и возвращается по обратному трубопроводу 12 в охлаждаемый объект 10. Затем пары воды отсасываются насосом 13 и конденсируются в жидкость, и жидкость поступает в минерализатор 14, после чего вода направляется к потребителю. Вода из осмотической емкости 3 подается в турбину 15, которая вращает электрогенератор 16, а затем отработанная вода сбрасывается. Прокачка теплонесущей жидкости в солнечном коллекторе осуществляется с помощью насоса 17.

На фигуре 2 предложена опреснительная установка с получением холода и электроэнергии. Ее отличием от фиг.1 является то, что на фиг.2 функцию нагрева воды в генераторе пара 2 выполняет выхлоп газотурбинной установки 18, состоящей из компрессора 19 для подачи воздуха в камеру сгорания 20, газовой турбины 21 и электрогенератора 22.

На фигуре 3 предложена опреснительная установка с получением холода и электроэнергии. Ее отличием от фиг.1 является то, что на фиг.3 функцию нагрева воды в генераторе пара 2 выполняет выхлоп двигателя внутреннего сгорания 23, соединенного с электрогенератором 24.

Опреснительная установка с получением холода и электроэнергии работает следующим образом.

Нагретый теплоноситель солнечным излучением в солнечном коллекторе 6 циркулирует по системе с помощью насоса 17, что обеспечивает теплообмен с морской водой в генераторе пара 2. Морская вода транспортируется в установку с помощью насоса 1. Вакуумный насос 5 создает разряжение в генераторе пара 2, что способствует парообразованию при невысоких температурах. Пар проходит через сепаратор пара 4 и поступает в конденсатор 7, где конденсируется, отдавая свое тепло морской воде, поступающей с помощью насоса 1 в генератор пара 2. Из конденсатора 7, проходя регулирующий вентиль 8, понижая свое давление, конденсируемый пар поступает в испаритель 9, где происходит теплообмен между теплоносителями испарителя 9 и охлаждаемого объекта 10. Из охлаждаемого объекта 10 теплоноситель по подающему трубопроводу 11 направляется к потребителям и возвращается по обратному трубопроводу 12 в охлаждаемый объект 10. Из испарителя 9 пары хладагента с помощью насоса 13 отсасываются и конденсируются в воду, вода, проходя минерализатор 14, поступает к потребителю. По мере выпаривания пресной воды из генератора пара 2 раствор воды становится все более концентрированным. При повышении концентрации воды в генераторе пара 2 происходит ее постепенный сброс и набор новой порции морской воды. Сброс воды происходит постепенно, чтобы не потерять весь запас тепла, накопленный в нагретой воде. Сбрасываемая концентрированная вода поступает в осмотическую емкость 3. В одну из частей осмотической емкости 3, разграниченной полупроницаемой мембраной, поступает морская вода, в другую концентрированный рассол из генератора пара 2. За счет разной концентрации солей морской воды и концентрированного раствора молекулы воды из части осмотической емкости 3 с морской водой, стремясь выровнять концентрацию соли, переходят через мембрану в часть осмотической емкости 3 с концентрированным раствором. Поток морской воды, проникающий сквозь поры мембраны, наращивает давление в резервуаре с концентрированным рассолом, тем самым позволяя раскручивать турбину 15. Турбина раскручивает генератор 16 и вырабатывается электрический ток. Отработанная вода сбрасывается в море.

Второй вариант опреснительной установки с получением холода и электроэнергии работает аналогично первому. Отличие заключается в том, что производство пара в генераторе пара 2 осуществляется с помощью выхлопа газотурбинной установки 18. Воздух подается в камеру сгорания 20 с помощью компрессора 19 для подачи воздуха в камеру сгорания 20. В камеру сгорания 20 также подается топливо, для создания топливно-воздушной смеси, которая поджигается. Образовавшийся в результате горения газ раскручивает газовую турбину 21, которая вращает электрогенератор 22, вырабатывающий электрический ток. Отработанный выхлоп поступает в генератор пара 2 для производства пара из морской воды. После прохождения выхлопом генератора пара 2 он выбрасывается в окружающую среду.

Третий вариант опреснительной установки с получением холода и электроэнергии работает аналогично первому. Отличие заключается в том, что производство пара в генераторе пара 2 осуществляется с помощью выхлопа двигателя внутреннего сгорания 23. Воздух и топливо подается в двигатель внутреннего сгорания 23, соединенный с электрогенератором 24. Двигатель 23 вращает электрогенератор 24, и вырабатывается ток. Образовавшийся в результате работы двигателя выхлоп поступает в генератор пара 2 для производства пара из морской воды. После прохождения выхлопом генератора пара 2 он выбрасывается в окружающую среду.

Таким образом, по сравнению с прототипом заявляемая опреснительная установка с получением холода и электроэнергии имеет более высокую экономию потребляемой электроэнергии, вплоть до полной компенсации энергозатрат на собственные, больший коэффициент полезного действия, а также позволяет получать холод и электроэнергию.

1. Опреснительная установка с получением холода и электроэнергии, включающая в себя насос для закачки воды, генератор пара, снабженный сепаратором пара, последовательно установленные конденсатор, регулирующий вентиль, испаритель, насос для откачки паров из испарителя, отличающаяся тем, что в ней установлены подающий и обратный трубопроводы в охлаждаемом объекте, минерализатор, обогащающий воду минералами после насоса для откачки паров из испарителя, осмотическая емкость, соединенная с турбиной, которая вращает электрогенератор, вакуумный насос, который установлен в генераторе пара, а также установка содержит солнечный коллектор, соединенный с насосом, прокачивающим теплонесущую жидкость через генератор пара.

2. Опреснительная установка с получением холода и электроэнергии, включающая в себя насос для закачки воды, генератор пара, снабженный сепаратором пара, последовательно установленные конденсатор, регулирующий вентиль, испаритель, насос для откачки паров из испарителя, отличающаяся тем, что в ней установлены подающий и обратный трубопроводы в охлаждаемом объекте, минерализатор, обогащающий воду минералами после насоса для откачки паров из испарителя, осмотическая емкость, соединенная с турбиной, которая вращает электрогенератор, вакуумный насос, который установлен в генераторе пара, а также нагрев воды в генераторе пара производится с помощью выхлопа газотурбинной установки, состоящей из камеры сгорания, компрессора и газовой турбины, вращающей электрогенератор.

3. Опреснительная установка с получением холода и электроэнергии, включающая в себя насос для закачки воды, генератор пара, снабженный сепаратором пара, последовательно установленные конденсатор, регулирующий вентиль, испаритель, насос для откачки паров из испарителя, отличающаяся тем, что в ней установлены подающий и обратный трубопроводы в охлаждаемом объекте, минерализатор, обогащающий воду минералами после насоса для откачки паров из испарителя, осмотическая емкость соединенная с турбиной, которая вращает электрогенератор, вакуумный насос, который установлен в генераторе пара, а также нагрев воды в генераторе пара производится с помощью выхлопа двигателя внутреннего сгорания, который вращает электрогенератор.



 

Похожие патенты:

Термоэлектрический генератор, работающий от тепловой энергии сжигаемого газа, относится к области преобразования тепловой энергии в электрическую и может использоваться в местах, удаленных от линий электропередачи для питания постоянным электрическим током комплекса радиоэлектронной аппаратуры и средств автоматики и телеметрии газопроводов (расход, давление, свойства газа и т.п.) в непрерывном режиме функционирования.

Изобретение относится к области электротехники, в частности к энергоустановкам для совместной выработки электроэнергии и теплоты, использующим углеводородное топливо и предназначенным для локальных потребителей.

Изобретение относится к энергетике и может быть использовано для прямого преобразования тепла сжигаемого биогаза в электричество постоянного тока с утилизацией тепла отводимых продуктов сгорания на отопление и горячее водоснабжение энергоавтономных усадебных домов.

Изобретение относится к энергетике, конкретно к барогальваническим генераторам для преобразования тепловой энергии в электрическую. .

Изобретение относится к энергетике, конкретно к барогальваническим генераторам для преобразования тепловой энергии в электрическую. .

Изобретение относится к энергетике, конкретно к барогальваническим генераторам для преобразования тепловой энергии в электрическую. .

Изобретение относится к области получения электроэнергии на основе использования электрохимических реакций. .

Изобретение относится к области судостроения. .

Изобретение относится к энергетике и может использоваться в автономных, резервных, авиационных энергоустановках. .

Изобретение относится к электрохимическому преобразователю, предназначенному для превращения механической, тепловой или световой энергии в электричество с помощью обратимых электрохимических реакций, идущих на поверхности инертных электродов.

Изобретение относится к области теплотехники и может использоваться в теплообменниках для подогрева или охлаждения среды в жилищно-коммунальном хозяйстве. Теплообменник содержит наружную и U-образную внутреннюю трубы, встроенные друг в друга, присоединительный фланец, патрубки подвода и отвода греющей или охлаждающей среды, внутренняя труба теплообменника жестко закреплена к фланцу наружной трубы, которая выполнена цилиндрической, заглушена с одной стороны и имеет с другой стороны фланец с патрубками подвода и отвода греющей или охлаждающей среды, причем патрубок подвода удлинен, во внутреннюю трубу встроен турбулизатор в виде винтообразной ленты, периодически витой в различных направлениях.
Изобретение относится к охладителю синтез-газа и способу его сборки. Описан охладитель синтез-газа, предназначенный для использования в системе газификации, включающий верхнюю часть (216), содержащую насадки (314) трубопроводов.

Изобретение относится к области теплотехники, а именно к теплообменникам корпусного или погружного типа. Изобретение заключается в том, что теплообменник имеет вертикальные теплообменные трубы для прохода охлаждающего теплоносителя, простирающиеся вдоль всей теплообменной полости, при этом теплообменные трубы объединены в отдельные группы труб и отдельные группы труб разделены между собой вертикальными каналами.

Изобретение относится к машиностроению, а именно к трубам Фильда для высокотемпературных трубчатых теплообменных аппаратов, например, для прямоточных парогенераторов ядерных энергетических установок с нагревающим жидкометаллическим теплоносителем (например, сплав свинца с висмутом).

Изобретение относится к термосифонным теплообменным аппаратам, которые могут использоваться в химической, нефтехимической и других отраслях промышленности. Техническим результатом заявленного изобретения является повышение эффективности и экономичности работы аппарата, а также упрощение процесса изготовления.

Изобретение относится к области теплотехники тяжелых жидкометаллических теплоносителей и может быть использовано в исследовательских, испытательных стендах и установках атомной техники с реакторами на быстрых нейтронах.

Изобретение относится к области теплообмена и может быть использовано преимущественно в области машиностроения для использования теплоты от выхлопных газов двигателей внутреннего сгорания (ДВС).

Изобретение относится к области теплотехники. Устройство для компримирования и осушки газа содержит многоступенчатый компрессор со ступенью низкого давления, ступенью высокого давления и нагнетательным патрубком и адсорбционный осушитель с зоной осушения и зоной регенерации, причем между ступенью низкого давления и ступенью высокого давления помещен промежуточный холодильник, и при этом устройство дополнительно снабжено теплообменником, имеющим главную камеру с входной частью и выходной частью для первой первичной текучей среды, а концы трубок теплообменника соединены с отдельной входной камерой и выходной камерой для каждого трубного пучка; и при этом первый трубный пучок образует охлаждающий контур промежуточного холодильника, служащий для разогрева газа из ступени высокого давления для регенерации адсорбционного осушителя.

Изобретение относится к области теплотехники и может быть использовано в энергетике, нефтехимической и других отраслях промышленности, в частности в процессах, протекающих с большими тепловыми эффектами.

Изобретение относится к энергетике и может быть использовано в подогревательных системах тепловых электростанций. Теплообменник типа "труба в трубе" содержит две трубы, расположенные с зазором между ними, одна из которых представляет из себя тор, а вторая - полую ленту Мебиуса, причем по ленте Мебиуса могут быть выполнены продольные канавки.

Изобретение может быть использовано в устройствах для преобразования тепловой энергии в механическую энергию. Конструкция для преобразования тепловой энергии в механическую энергию содержит линейный контур (3), средство (4) циркуляции для циркуляции в линейном контуре (3) зеотропной смеси хладагентов, которая содержит первый хладагент и второй хладагент, испаритель (6), источник (7) тепла, турбину (9) и конденсатор (12).
Наверх