Способ стабилизации планера самолета в пространстве при прочностных испытаниях и устройство для его осуществления



Способ стабилизации планера самолета в пространстве при прочностных испытаниях и устройство для его осуществления
Способ стабилизации планера самолета в пространстве при прочностных испытаниях и устройство для его осуществления

 


Владельцы патента RU 2562672:

Федеральное государственное унитарное предприятие "Сибирский научно-исследовательский институт авиации им. С.А. Чаплыгина" (RU)

Группа изобретений относится к стендам для прочностных испытаний самолетов. При способе стабилизации планера самолета в пространстве при прочностных испытаниях формируют непрерывные сигналы коррекции по крену и тангажу планера самолета и осуществляют аварийную защиту по максимальной величине углов наклона при помощи системы автоматического управления. Устройство для стабилизации планера самолета в пространстве при прочностных испытаниях содержит систему автоматического управления, каналы нагружения и датчики по крену и тангажу планера самолета, расположенные в центре тяжести фюзеляжа. Каналы нагружения содержат сервоприводы с электрогидравлическими распределителями, гидроцилиндры, тензодинамометры. Обеспечивается стабилизация планера самолета в пространстве. 2 н.п. ф-лы, 1 ил.

 

Способ стабилизации планера самолета в пространстве при прочностных испытаниях и устройство для его осуществления

Изобретение относится к области испытательной техники, в частности к стендам для прочностных испытаний самолетов.

Известен способ стабилизации планера самолета в пространстве при прочностных испытаниях, в котором непрерывные сигналы коррекции по крену и тангажу планера самолета формируют от его перемещения и передают их посредством системы автоматического управления в каналы нагружения крыла и фюзеляжа.

Известно устройство для осуществления указанного способа, содержащее датчики перемещения по крену, расположенные в корне крыла, и датчики перемещения по тангажу, установленные в носовой и хвостовой частях фюзеляжа, каналы нагружения и систему автоматического управления.

Аналог способа и устройства - Щербань К.С. Ресурсные испытания натурных конструкций самолетов - М.: Изд-во физико-математической литературы, 2001 - с. 159-162.

Недостаток известного способа состоит в сложности и недостаточной надежности формируемых сигналов по перемещению от нескольких датчиков перемещения.

Известное устройство имеет сложное конструктивно-технологическое исполнение, что влияет на надежность системы и требует значительных затрат на их приобретение и эксплуатацию.

При создании изобретения были поставлены задачи по повышению надежности стабилизации планера самолета в пространстве при прочностных испытаниях и сокращению затрат на создание и эксплуатацию устройств для его осуществления путем совершенствования их структуры.

Решение указанной задачи достигается тем, что система автоматического управления формирует непрерывные сигналы коррекции по крену и тангажу планера самолета и осуществляет аварийную защиту по максимальной величине углов наклона при прочностных испытаниях.

На чертежах (фиг. 1 и 2) представлены структурные схемы устройств для осуществления способа испытаний. Устройства содержат: каналы нагружения 1(1) и 1(2), состоящие из сервопривода с электрогидравлическими распределителями 2(1) и 2(2); гидроцилиндрами 3(1) и 3(2) и тензодинамометрами 4(1) и 4(2); двухканального датчика тангажа и крена 5 и системы автоматического управления 6, причем выходы с измерительного датчика 5 соединены с системой автоматического управления 6.

Реализация способа стабилизации планера самолета в процессе испытаний по крену и тангажу осуществляется следующим образом. Сигнал с датчика тангажа и крена 5, расположенного в центре тяжести фюзеляжа, поступает в систему автоматического управления 6. Пропорционально углам крена и тангажа она формирует сигналы коррекции, которые подаются на электрогидравлические распределители 2(1) и 2(2), корректируя программу нагружения в сторону допустимого уменьшения-увеличения перемещения гидроцилиндров 3(1) и 3(2) в наиболее удаленных точках крыла и фюзеляжа, создавая момент, стабилизирующий заданное положение планера.

Кроме того, используя сигналы от датчика 5, автоматическая система управления 6 дополнительно осуществляет аварийную защиту при возникновении максимальных углов отклонения планера самолета от заданных программой испытаний по крену и тангажу.

Изобретение обеспечивает повышение точности стабилизации планера самолета в пространстве в процессе испытаний, упрощает процесс диагностики углов крена и тангажа, монтажные работы и эксплуатацию.

1. Способ стабилизации планера самолета в пространстве при прочностных испытаниях, отличающийся тем, что система автоматического управления формирует непрерывные сигналы коррекции по крену и тангажу планера самолета и осуществляет аварийную защиту по максимальной величине углов наклона при прочностных испытаниях.

2. Устройство для осуществления способа включает в себя каналы нагружения, состоящие из сервоприводов с электрогидравлическими распределителями, гидроцилиндров, тензодинамометров, системы автоматического управления, отличающееся тем, что оно дополнительно содержит датчики по крену и тангажу планера самолета, расположенные в центре тяжести фюзеляжа.



 

Похожие патенты:

Изобретение относится к маневрирующим в атмосфере сверхзвуковым летательным аппаратам (ЛА). Способ управления обтеканием включает изменение направления воздушного потока со встречного на радиальное истечение относительно ЛА.

Изобретение относится к области гиперзвуковых летательных аппаратов (ГЛА). Способ управления аэродинамическими характеристиками гиперзвукового летательного аппарата включает установку плоских МГД-генераторов попарно симметрично относительно плоскости симметрии элементов оперения ГЛА, а между ними располагают магнитоэкранирующие пластины, выполненные из ферромагнитного материала с точкой Кюри, превышающей рабочую температуру элементов ГЛА, обеспечивающих устойчивость, управляемость и балансировку.

Изобретение относится к области применения беспилотных летательных аппаратов (БПЛА) и может быть использовано для систематического дистанционного контроля состояния нефте- и газопроводов, хранилищ, высоковольтных ЛЭП и других протяженных объектов.

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах автоматического управления (САУ) турбовинтовыми силовыми установками (СУ) самолетов.

Изобретение относится к системам дистанционного управления самолетами. .

Изобретение относится к легкомоторной авиации. .

Изобретение относится к бортовым системам автоматического управления беспилотными летательными аппаратами. .

Изобретение относится к способам автоматического управления полетом высокоманевренного летательного аппарата, в частности к способам управления продольным движением.

Изобретение относится к области систем автоматического управления минимально-фазовыми объектами, в частности систем управления самолетом по углу тангажа. .

Изобретение относится к способам управления летательными аппаратами. Для управления пилотируемыми или беспилотными летательными аппаратами (БЛА) при совершении маловысотного полета с облетом групп препятствий в вертикальной плоскости задают движение по траектории полета с заданными углами тангажа, корректируют траекторию при сближении с группой препятствий, каждое из которых аппроксимируется полуэллипсом, вычисляют приращение угла тангажа по определенному правилу, корректируют угол тангажа определенным образом, начиная с момента, когда расстояние от управляемого БЛА до цента аппроксимирующего полуэллипса станет меньше определенной заранее заданной величины. Обеспечивается повышение живучести летательных аппаратов при маловысотном полете. 3 ил.

Группа изобретений относится к способу и системе автоматического управления самолетом. Для автоматического управления самолетом при посадке используют сигналы радиовысоты, вертикальной скорости, формируют управляющий сигнал на руль высоты и на привод регулятора тяги двигателей, добавляют корректирующие сигналы компенсации влияния ветра на руль высоты и на привод регулятора тяги. Корректирующий сигнал на руль высоты основан на измерении разности путевой и приборной скорости. Корректирующий сигнал на привод регулятора тяги основан на измерении разности текущей и расчетной энергии самолета, определяемых на основе путевой и приборной скорости. Система автоматического управления самолетом на посадке содержит систему измерения параметров полета, устройства формирования управляющих сигналов на руль высоты и привод тяги двигателей соответственно. Система измерения параметров полета содержит радиовысотомер, датчик вертикальной скорости, датчик вертикальной перегрузки, датчик путевой скорости, датчик приборной скорости. Устройство формирования управляющих сигналов на руль высоты содержит блок формирования комплексного экспоненциального сигнала, два сумматора, программатор, дифференциатор, два блока коррекции высоты, два нелинейных преобразователя. Устройство формирования управляющего сигнала содержит пульт задания скорости, сумматор, нелинейный преобразователь, блок стабилизации тяги, блок расчета заданной энергии самолета, блок расчета текущей энергии самолета, компаратор. Обеспечивается требуемая точность посадки самолета. 2 н.п. ф-лы, 1 ил.

Изобретение относится к космической технике и может быть использовано при формировании управляющих сигналов включения двигательной установки космического беспилотного летательного аппарата (БПЛА) при выполнении им пространственного маневра на баллистическом участке траектории полета. Запоминают до момента старта многоступенчатой ракеты-носителя (РН) электронно-цифровое полетное задание, измеряют кинематические параметры активного участка траектории полета последней ступени многоступенчатой РН, запоминают измеренные параметры активного участка траектории полета последней ступени многоступенчатой РН, измеряют и запоминают кинематические параметры движения центра масс космического БПЛА и время момента формирования управляющего сигнала отделения космического БПЛА от последней ступени РН, сравнивают измеренные значения кинематических параметров движения центра масс космического БПЛА с расчетными значениями полетного задания, отрабатывают сигнал возможного рассогласования между измеренными и заданными в полетном задании кинематическими параметрами движения центра массы космического БПЛА в сторону его уменьшения до нулевого значения, формируют управляющий сигнал полетного задания включения корректирующего двигателя космического БПЛА для выполнения уклоняющего маневра. 1 ил.

Изобретение относится к способам автоматической посадки летательного аппарата (ЛА). Для автоматической посадки ЛА в сложных метеорологических условиях задают горизонтальную дальность от начальной точки траектории снижения до ее конечной точки, параметры движения ЛА в конечной точке траектории снижения, измеряют скорость и высоту полета, горизонтальную дальность до конечной точки траектории снижения, отклонение от вертикальной плоскости осевой линии взлетно-посадочной полосы, вертикальную составляющую скорости полета, производят определение углов тангажа, крена и вертикальной составляющей скорости ЛА определенным образом, в зависимости от разности расстояний, определяемых по времени распространения сигналов от расположенных определенным образом приемопередатчиков через определенный интервал времени, подают команды на органы управления ЛА в случае отклонения значения, полученного путем сравнения последующих и предыдущих расчетных данных по вертикальной составляющей скорости ЛА. Обеспечивается безопасность посадки ЛА в сложных метеорологических условиях. 4 з.п. ф-лы, 2 ил.
Наверх