Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией


 


Владельцы патента RU 2562741:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") (RU)

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) при утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы. Осуществляют утилизацию низкопотенциальной теплоты пара отопительных отборов, высокопотенциальной теплоты пара производственного отбора и низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины с производственным отбором пара. Все упомянутые утилизации осуществляют посредством теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина. Низкокипящее рабочее тело, циркулирующее в замкнутом контуре, сжимают в конденсатном насосе теплового двигателя, нагревают в теплообменнике-рекуператоре теплового двигателя, в маслоохладителе конденсационной установки, в нижнем и верхнем сетевых подогревателях паровой турбины, испаряют и перегревают в конденсаторе паровой турбины с производственным отбором пара, расширяют в турбодетандере, снижают его температуру в теплообменнике-рекуператоре и конденсируют в теплообменнике-конденсаторе теплового двигателя. Способ обеспечивает повышение коэффициента полезного действия ТЭС за счет дополнительной выработки электроэнергии при утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС. 2 з.п. ф-лы, 1 ил., 1 пр.

 

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) при утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины с производственным отбором пара, утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины и утилизации высокопотенциальной теплоты пара производственного отбора для дополнительной выработки электрической энергии.

Аналогом является способ работы тепловой электрической станции, по которому весь поток обратной сетевой воды, возвращаемый от потребителей, нагревают паром отборов турбины в нижнем и в верхнем сетевых подогревателях, а также в конденсаторе теплонасосной установки теплотой, отведенной от обратной сетевой воды в испарителе теплонасосной установки, после чего направляют потребителям, при этом весь поток сетевой воды последовательно нагревают в нижнем сетевом подогревателе, конденсаторе теплонасосной установки и верхнем сетевом подогревателе (патент RU №2275512, МПК F01K17/02, 27.04.2006).

Прототипом является способ работы тепловой электрической станции, содержащей теплофикационную турбину с отопительными отборами пара, подающий и обратный трубопроводы теплосети, сетевые подогреватели, включенные по нагреваемой среде между подающим и обратным трубопроводами теплосети и подключенные по греющей среде к отопительным отборам, теплонасосную установку с испарителем, включенным в обратный трубопровод теплосети, и конденсатором, при этом конденсатор теплонасосной установки включен в подающий трубопровод теплосети после сетевых подогревателей (патент RU №2269014, МПК F01K 17/02, 27.01.2006).

В известном способе возвращаемая от потребителей по обратному трубопроводу теплосети сетевая вода подается сетевым насосом в испаритель теплонасосной установки, где отдает часть теплоты хладагенту теплонасосной установки и охлаждается, затем сетевая вода поступает в сетевые подогреватели, где нагревается паром отопительных отборов турбины. Перед подачей потребителям сетевая вода дополнительно нагревается в конденсаторе теплонасосной установки за счет теплоты хладагента, циркулирующего в контуре теплонасосной установки. Благодаря последовательному включению испарителя теплонасосной установки в обратный трубопровод теплосети до сетевых подогревателей, а конденсатора в подающий трубопровод теплосети после сетевых подогревателей достигается максимальное охлаждение обратной сетевой воды.

Таким образом, в известном способе работы тепловой электрической станции отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, при этом конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, а пар отопительных параметров из отборов паровой турбины поступает в паровое пространство верхнего и нижнего сетевых подогревателей, конденсируется на поверхности подогреваемых трубок сетевых подогревателей, внутри которых протекает охлаждающая жидкость, причем при конденсации пара отопительных отборов осуществляют утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины при помощи охлаждающей жидкости.

Основным недостатком аналога и прототипа является то, что утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины осуществляют в целях выработки дополнительной тепловой энергии, а не для дополнительной выработки электрической энергии.

Кроме этого недостатком аналога и прототипа является относительно низкий коэффициент полезного действия ТЭС по выработке электрической энергии, обусловленный затратами электрической мощности на привод теплонасосной установки.

Задачей изобретения является разработка способа утилизации тепловой энергии ТЭС, в котором устранены указанные недостатки аналога и прототипа.

Техническим результатом является повышение коэффициента полезного действия ТЭС за счет утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины для дополнительной выработки электрической энергии.

Технический результат достигается тем, что в способе утилизации тепловой энергии, вырабатываемой тепловой электрической станцией, включающем отбор пара из паровой турбины, направление пара отопительных параметров из отборов паровой турбины в паровое пространство верхнего и нижнего сетевых подогревателей и его конденсирование на поверхности подогреваемых трубок сетевых подогревателей, внутри которых протекает охлаждающая жидкость, при этом отработавший пар из паровой турбины направляют в паровое пространство конденсатора, в котором его конденсируют на поверхности конденсаторных трубок, а полученный конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, причем при конденсации пара отопительных параметров из отборов паровой турбины осуществляют утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины посредством охлаждающей жидкости, согласно настоящему изобретению дополнительно используют конденсационную установку, содержащую конденсатор паровой турбины с производственным отбором пара, и систему маслоснабжения ее подшипников с маслоохладителем, при этом дополнительно осуществляют утилизацию высокопотенциальной теплоты пара производственного отбора и утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины с производственным отбором пара, причем упомянутые утилизации осуществляют посредством теплового двигателя с замкнутымконтуром циркуляции, работающего по органическому циклу Ренкина, состоящего из турбодетандера с электрогенератором, теплообменника-рекуператора, теплообменника-конденсатора и конденсатного насоса, причем в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом упомянутое низкокипящее рабочее тело сжимают в конденсатном насосе теплового двигателя, нагревают в теплообменнике-рекуператоре теплового двигателя, нагревают в маслоохладителе конденсационной установки, нагревают в нижнем сетевом подогревателе паровой турбины, нагревают в верхнем сетевом подогревателе паровой турбины, испаряют и перегревают в конденсаторе паровой турбины с производственным отбором пара, расширяют в турбодетандере теплового двигателя, снижают его температуру в теплообменнике-рекуператоре и конденсируют в теплообменнике-конденсаторе теплового двигателя.

В качестве теплообменника-конденсатора теплового двигателя используют конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.

В качестве низкокипящего рабочего тела используют сжиженный пропан С3Н8.

Таким образом, технический результат достигается за счет утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины с производственным отбором пара, утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины и утилизации высокопотенциальной теплоты пара производственного отбора из паровой турбины с производственным отбором пара для дополнительной выработки электрической энергии, которые осуществляют путем последовательного нагрева, соответственно, в маслоохладителе системы маслоснабжения подшипников паровой турбины с производственным отбором пара, в сетевых подогревателях и конденсаторе паровой турбины с производственным отбором пара, низкокипящего рабочего тела (сжиженного пропана С3Н8) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.

Сущность изобретения поясняется чертежом, на котором представлена тепловая электрическая станция, имеющая тепловой двигатель с

теплообменником-конденсатором, теплообменником-рекуператором, сетевые подогреватели и конденсационную установку.

На чертеже цифрами обозначены:

1 - паровая турбина,

2 - конденсатор паровой турбины,

3 - конденсатный насос конденсатора паровой турбины,

4 - основной электрогенератор,

5 - тепловой двигатель с замкнутым контуром циркуляции,

6 - турбодетандер,

7 - электрогенератор,

8 - теплообменник-конденсатор,

9 - конденсатный насос,

10 - верхний сетевой подогреватель,

11 - нижний сетевой подогреватель,

12 - конденсационная установка,

13 - паровая турбина с производственным отбором пара,

14 - электрогенератор паровой турбины с производственным отбором пара,

15 - конденсатор паровой турбины с производственным отбором пара,

16 - конденсатный насос конденсатора паровой турбины с производственным отбором пара,

17 - система маслоснабжения подшипников паровой турбины с производственным отбором пара,

18 - сливной трубопровод,

19 - маслобак,

20 - маслонасос,

21 - маслоохладитель,

22 - напорный трубопровод,

23 - теплообменник-рекуператор.

Тепловая электрическая станция включает последовательно соединенные паровую турбину 1, конденсатор 2 паровой турбины и конденсатный насос 3 конденсатора паровой турбины, а также основной электрогенератор 4, соединенный с паровой турбиной 1, которая соединена по греющей среде с верхним 10 и нижним 11 сетевыми подогревателями, которые между собой соединены по нагреваемой среде.

В тепловую электрическую станцию введены конденсационная установка 12 и тепловой двигатель 5 с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина.

Конденсационная установка 12 содержит последовательно соединенные паровую турбину 13 с производственным отбором пара, имеющую электрогенератор 14, конденсатор 15 паровой турбины с производственным отбором пара, конденсатный насос 16 конденсатора паровой турбины с производственным отбором пара, и систему 17 маслоснабжения подшипников паровой турбины с производственным отбором пара, содержащую последовательно соединенные по греющей среде сливной трубопровод 18, маслобак 19, маслонасос 20 и маслоохладитель 21, выход которого по нагреваемой среде соединен с напорным трубопроводом 22.

Замкнутый контур циркуляции теплового двигателя 5 выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер 6 с электрогенератором 7, теплообменник-рекуператор 23, теплообменник-конденсатор 8 и конденсатный насос 9, причем выход конденсатного насоса 9 соединен по нагреваемой среде с входом теплообменника-рекуператора 23, который соединен по нагреваемой среде с входом маслоохладителя 21, выход маслоохладителя 21 соединен по нагреваемой среде с входом нижнего сетевого подогревателя 11, а выход верхнего сетевого подогревателя 10 соединен по нагреваемой среде с входом конденсатора 15 паровой турбины с производственным отбором пара, выход конденсатора 15 паровой турбины с производственным отбором пара соединен по нагреваемой среде с входом турбодетандера 6, выход которого соединен по греющей среде с теплообменником-рекуператором 23, выход теплообменника-рекуператора 23 соединен по греющей среде с теплообменником-конденсатором 8, выход которого соединен по нагреваемой среде с входом конденсатного насоса 9, образуя замкнутый контур охлаждения.

Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией, осуществляют следующим образом.

Способ включает в себя отбор пара из паровой турбины 1, направление пара отопительных параметров из отборов паровой турбины 1 в паровое пространство верхнего 10 и нижнего 11 сетевых подогревателей и его конденсирование на поверхности подогреваемых трубок сетевых подогревателей 10 и 11, внутри которых протекает охлаждающая жидкость, при этом отработавший пар из паровой турбины 1 направляют в паровое пространство конденсатора 2, в котором его конденсируют на поверхности конденсаторных трубок, а полученный конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины 1 направляют в систему регенерации, причем при конденсации пара отопительных параметров из отборов паровой турбины 1 осуществляют утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины 1 посредством охлаждающей жидкости.

Отличием предлагаемого способа является то, что дополнительно используют конденсационную установку 12, содержащую конденсатор 15 паровой турбины 13 с производственным отбором пара и систему 17 маслоснабжения ее подшипников с маслоохладителем 21, при этом дополнительно осуществляют утилизацию высокопотенциальной теплоты пара производственного отбора и утилизацию низкопотенциальной теплоты системы 17 маслоснабжения подшипников паровой турбины 13 с производственным отбором пара, причем упомянутые утилизации осуществляют посредством теплового двигателя 5 с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, состоящего из турбодетандера 6 с электрогенератором 7, теплообменника-рекуператора 23, теплообменника-конденсатора 8 и конденсатного насоса 9, причем в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом упомянутое низкокипящее рабочее тело сжимают в конденсатном насосе 9 теплового двигателя 5, нагревают в теплообменнике-рекуператоре 23 теплового двигателя, нагревают в маслоохладителе 21 конденсационной установки 12, нагревают в нижнем 11 сетевом подогревателе паровой турбины 1, нагревают в верхнем 10 сетевом подогревателе паровой турбины 1, испаряют и перегревают в конденсаторе 15 паровой турбины 13 с производственным отбором пара, расширяют в турбодетандере 6 теплового двигателя, снижают его температуру в теплообменнике-рекуператоре 23 и конденсируют в теплообменнике-конденсаторе 8 теплового двигателя.

В качестве теплообменника-конденсатора 8 теплового двигателя используют конденсатор воздушного охлаждения или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.

В качестве низкокипящего рабочего тела используют сжиженный пропан С3Н8.

Пример конкретного выполнения.

Отработавший пар, поступающий из паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок. При этом образующийся конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации. Мощность паровой турбины 1 передается соединенному на одном валу основному электрогенератору 4.

Преобразование низкопотенциальной тепловой энергии системы 17 маслоснабжения подшипников паровой турбины 13 с производственным отбором пара, а также низкопотенциальной тепловой энергии пара отопительных отборов из паровой турбины 1, и высокопотенциальной тепловой энергии пара производственного отбора из паровой турбины 13, в механическую и далее в электрическую происходит в замкнутом контуре циркуляции теплового двигателя 5, работающего по органическому циклу Ренкина.

Таким образом, утилизацию низкопотенциальной теплоты системы 17 маслоснабжения подшипников паровой турбины 13 с производственным отбором пара, утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины 1 и утилизацию высокопотенциальной теплоты пара производственного отбора из паровой турбины 13 с производственным отбором пара осуществляют путем последовательного нагрева, соответственно, в маслоохладителе 21 системы маслоснабжения подшипников паровой турбины с производственным отбором пара, в сетевых подогревателях 11, 10 и конденсаторе 15 паровой турбины с производственным отбором пара, низкокипящего рабочего тела (сжиженного пропана С3Н8) теплового двигателя 5 с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.

Весь процесс начинается с сжатия в конденсатном насосе 9 сжиженного пропана С3Н8, который последовательно направляют на нагрев в начале в теплообменник-рекуператор 23, куда поступает перегретый газообразный пропан С3Н8 из турбодетандера 6, далее в маслоохладитель 21, куда поступает нагретое масло системы 17 маслоснабжения подшипников паровой турбины 13, а затем в нижний сетевой подогреватель 11, куда поступает пар отопительного отбора из паровой турбины 1 при температуре около 365 К, и в верхний сетевой подогреватель 10, куда поступает пар отопительного отбора из паровой турбины 1 при температуре около 400 К. При этом температура нагретого масла в маслоохладителе 21 может варьироваться в интервале от 318,15 К до 348,15 К.

Пар, поступающий из отопительных отборов паровой турбины 1 в паровое пространство верхнего 10 и нижнего 11 сетевых подогревателей, конденсируется на поверхности подогреваемых трубок, внутри которых протекает сжиженный пропан С3Н8.

В процессе теплообмена перегретого газообразного пропана С3Н8 с сжиженным пропаном С3Н8 в теплообменнике-рекуператоре 23 и теплообмена нагретого масла с сжиженным пропаном С3Н8 в маслоохладителе 21, а также в процессе конденсации пара отопительных отборов в нижнем сетевом подогревателе 11 и в верхнем сетевом подогревателе 10 паровой турбины 1, происходит нагрев сжиженного пропана С3Н8 до критической температуры 369,89 К при сверхкритическом давлении от 4,2512 МПа до 8 МПа, и далее его направляют на испарение и перегрев в конденсатор 15 паровой турбины с производственным отбором пара, куда поступает пар производственного отбора из паровой турбины 13 при температуре около 573 К.

Пар, поступающий из производственного отбора паровой турбины 13 в паровое пространство конденсатора 15, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость (сжиженный пропан С3Н8). Мощность паровой турбины 13 передается соединенному на одном валу основному электрогенератору 14.

Конденсация пара сопровождается выделением скрытой теплоты парообразования, которая отводится при помощи охлаждающей жидкости. Образующийся конденсат с помощью конденсатного насоса 16 конденсатора паровой турбины с производственным отбором пара направляют в систему регенерации.

В процессе конденсации пара производственного отбора в конденсаторе 15 паровой турбины происходит испарение сжиженного пропана С3Н8 и дальнейший его перегрев до сверхкритической температуры от 369,89 К до 420 К при сверхкритическом давлении от 4,2512 МПа до 8 МПа, который направляют на расширение в турбодетандер 6.

Процесс настроен таким образом, что в турбодетандере 6 не происходит конденсации газообразного пропана С3Н8 в ходе срабатывания теплоперепада. Мощность турбодетандера 6 передается соединенному на одном валу электрогенератору 7. На выходе из турбодетандера 6 газообразный пропан С3Н8, имеющий температуру перегретого газа около 288 К, направляют в теплообменник-рекуператор 23 для снижения температуры.

В теплообменнике-рекуператоре 23 в процессе отвода теплоты на нагрев сжиженного пропана С3Н8 снижается нагрузка на теплообменник-конденсатор 8, выполненноый, например, в виде конденсатора воздушного охлаждения, и затраты мощности на привод вентиляторов воздушного охлаждения.

Далее, при снижении температуры газообразного пропана С3Н8 происходит его сжижение в теплообменнике-конденсаторе 8, охлаждаемом воздухом окружающей среды в температурном диапазоне от 223,15 К до 283,15 К.

После теплообменника-конденсатора 8 в сжиженном состоянии пропан СзН8 направляют для сжатия в конденсатный насос 9 теплового двигателя.

Далее органический цикл Ренкина на основе низкокипящего рабочего тела повторяется.

Использование в работе тепловой электрической станции конденсационной установки 12 позволяет повысить начальные параметры низкокипящего рабочего тела теплового двигателя 5 с замкнутым контуром циркуляции до сверхкритических параметров, что приводит к увеличению теплоперепада на турбодетандере 6.

Использование предлагаемого способа работы тепловой электрической станции позволит, по сравнению с прототипом, повысить коэффициент полезного действия ТЭС за счет утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины с производственным отбором пара, утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины и утилизации высокопотенциальной теплоты пара производственного отбора из паровой турбины с производственным отбором пара для дополнительной выработки электрической энергии.

1. Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией, включающий отбор пара из паровой турбины, направление пара отопительных параметров из отборов паровой турбины в паровое пространство верхнего и нижнего сетевых подогревателей и его конденсирование на поверхности подогреваемых трубок сетевых подогревателей, внутри которых протекает охлаждающая жидкость, при этом отработавший пар из паровой турбины направляют в паровое пространство конденсатора, в котором его конденсируют на поверхности конденсаторных трубок, а полученный конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, причем при конденсации пара отопительных параметров из отборов паровой турбины осуществляют утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины посредством охлаждающей жидкости, отличающийся тем, что дополнительно используют конденсационную установку, содержащую конденсатор паровой турбины с производственным отбором пара и систему маслоснабжения ее подшипников с маслоохладителем, при этом дополнительно осуществляют утилизацию высокопотенциальной теплоты пара производственного отбора и утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины с производственным отбором пара, причем упомянутые утилизации осуществляют посредством теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, состоящего из турбодетандера с электрогенератором, теплообменника-рекуператора, теплообменника-конденсатора и конденсатного насоса, причем в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом упомянутое низкокипящее рабочее тело сжимают в конденсатном насосе теплового двигателя, нагревают в теплообменнике-рекуператоре теплового двигателя, нагревают в маслоохладителе конденсационной установки, нагревают в нижнем сетевом подогревателе паровой турбины, нагревают в верхнем сетевом подогревателе паровой турбины, испаряют и перегревают в конденсаторе паровой турбины с производственным отбором пара, расширяют в турбодетандере теплового двигателя, снижают его температуру в теплообменнике-рекуператоре и конденсируют в теплообменнике-конденсаторе теплового двигателя.

2. Способ по п. 1, отличающийся тем, что в качестве теплообменника-конденсатора теплового двигателя используют конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.

3. Способ по п. 1, отличающийся тем, что в качестве низкокипящего рабочего тела используют сжиженный пропан С3Н8.



 

Похожие патенты:

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы.

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы.

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы.

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы.

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы.

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы.

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы.

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы.

Изобретение относится к способу утилизации тепловой энергии, вырабатываемой на тепловых электрических станциях (ТЭС). Технический результат изобретения заключается в повышении коэффициента полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты и утилизации избыточной низкопотенциальной теплоты обратной сетевой воды для дополнительной выработки электрической энергии.

Изобретение относится к способу утилизации тепловой энергии на тепловых электрических станциях (ТЭС). Технический результат заключается в повышении коэффициента полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты для дополнительной выработки электрической энергии.

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы.

Способ включает поступление пара отопительных параметров из отборов паровой турбины в паровое пространство верхнего и нижнего сетевых подогревателей, подачу сетевой воды от потребителей по обратному трубопроводу сетевой воды в нижний и верхний сетевые подогреватели и далее в подающий трубопровод сетевой воды, подачу отработавшего пара из паровой турбины в паровое пространство конденсатора паровой турбины для конденсации на поверхности конденсаторных трубок и направление конденсата с помощью конденсатного насоса конденсатора паровой турбины в систему регенерации.

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) при утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины для дополнительной выработки электрической энергии.

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) при утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины для дополнительной выработки электрической энергии.

Способ заключается в том, что отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, при этом конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, а пар отопительных параметров из отборов паровой турбины поступает в паровое пространство верхнего и нижнего сетевых подогревателей, конденсируется на поверхности подогреваемых трубок сетевых подогревателей, внутри которых протекает охлаждающая жидкость.

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы.

Способ включает утилизацию высокопотенциальной теплоты пара производственного отбора и утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины с производственным отбором пара.

Способ включает использование конденсационной установки, имеющей конденсатор паровой турбины с производственным отбором пара, и дополнительное осуществление утилизации высокопотенциальной теплоты пара производственного отбора.

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы.

Предлагаемое изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС в зимний период времени.

Способ включает использование конденсационной установки, имеющей конденсатор паровой турбины с производственным отбором пара и систему маслоснабжения ее подшипников с маслоохладителем, и дополнительное осуществление утилизации высокопотенциальной теплоты пара производственного отбора, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины с производственным отбором пара. При этом все указанные утилизации осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом упомянутое низкокипящее рабочее тело сжимают в конденсатном насосе теплового двигателя, нагревают в теплообменнике-рекуператоре теплового двигателя, нагревают в охладителе маслоснабжения подшипников паровой турбины, нагревают в маслоохладителе конденсационной установки, нагревают в нижнем сетевом подогревателе паровой турбины, нагревают в верхнем сетевом подогревателе паровой турбины, испаряют и перегревают в конденсаторе паровой турбины с производственным отбором пара, расширяют в турбодетандере теплового двигателя, снижают его температуру в теплообменнике-рекуператоре теплового двигателя и конденсируют в теплообменнике-конденсаторе теплового двигателя. Достигается повышение коэффициента полезного действия ТЭС за счет утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины и утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины для дополнительной выработки электрической энергии. 2 з.п. ф-лы, 1 ил.
Наверх