Телескопическая оптическая система типа галилея

Изобретение может быть использовано, например, в лазерных дальномерах. Телескопическая оптическая система типа Галилея состоит по ходу лучей из объектива и окуляра. Объектив выполнен в виде двух компонентов, первый из которых по ходу лучей - склеенный из двояковыпуклой и двояковогнутой линз, второй - одиночная двояковыпуклая линза, причем радиус ее первой поверхности по модулю равен радиусу второй поверхности двояковыпуклой линзы первого компонента объектива. Окуляр представляет собой одиночную двояковогнутую линзу с равными по модулю радиусами. Для показателя преломления материала второго компонента объектива выполняется соотношение 1,61<n3<1,71. Технический результат - увеличение диаметра входного зрачка и угла поля в пространстве предметов, повышение видимого увеличения при высоком качестве изображения. 1 ил., 2 табл.

 

Предлагаемое изобретение относится к оптическому приборостроению и может быть использовано в оптических системах, работающих с лазерами, например в лазерных дальномерах.

Известна телескопическая система типа Галилея, предназначенная для наблюдения удаленных объектов, состоящая из объектива и окуляра, описанная в публикации Г.Г. Слюсарева «Расчет оптических систем» - Л.: Машиностроение, 1975 г., рис. 11.32 стр. 95. В данной системе объектив выполнен из последовательно расположенных положительного мениска, обращенного выпуклостью к предмету, и линзы, склеенной из двояковыпуклой и двояковогнутой линз, а окуляр - одиночная двояковогнутая линза. Эта система характеризуется большими габаритными размерами и малым увеличением.

Наиболее близкой к заявляемому техническому решению является телескопическая оптическая система типа Галилея, патент РФ на изобретение №2209455, МПК G02B 23/00, опубл. 27.07.2003 г. Система содержит объектив и окуляр, объектив выполнен в виде двух положительных компонентов, первый из которых по ходу лучей - склеенный из двояковыпуклой и двояковогнутой линз, второй - одиночная плосковыпуклая линза, обращенная плоскостью к изображению, а окуляр - одиночная двояковогнутая линза с равными по модулю радиусами. Эта оптическая система обеспечивает видимое увеличение не более 5,5 крат, показатель преломления материала второго компонента объектива - одиночной плосковыпуклой линзы, равен 1,606263 для линии е, оптическая система имеет малый диаметр входного зрачка 22,5 мм и малый угол поля в пространстве предметов 2′30″. Использование такой оптической системы в лазерном дальномере приводит к недостаточной дальности измерения.

Задачей заявляемого изобретения является создание телескопической оптической системы с повышенными эксплуатационными характеристиками.

Технический результат - увеличение диаметра входного зрачка и угла поля в пространстве предметов, повышение видимого увеличения при высоком качестве изображения.

Это достигается тем, что в телескопической оптической системе типа Галилея, состоящей из объектива и окуляра, объектив выполнен в виде двух положительных компонентов, первый из которых по ходу лучей - склеенный из двояковыпуклой и двояковогнутой линз, второй - одиночная положительная линза, а окуляр - одиночная двояковогнутая линза с равными по модулю радиусами, в отличие от известной одиночная положительная линза второго компонента объектива выполнена двояковыпуклой, радиус ее первой поверхности по модулю равен радиусу второй поверхности двояковыпуклой линзы первого компонента объектива и имеет место соотношение:

1,61<n3<1,71,

где n3 - показатель преломления материала по ходу лучей третьей (двояковыпуклой) линзы для линии е.

На фигуре изображена оптическая схема предложенной телескопической системы.

Телескопическая оптическая система типа Галилея состоит по ходу лучей из объектива, содержащего два положительных компонента, первый из которых - склеенный из двояковыпуклой линзы 1 и двояковогнутой линзы 2, второй компонент - одиночная двояковыпуклая линза 3, и окуляра, выполненного в виде одиночной двояковогнутой линзы 4 с равными по модулю радиусами, причем радиус первой поверхности одиночной двояковыпуклой линзы 3 равен по модулю радиусу второй поверхности двояковыпуклой линзы 1 объектива.

Телескопическая оптическая система типа Галилея работает следующим образом.

Объектив, состоящий из двух компонентов, включающих в себя линзы 1, 2 и 3, создает мнимое прямое промежуточное изображение объекта вблизи фокальной плоскости окуляра (на чертеже не показана), а окуляр, выполненный в виде одиночной двояковогнутой линзы 4, переносит изображение в бесконечность. Предлагаемая телескопическая оптическая система может работать и в обратном ходе лучей (с уменьшением).

Использование предлагаемой телескопической оптической системы в составе лазерного дальномера позволяет существенно увеличить дальность измерения дальномера пропорционально увеличению кратности телескопа. Телескопическая оптическая система при юстировке выставляется на ноль диоптрий для длины волны 589 нм путем изменения второго воздушного промежутка. Так как оптическая система ахроматизована для длин волн 589 нм и 1540 нм, то и для рабочей длины волны лазера 1540 нм телескопическая оптическая система при юстировке автоматически устанавливается на ноль диоптрий.

В качестве конкретного примера реализации изобретения рассчитана телескопическая оптическая система для длины волны 1540 нм, ахроматизованная для длин волн 1540 нм и 589 нм.

Рассчитанная телескопическая оптическая система имеет следующие характеристики:

Видимое увеличение, крат 10
Диаметр входного зрачка, мм 24
Диаметр выходного зрачка, мм 2,4
Угол поля зрения 4′30″
Удаление выходного зрачка, мм 7
Длина, мм 44,98
Показатель преломления материала (стекло ТК114) третьей по ходу лучей линзы для линии е (n3) 1,615506

Конструктивные параметры системы приведены в табл. 1.

В табл. 2 приведены аберрации рассчитанной телескопической оптической системы для λ=1540 нм.

Предлагаемая телескопическая оптическая система имеет повышенное видимое увеличение - 10 крат, увеличенный диаметр входного зрачка - 24 мм, повышенное поле зрения 2W=4′30″, а также одинаковые по модулю радиусы оптических поверхностей двух пар линз телескопической оптической системы, что характеризует ее повышенную технологичность. Таким образом, в результате предложенного решения обеспечено получение технического результата - создана телескопическая оптическая система с увеличенным диаметром входного зрачка и углом поля в пространстве предметов, повышено видимое увеличение при высоком качестве изображения.

Телескопическая оптическая система типа Галилея, состоящая из объектива и окуляра, объектив выполнен в виде двух положительных компонентов, первый из которых по ходу лучей - склеенный из двояковыпуклой и двояковогнутой линз, второй - одиночная положительная линза, а окуляр - одиночная двояковогнутая линза с равными по модулю радиусами, отличающаяся тем, что одиночная положительная линза второго компонента объектива выполнена двояковыпуклой, радиус ее первой по ходу лучей поверхности по модулю равен радиусу второй поверхности двояковыпуклой линзы первого компонента объектива и имеет место соотношение:
1,61<n3<1,71,
где n3 - показатель преломления материала третьей по ходу лучей линзы для линии е.



 

Похожие патенты:

Сайдоскоп // 2560247
Изобретение относится к области оптического приборостроения, а именно телескопам. Телескоп содержит корпус, входной объектив, фильтр, параболическое зеркало и приемник излучения, расположенный в стороне от оптической оси телескопа, защитный экран с приемным окном, фильтр расположен на пути излучений перед главным зеркалом, приемник излучения включает приемную резисторную матрицу, расположенную в приемном окне так, чтобы лучи, отраженные от зеркала, фокусировались бы только на приемной резисторной матрице, состоящей из N столбцов и M строк, N-канальный аналоговый ключ, M малошумящих дифференциальных усилителей, M цифроаналоговых преобразователей, источник опорного напряжения, М аналого-цифровых преобразователей, M цифровых сумматоров, M-входовый регистр сдвига, микроконтроллер, персональный компьютер, приемник спутниковой навигационной системы, устройство синхронизации, цифровой датчик температуры, конструктивно связанный с подложкой резисторной матрицы, и вентилятор воздушного охлаждения, конструктивно связанный с обратной стороной резисторной матрицы, питание на который поступает от микроконтроллера через устройство синхронизации.

Изобретение относится к оптическому приборостроению и может использоваться в устройствах для контроля сбиваемости прицелов в процессе стрельбовых испытаний. Устройство для контроля положения линии визирования прицелов на стрелковом оружии содержит лазер и сетку с контрольной точкой для наведения линии визирования контролируемого прицела, при этом оно дополнительно содержит коллимационно-измерительный блок, содержащий коллимационный канал с установленной в нем упомянутой сеткой, формирующий удаленное изображение сетки, и измерительный канал, содержащий объектив, на оптической оси которого установлен светоделительный элемент, а в фокальных плоскостях установлены лазер и позиционно-чувствительное фотоприемное устройство, фиксирующее положение пятна лазерного излучения, зеркало, оснащенное устройством его крепления на оружии с однозначной ориентацией нормали зеркала относительно оси канала ствола оружия, а также устройство вычисления координат лазерного пятна на позиционно-чувствительном фотоприемном устройстве, входом соединенное с выходом позиционно-чувствительного фотоприемного устройства, причем коллимационно-измерительный блок закреплен на опоре на жестком основании, на котором также закреплена опора для установки оружия с контролируемым прицелом, при этом, по крайней мере, одна из упомянутых опор выполнена с возможностью угловой и линейной регулировки по вертикали и горизонту для оптического сопряжения контролируемого прицела и лазерного излучения, отраженного от зеркала, с коллимационно-измерительным блоком.

Телескоп включает корпус (1) с размещенной в нем оптической системой, содержащей главное вогнутое гиперболическое зеркало (2) с центральным отверстием (3), вторичное выпуклое гиперболическое зеркало (4) и фотоприемное устройство (5), установленное в фокальной плоскости телескопа.

Изобретение относится к оптическому приборостроению. Прицел-дальномер для стрелкового оружия и гранатометов содержит излучающий канал, содержащий оптически связанные лазер и передающую оптическую систему, визирно-приемный канал, содержащий оптически связанные объектив, спектроделительную призму, оборачивающую систему, сетку и окуляр, а также оптически связанное с объективом посредством спектроделительной призмы фотоприемное устройство, прицельный знак, светодиод для подсветки сетки, устройство цифровой индикации дальности в поле зрения окуляра, измеритель временных интервалов, входом связанный с выходом фотоприемного устройства, а выходом - с лазером, баллистический вычислитель с введенными в его программу баллистическими данными различных типов оружия, оснащенный устройством выбора типа оружия и боеприпаса, и датчик температуры, при этом первый вход баллистического вычислителя связан со вторым выходом измерителя временных интервалов, второй вход - с выходом датчика температуры, а первый выход - с входом устройства цифровой индикации дальности, при этом он дополнительно содержит перископическую оптическую систему, оптически связанную с излучающим и визирно-приемным каналами, при этом первый отражающий элемент перископической оптической системы оснащен механизмом поворота вокруг горизонтальной оси, содержащим шаговый электродвигатель, связанный с выходом устройства управления электродвигателем, а второй отражающий элемент перископической оптической системы выполнен с возможностью его поворота вокруг вертикальной оси, причем второй выход баллистического вычислителя связан со входом устройства управления электродвигателем, а прицельный знак размещен на сетке визирно-приемного канала.

Изобретение относится к оптическому приборостроению. Устройство содержит ходовые винты 2, 3, маховичок 4 со шкалой углов прицеливания, фиксаторы 5, 6 ходовых винтов, баллистический кулачок 8, датчик линейного перемещения в виде потенциометра с корпусом 9 с резистивным слоем и подвижным контактом 10, наконечник 11, пружину 12, устройство обработки сигнала (УОС) 13, цифровые индикаторы 14, оптически связанные с объективом 15 и призменной системой 16 сопряжения с окуляром прицела.

Изобретение относится к оптическому приборостроению и может использоваться в устройствах для контроля сбиваемости прицелов в процессе стрельбовых испытаний. Устройство для контроля положения линии визирования прицелов на стрелковом оружии содержит лазер, оснащенный устройством его крепления на оружии, и сетку с контрольной точкой для наведения линии визирования контролируемого прицела, при этом оно дополнительно содержит коллимационно-измерительный блок, содержащий коллимационный канал с установленной в нем упомянутой сеткой, формирующий удаленное изображение сетки, и измерительный канал с позиционно-чувствительным фотоприемным устройством, фиксирующим положение пятна лазерного излучения, а также устройство вычисления координат лазерного пятна на позиционно-чувствительном фотоприемном устройстве, входом соединенное с выходом позиционно-чувствительного фотоприемного устройства, причем коллимационно-измерительный блок закреплен на опоре на жестком основании, на котором также закреплена опора для установки оружия с контролируемым прицелом, по крайней мере, одна из упомянутых опор выполнена с возможностью угловой и линейной регулировки по вертикали и горизонту для оптического сопряжения контролируемого прицела и лазера с коллимационно-измерительным блоком.

Реферат (54) Изобретение относится к оптическому приборостроению и может использоваться в устройствах для контроля сбиваемости прицелов в процессе стрельбовых испытаний.

Изобретение относится к устройствам для защиты головы человека и касается шлема с проекционной системой. Шлем содержит контроллер управления, видеокамеру, блок приема/передачи данных, блок распознавания речи, блок определения пространственного положения шлема и оптическую систему.

Афокальная насадка состоит из первого компонента в виде одиночной положительной линзы (1) и второго компонента в виде одиночной отрицательной линзы (4). В первый компонент введен афокальный коррекционный компонент однократного увеличения, расположенный между положительной (1) и отрицательной (4) линзами и выполненный в виде последовательно расположенных вогнуто-выпуклого отрицательного мениска (2) и выпукло-вогнутого положительного мениска (3) с равными оптическими силами, касающимися друг с другом выпуклыми поверхностями.

Телескоп может быть использован в оптико-электронных космических телескопах для дистанционного зондирования Земли. Телескоп содержит объектив, установленные в фокальной плоскости оптико-электронные приемники изображения и спектрометр, содержащий входную щель, установленную в фокальной плоскости объектива, и фокусирующую диспергирующую систему.

Изобретение относится к области обработки изображений, в частности к способу обнаружения движущегося объекта, например космических обломков, исходя из захваченных изображений. Техническим результатом является повышение точности обнаружения движущихся объектов или кандидатов на него с использованием способа наложения посредством меньшего количества обработок операций. Предложен способ обнаружения движущегося объекта, в котором этап обработки наложения состоит из: деления захваченных изображений на p групп, каждая из которых включает в себя m последовательных изображений, и применения для каждой группы способа наложения к этим m изображениям. Впоследствии для каждой группы в этом способе выделяется кандидат на космические обломки на основе значения оценки для обнаружения космических обломков, которое получают исходя из значений пиксела в идентичных пиксельных позициях, перекрывающих друг друга по всем m изображениям, совмещенным друг с другом. После этого в этом способе на основе совпадения или близости с точки зрения направления перемещения и скорости движения принимается решение относительно того, выбирать ли выделенный кандидат на космические обломки в каждой группе в качестве окончательного кандидата на космические обломки. 8 з.п. ф-лы, 7 ил.

Способ исследования изменений климата Земли заключается в том, что измерительную систему, включающую два идентичных оптических телескопа, располагают на видимой поверхности Луны. Во время движения Луны вокруг Земли оптические телескопы последовательно производят измерения энергии отраженного и рассеянного Землей солнечного излучения по всем направлениям и суммарной энергии собственного теплового излучения поверхности и атмосферы Земли. Затем определяют значение альбедо Бонда Земли, величину отклонения энергетического баланса Земли от равновесного состояния с использованием заранее известных данных солнечной постоянной. И на основании полученных данных оценивают изменения энергетического состояния Земли и степени пропускания атмосферой теплового излучения земной поверхности в космическое пространство, а также состояние климата. Технический результат - повышение точности и надежности исследования климатических изменений, происходящих на Земле. 2 н. и 5 з.п. ф-лы, 3 ил.

Изобретение относится к области обработки изображений и, в частности, к способу обнаружения движущегося объекта в захваченных изображениях, например, космических обломков. Техническим результатом является повышение точности обнаружения движущийся объектов или кандидатов с использованием способа наложения посредством меньшего количества операций. Предложен способ обнаружения движущихся объектов, если пиксельное значение, включающее в себя минимальный шум, отличный от каждого из компонентов шума "(1) компоненты смещения CCD-элементов", "(2) градационные компоненты фонового света" и "(3) компоненты смещения оптической системы", обнаружено во время определения значения коррекции для каждого из упомянутых компонентов шума, то "(5) компоненты теплового шума и шума считывания", которые представляют собой случайный шум, накладываются на каждое пиксельное значение. Таким образом, из множества сигналов изображений, в которых движущиеся объект должен наблюдаться, захвачен посредством фиксации области захвата изображений, минимальное значение каждого пиксела выбирается в качестве сигнала изображения, которое включает в себя минимальный шум, отличный от упомянутых четырех компонентов шума, и минимальное значение используется в качестве значения коррекции для упомянутых четырех компонентов шума. 3 з.п. ф-лы, 5 ил.

Телескоп // 2603820
Предлагаемое изобретение относится к области контрольно-измерительной техники, а именно к телескопическим оптическим системам, используемым для измерения параллельности визирных осей двух или более контролируемых оптических систем в видимом диапазоне спектра. Телескоп состоит из сферического вогнутого зеркала, окуляра, двух плоскопараллельных пластин, на одной из сторон каждой из них расположены сетки со штрихами, причем на каждой сетке нанесен один штрих, проходящий через центр плоскопараллельной пластины. Плоскопараллельные пластины расположены между сферическим вогнутым зеркалом и окуляром с воздушным промежутком между ними, в котором расположен передний фокус окуляра. Сетки со штрихами обращены друг к другу и каждая сетка со штрихом установлена с возможностью перемещения перпендикулярно нанесенному штриху в плоскостях, перпендикулярных оптической оси телескопа так, что при наблюдении в окуляр видно перекрестие, образованное штрихами двух перемещаемых сеток. Между сетками находится также неподвижная полевая диафрагма, ограничивающая поле зрения телескопа. Технический результат - создание телескопа, позволяющего проводить измерения параллельности визирных осей двух или более контролируемых оптических систем при упрощенной конструкции. 1 з.п. ф-лы, 1 ил.

Оптическое устройство относится к оптическому приборостроению и может быть использовано в устройствах, предназначенных для внешнетраекторных измерений в космической геодезии и полигонных измерениях. Устройство содержит излучатель, приемный блок, оптическая ось которого сопряжена с осью луча, отражающие элементы, образующие лучевод и смонтированные на опорно-поворотном устройстве, поворотные элементы которого выполнены с сообщающимися полостями для прохождения оптического луча, с взаимно ортогональными осями вращения и каждый снабжен подшипниковой опорой, датчиком угла поворота и приводом вращения, выполненным в виде моментного двигателя, включающего ротор и статор. Первый поворотный элемент выполнен в виде многогранника, у которого, по крайней мере, две грани ортогональны относительно друг друга, и на одной из этих граней закреплен второй поворотный элемент, подшипниковая опора представляет собой прецизионный радиально-упорный подшипник, в качестве датчика угла поворота использован оптический датчик с отсчетным элементом в виде кольца. Соединения поворотных элементов ОПУ со своими двигателями и кольцами подшипников выполнены по альтернативным схемам: статоры двигателей и наружные кольца подшипников обоих поворотных элементов выполнены неподвижными, а роторы их двигателей и внутренние кольца подшипников - с возможностью вращения или, наоборот, статор двигателя и наружное кольцо подшипника одного из поворотных элементов выполнены неподвижными, а ротор и внутреннее кольцо подшипника этого же поворотного элемента - с возможностью вращения, при этом статор двигателя и наружное кольцо подшипника другого поворотного элемента - с возможностью вращения, а ротор двигателя этого поворотного элемента и внутреннее кольцо подшипника - неподвижными. В полости многогранника под углом 45° к оси вращения многогранника установлен один из отражающих элементов, другой отражающий элемент расположен в полости второго поворотного элемента и закреплен на подвижном кольце его подшипника, при этом оси вращения отражающих элементов перекрещиваются в общей точке, расположенной на поверхности отражающего элемента, установленного внутри многогранника. Технический результат - обеспечение транспортабельности и уменьшение габаритов. 10 з.п. ф-лы, 1 ил.

Оптическая система прицела состоит из расположенных по ходу лучей объектива, плоскопараллельной пластинки с прицельной маркой и шкалами, оборачивающей системы, полевой диафрагмы и окуляра. Объектив выполнен трехкомпонентым. Оборачивающая система содержит два двухлинзовых скленных компонента, дифференцированно перемещающихся вдоль оптической оси оборачивающей системы, и отрицательную линзу. Плоскопараллельная пластинка прицельной маркой и шкалами и оборачивающая система выполнены совместно качающимися вокруг точки, совмещенной с осевой точкой плоскости второго действительного изображения. В первом варианте окуляр состоит из расположенных по ходу лучей двухлинзового склеенного компонента, положительного мениска, обращенного вогнутой поверхностью к полевой диафрагме, и двояковыпуклой линзы. Во втором варианте окуляр выполнен из одиночной положительной линзы и двухлинзовой склейки. Между параметрами устройства выполняются заявленные в формуле изобретения соотношения. Технический результат - упрощение конструкции оптической системы прицела, повышение технологичности его изготовления, повышение коэффициента пропускания. 2 ил., 4 табл., 2 н. и 21 з.п. ф-лы.

Голографический коллиматорный прицел с синтезированным зрачком содержит лазерный диод, коллимирующий объектив, дифракционную решетку пропускающего типа, голографический формирователь неподвижной метки в виде объемной пропускающей голограммы, стеклянную пластинку, выполняющую роль световода. Технический результат заключается в уменьшении габаритов и веса за счет совмещения функций четырех оптических элементов в одном элементе. 2 ил.

Изобретение может быть использовано, например, в лазерных дальномерах. Телескопическая оптическая система типа Галилея состоит по ходу лучей из объектива и окуляра. Объектив выполнен в виде двух компонентов, первый из которых по ходу лучей - склеенный из двояковыпуклой и двояковогнутой линз, второй - одиночная двояковыпуклая линза, причем радиус ее первой поверхности по модулю равен радиусу второй поверхности двояковыпуклой линзы первого компонента объектива. Окуляр представляет собой одиночную двояковогнутую линзу с равными по модулю радиусами. Для показателя преломления материала второго компонента объектива выполняется соотношение 1,61<n3<1,71. Технический результат - увеличение диаметра входного зрачка и угла поля в пространстве предметов, повышение видимого увеличения при высоком качестве изображения. 1 ил., 2 табл.

Наверх