Каскадная холодильная машина

Изобретение относится к холодильной технике. Каскадная холодильная машина содержит в нижней ветви каскада, установленные последовательно, отделитель жидкости, разделяющий поток хладагента на газообразную и жидкую составляющие, предварительный рекуперативный теплообменник, основной рекуперативный теплообменник, основное дросселирующее устройство, испаритель, компрессор и конденсатор. При этом первый выход отделителя жидкости соединен с входом прямого потока хладагента в предварительный рекуперативный теплообменник, а второй выход отделителя жидкости соединен через предварительное дросселирующее устройство с входом обратного потока в предварительный рекуперативный теплообменник. Выход потока хладагента из конденсатора и вход в отделитель жидкости связаны между собой теплообменником, являющимся конденсатором-переохладителем для нижней ветви каскада и испарителем для верхней ветви каскада. Верхняя ветвь каскада представляет собой одноступенчатую холодильную машину, в которой последовательно установлены компрессор, конденсатор, ресивер, дросселирующее устройство, испаритель. Использование данного изобретения позволяет повысить термодинамическую эффективность низкотемпературного холодильного цикла при работе на низких температурных уровнях за счет его новой организации. 1 ил.

 

Изобретение относится к холодильной технике и может быть использовано для охлаждения объектов или поддержания их низкой температуры за счет получения холода на низком температурном уровне (ниже минус 120°С).

Из источника RU 2448308 известно о применении отделителя жидкости и перепускной линии для получения низких температур. Вследствие высокого давления нагнетания в холодильной машине из RU 2448308, нижний предел достижимой температуры ограничен, т.к. при работе на низких температурных уровнях значительно уменьшается удельная холодопроизводительность в таком низкотемпературном холодильном цикле. Кроме того, в RU 2448308 перепускная линия расположена в низкотемпературной части холодильной машины и соответственно требует наличия теплоизоляции, чтобы сократить необратимые потери в цикле.

В предлагаемой каскадной холодильной машине выход потока хладагента из конденсатора 2 и вход в отделитель жидкости 4 связаны между собой теплообменником 3, являющимся конденсатором-переохладителем для нижней ветви каскада и испарителем для верхней ветви каскада, представляющей собой одноступенчатую холодильную машину; также на нижней ветви каскада предусмотрена перепускная линия для сброса избыточного давления нагнетания. Благодаря данным изменениям в структуре цикла понижается давление нагнетания нижнего каскада, поэтому в нем можно использовать вещества, с помощью которых удастся получить более низкие температуры, чем в RU 2448308. За счет данного дополнительного переохлаждения потока хладагента нижней ветви каскада, в предлагаемой каскадной холодильной машине удается повысить удельную холодопроизводительность на низких температурных уровнях, и, следовательно, холодильный коэффициент. Избыточный в пусковой период низкокипящий газ в данном случае отбирается до конденсатора-переохладителя 3, тем самым повышается эффективность теплообмена между потоками хладагента в верхней и нижней ветвях каскада. Кроме того, за счет расположения выхода сдросселированного хладагента из перепускной линии на линию всасывания в компрессор 1, удается понизить температуру начала сжатия в компрессоре и, тем самым, понизить давление нагнетания, что также ведет к уменьшению давления конденсации. Благодаря расположению перепускной линии в нижнем каскаде, температура перепускаемого хладагента - комнатная, это ведет к уменьшению необратимых потерь в низкотемпературном цикле каскадной холодильной машины, а также к отсутствию необходимости теплоизолировать компоненты перепускной линии.

Техническим результатом является понижение достигаемой температуры охлаждения и повышения термодинамической эффективности низкотемпературного холодильного цикла при работе на низких температурных уровнях.

Сущность изобретения.

Каскадная холодильная машина состоит из циркуляционного контура верхней ветви каскада и циркуляционного контура нижней ветви каскада. В нижней ветви каскада установлены последовательно отделитель жидкости 4, разделяющий поток хладагента на газообразную и жидкую составляющие, предварительный рекуперативный теплообменник 5, основной рекуперативный теплообменник 6, основное дросселирующее устройство 7, испаритель 8, компрессор 1 и конденсатор 2, при этом первый выход отделителя жидкости 4 соединен с входом прямого потока хладагента в предварительный рекуперативный теплообменник 5, а второй выход отделителя жидкости 4 соединен через предварительное дросселирующее устройство 9 с входом обратного потока в предварительный рекуперативный теплообменник 5. Выход потока хладагента из конденсатора 2 и вход в

отделитель жидкости 4 связаны между собой теплообменником 3, являющимся конденсатором-переохладителем для нижней ветви каскада и испарителем для верхней ветви каскада, представляющей собой одноступенчатую холодильную машину, в которой последовательно установлены компрессор 14, конденсатор 15, ресивер 16, дросселирующее устройство 17, испаритель 3.

Холодильная машина работает следующим образом: в нижней ветви каскада хладагент сжимается в компрессоре 1, затем охлаждается до температуры окружающей среды и частично конденсируется в конденсаторе 2, после чего попадает в конденсатор-переохладитель 3, где продолжается процесс конденсации за счет низкопотенциальной теплоты, полученной от работы одноступенчатой холодильной машины верхней ветви каскада, затем хладагент попадает в отделитель жидкости 4, где разделяется на жидкую и газообразную фазы. Газообразный хладагент из отделителя жидкости поступает сначала в предварительный рекуперативный теплообменник 5, затем в основной рекуперативный теплообменник 6, где постепенно конденсируется за счет охлаждения обратным потоком. Охлажденный хладагент проходит через основное дросселирующее устройство 7, где происходит его расширение и понижение температуры, после чего поступает в испаритель 8, где подогревается за счет тепла, отводимого от охлаждаемого объекта. Далее поток хладагента поступает в основной рекуперативный теплообменник 6, где подогревается за счет охлаждения прямого потока. Жидкий хладагент из отделителя жидкости 4 проходит через предварительное дросселирующее устройство 9, где понижается его давление и температура, после чего смешивается с обратным потоком перед предварительным рекуперативным теплообменником. Далее поток хладагента еще подогревается в предварительном рекуперативном теплообменнике 5, и поступает на всасывание компрессора 1. На этом цикл работы холодильной машины замыкается.

Соленоидный вентиль 10 нормально находится в закрытом положении и

открывается при помощи электрического сигнала от управляющего устройства. В случае повышения давление нагнетания выше некоторой заданной величины соленоидный вентиль открывается и перепускает часть газообразного потока хладагента в ресивер 11. Соленоидный вентиль закрывается, как только давление падает до заданного значения. Из ресивера хладагент проходит через обратный клапан 12 и дросселирующее устройство 13, где его давление падает до давления обратного потока, а температура понижается, и смешивается с обратным потоком перед компрессором 1. Обратный клапан необходим для предотвращения попадания хладагента в ресивер со стороны обратного потока в случае повышения давления всасывания.

Данная холодильная машина будет работать только в случае применения в качестве хладагента в нижней ветви каскада многокомпонентной смеси (не менее двух компонентов). Нормальная температура кипения компонентов рабочей смеси должна лежать в области температур от температуры окружающей среды до необходимой температуры охлаждения.

Принципиальная схема разработанного устройства каскадной холодильной установки представлена на чертеже.

Каскадная холодильная машина, содержащая в нижней ветви каскада установленные последовательно отделитель жидкости, разделяющий поток хладагента на газообразную и жидкую составляющие, предварительный рекуперативный теплообменник, основной рекуперативный теплообменник, основное дросселирующее устройство, испаритель, компрессор и конденсатор, при этом первый выход отделителя жидкости соединен с входом прямого потока хладагента в предварительный рекуперативный теплообменник, а второй выход отделителя жидкости соединен через предварительное дросселирующее устройство с входом обратного потока в предварительный рекуперативный теплообменник, отличающаяся тем, что выход потока хладагента из конденсатора и вход в отделитель жидкости связаны между собой теплообменником, являющимся конденсатором-переохладителем для нижней ветви каскада и испарителем для верхней ветви каскада, представляющей собой одноступенчатую холодильную машину, в которой последовательно установлены компрессор, конденсатор, ресивер, дросселирующее устройство, испаритель.



 

Похожие патенты:

Изобретение может быть использовано в системах кондиционирования, в пищевой и химической промышленности. Холодильная каскадная установка с различными рабочими веществами каскадов, состоящая из одноступенчатых машин, называемых нижней и верхней ветвью каскада и объединяемых общим испарителем-конденсатором, включающая компрессоры, теплообменники, термоизолированный аккумулятор холода.

Изобретение относится к холодильной технике и может быть использовано как испаритель-конденсатор в каскадных холодильных установках. В испарителе-конденсаторе каскадных холодильных машин, состоящем из двух змеевиковых теплообменников, соединенных между собой теплопроводящими ламелями, закрепленных на общей раме, змеевики погружены в промежуточный жидкий хладоноситель, содержащийся в теплоизолированном корпусе.

Изобретение относится к холодильной технике. Холодильник с низкотемпературным отделением, содержащий холодильное отделение (2) для охлаждения и хранения предмета, который хранят; морозильное отделение (4) для замораживания и хранения предмета, который хранят; первый компрессор (11) для выполнения первого холодильного цикла (10), в котором течет первый хладагент; первое устройство (12) теплоотдачи, предусмотренное в высокотемпературной секции первого холодильного цикла (10); первый испаритель (14), предусмотренный в низкотемпературной секции первого холодильного цикла (10); второй компрессор (21) для выполнения второго холодильного цикла (20), в котором течет второй хладагент; второй испаритель (24), предоставленный низкотемпературной секции второго холодильного цикла (20); и промежуточный теплообменник (31) для осуществления теплообмена между низкотемпературной секцией первого холодильного цикла (10) и высокотемпературной секцией второго холодильного цикла (20).

Изобретение относится к холодильной системе и способу производства холода. .

Изобретение относится к холодильной технике. .

Изобретение относится к холодильной технике. .

Изобретение относится к холодильной установке, имеющей замкнутый циркуляционный цикл и заполненной холодильным агентом, предназначенным для теплопередачи, причем этот холодильный агент при атмосферном давлении имеет давление насыщения, которое выше, чем максимальное рабочее давление в циркуляционном цикле, причем эта холодильная установка состоит по меньшей мере из одного или более испарителей или теплообменников, оборудования для циркуляции холодильного агента и одного или более конденсаторов и также по меньшей мере одного контейнера для холодильного агента, соединенного с холодильным циклом.

Изобретение относится к холодильной технике, в частности к каскадным холодильным установкам, входящим в состав испытательных термокамер. .

Изобретение относится к холодильной технике, предназначено для использования в низкотемпературных парокомпрессионных холодильных машинах, работающих на многокомпонентных смесях хладагентов, для регулирования состава хладагента, поступающего в испаритель. Система регулирования состава хладагента, содержащая отделитель жидкости, расположенный после конденсатора, и перепускную линию с последовательно расположенными перепускным соленоидным вентилем, ресивером и дросселирующим устройством. Хладагент из перепускной линии направляется непосредственно на всасывание в компрессор, при этом подача хладагента из перепускной линии на всасывание в компрессор регулируется дополнительным соленоидным вентилем, расположенным между ресивером и дросселирующим устройством перепускной линии, которым управляет по заданной программе программируемый блок управления. Изобретение позволяет повысить термодинамическую эффективность парокомпрессионной холодильной машины, работающей на многокомпонентной смеси хладагентов. 1 з.п. ф-лы, 1 ил.
Наверх