Подводный робототехнический комплекс


 


Владельцы патента RU 2563074:

Открытое акционерное общество "Государственный научно-исследовательский навигационно-гидрографический институт" (ОАО "ГНИНГИ") (RU)

Изобретение относится к телеуправляемым подводным робототехническим системам, обеспечивающим высокоточное обследование, фотовидеосъемку и профилирование подводных протяженных поверхностей, обследование зон обледенения корпусов судов и подводных конструкций. Комплекс содержит носитель оборудования в виде полой платформы, движительно-рулевую систему, систему энергообеспечения, навигационную систему, систему средств обнаружения, систему средств связи, балластно-уравнительную систему, вычислительную бортовую систему, судовой/береговой блок управления, информационно-измерительную систему, блок системы управления и опциональный механический манипулятор, систему кавитационной очистки посредством струи высокого давления для удаления биологических наростов. На нижней поверхности полой платформы расположены нагревательные элементы, установленные перед системой кавитационной очистки и выполненные в виде вращающейся цилиндрической поверхности. Технический результат заключается в расширении функциональных возможностей подводного робототехнического комплекса.

 

Изобретение относится к области обслуживания и периодического осмотра поверхностей подводной части гидротехнической и нефтегазопромысловой инфраструктуры, а именно к телеуправляемым подводным робототехническим системам, обеспечивающим высокоточное обследование, в том числе с применением методов неразрушающего контроля, фотовидеосъемку и профилирование подводных протяженных, преимущественно вертикально и горизонтально расположенных поверхностей объектов, и может быть использовано для автоматизации осмотровых подводных процессов (с привязкой к географическим и локальным координатам), а именно точного определения деформаций, сколов, образовавшихся трещин, каверн и прочих дефектов, как на поверхности обследуемого объекта, так и внутри него, а также обследование корпусов судов (исследование остаточной толщины покрытия, толщины листа металла и его состояния и состояния катодной защиты), а также для обследования зон обледенения корпусов судов и подводных конструкций, включая трубопроводы для транспортировки углеводородов, расположенные на мелководье в прибрежных зонах арктических морей и рек с последующим удалением ледовых образований.

Известен малогабаритный телеуправляемый подводный аппарат (патент RU №2387570 [1]), содержащий раму модульной конструкции, движители горизонтального и вертикального хода, прочные герметичные контейнеры для размещения электронной части подводного аппарата, светильники, обзорную и стационарную видеокамеры, датчики глубины и температуры, компенсаторы давления, блок плавучести, установленный в верхней части подводного аппарата, манипуляционный модуль, включающий снабженный охватом манипулятор и герметичный привод, причем манипулятор установлен на выходном валу этого привода, надводный модуль управления, включающий пульт управления, источник электропитания, блок отображения видеоинформации, и кабель связи, соединяющий подводный аппарат с надводным модулем. На другом конце выходного вала привода манипулятора дополнительно установлена видеокамера так, что ее ось визирования постоянно направлена в центр схвата манипулятора, подводный аппарат снабжен съемным перфорированным контейнером для сбора образцов, установленным в верхней части подводного аппарата соосно с его вертикальной осью, а обзорная видеокамера установлена посредством кронштейна над блоком плавучести в диаметральной плоскости подводного аппарата в его кормовой части.

Недостатком известного аппарата можно признать его сложность и высокую стоимость, что препятствует его широкому применению. Недостатком также необходимо считать отсутствие шасси (колесного или гусеничного), что исключает возможность проведения работ на наклонных, вертикальных и поверхностях с отрицательным уклоном под водой, а также на горизонтальных поверхностях на суше (отсутствие амфибийных качеств машины). Существенным недостатком можно признать невозможность применения вибродинамического оборудования для глубокого исследования поверхности.

Известен аппарат обнаружения и автоматического подъема затонувшего судна (патент US №3559607 [2]), содержащий подводный аппарат, оснащенный электронным блоком и лебедкой с тросом, на конце которого закреплен буй.

Недостатком известного аппарата являются ограниченные функциональные возможности: аппарат не может совершать горизонтального перемещения под водой, а его вертикальное перемещение не является достаточным. Существенным недостатком является отсутствие возможности дискретного хода вдоль обследуемой поверхности с сохранением постоянной величины отстояния от нее, а также невозможность определения мелких и средних дефектов на обследуемой площади.

Известны подводные аппараты (заявка FR №2046690 [3]), содержащие корпус с механизмом задания плавучести (буй), в полости которого расположен электронный блок, подключенный к одному концу сигнального кабеля, размещенного на катушке.

Однако эти аппараты не могут совершать сложных маневров, а дальность их действия невелика. Это существенно ограничивает возможность использования подобных аппаратов в качестве подводного робота. Кроме того, к недостаткам можно отнести невозможность проведения обследования вдоль требуемой траектории.

Известен также телеуправляемый осмотровый подводный аппарат, содержащий корпус, в полости которого размещены двигатели, телекамера, осветители и электронный блок приема сигналов управления и передачи телевизионной и измерительной информации. Питание и сигналы управления подаются по кабелю, при этом его катушка размещена на подвижной раме-носителе, погружаемой на грунт дна ("Подводная техника морских нефтепромыслов". - Л.: Судостроение, 1980, с. 116-118 [4]).

Недостатками известного аппарата являются ограниченная маневренность, недостаточный радиус действия, недостаточность регистрируемой информации об объекте исследования, возможность работы, только перемещаясь по дну. Также к недостаткам можно отнести отсутствие возможности проведения ультразвуковых измерений из-за плохо подходящего для этого выбранного типа корпуса и принципа движения.

Известны также технические решения, направленные на обеспечение автоматизации подводных и приповерхностных работ в области обследования объектов на предмет различных повреждений, усталостных деформаций и их дефектации, в том числе методами неразрушающего контроля (патент на полезную модель RU №102350, 27.02.2011 [5], патент RU №2446983 C2, 10.04.2012 [6], ecahvtec.sales@ecagroup.com-Web [7]).

Известный телеуправляемый подводный аппарат для мониторинга подводных конструкций типа «ROVINGBAT» фирмы «ECAROBOTICSS.A.S.», Франция [7], предназначен для осмотра и очистки подводных корпусов судов, добычных морских платформ и магистральных трубопроводов для транспортировки углеводородов, гидравлических плотин и соединенный с пультом управления посредством кабель-троса.

Данный телеуправляемый подводный аппарат (ТПА) выполнен в виде платформы на гусеничном ходу и снабжен шестью мощными движителями и двумя комплектами моторизованных треков, обеспечивающих такие режимы движения, как плавание с возможностью разворота на 360 градусов в вертикальной и горизонтальной плоскостях, ползание по конструктивным элементам.

ТПА также снабжен телевизионными камерами, цифровым фотоаппаратом, гидролокатором, ультразвуковым датчиком, телеметрическим каналом управления через интерфейс RS-485, галогенными фонарями, датчиком курса (3-х осевой магнитометр/акселерометр/гирокомпас), пьезорезистивным датчиком глубины, электронным модулем, включающим датчики измерения температуры, проникновения воды, силы тока и напряжения, одометром (импульсный датчик), который монтируется на колесо, кабель-тросом 120 мм с нулевой плавучестью и низкой плотностью полиолефинов.

Посредством ТПА выполняется осмотр подводных корпусов и конструкций (гидролокатор и цифровой фотоаппарат), измерение толщины корпуса и конструкций (ультразвуковой датчик), кавитационная очистка посредством струи высокого давления кавитационных пузырьков, направленной на корпус для удаления биологических наростов.

Управление ТПА осуществляется блоком управления, размещенным на судне обеспечения или непосредственно на морской платформе.

Техническим результатом известных технических решений [5, 6] является повышение безопасности использования объектов речной, морской, портовой гидротехнической и нефтегазопромысловой инфраструктуры за счет однозначного, дистанционного определения дефектных участков объектов и их повреждений.

Для достижения указанного технического результата предложен подводный робототехнический комплекс, который содержит носитель оборудования, движительно-рулевую систему (комплекс), систему энергообеспечения, навигационную систему (комплекс), систему средств обнаружения, систему средств связи, балластно-уравнительную систему, вычислительную бортовую систему, судовой/береговой блок управления, информационно-измерительную систему, блок системы управления, опциональный механический манипулятор. Носитель оборудования выполнен в виде полой платформы, на/в которой размещены практически все остальные элементы комплекса.

Так как, в частности, движительно-рулевой комплекс содержит, по меньшей мере, один движитель, закрепленный на платформе, система энергообеспечения представляет собой распределительное устройство, расположенное в полости платформы и подключенное с одной стороны к сети электрических проводников, подводящих электрическое питание к энергопотребляющим компонентам комплекса, а с другой стороны к питающему герметичному электрическому кабелю, подающему питание с берега/судна. Балластно-уравнительная система представляет собой набор конструктивных элементов, участвующих в создании плавучести аппарата, близкой к нулевой. Вычислительная бортовая система расположена в полости платформы и представляет собой вычислительную машину с установленной операционной системой реального времени, обеспечивающей управление всеми бортовыми системами, входящими в комплекс, а также сбор, сохранение и передачу на внешний пульт управления собираемой информации, при этом элементы вычислительной бортовой системы размещены в герметичном гидростатическом корпусе. Судовой/береговой блок управления и энергообеспечения представляет собой вычислительную машину (систему машин), коммутируемую с подводной частью комплекса посредством энергоинформационного подводного герметичного кабеля, состоящего из информационно-управляющего оптоволокна и силового кабеля, и систему электропитания (высоковольтный трансформатор/коммутирующее устройство/генератор). Указанный блок в зависимости от условий эксплуатации комплекса может располагаться как на берегу, так и на борту плавсредства. Система средств обнаружения аппарата представляет собой совокупность маяков и маяков-ответчиков, установленных на элементах комплекса, навигационный комплекс размещен в полости платформы и представляет собой набор средств для осуществления навигации и позиционирования аппарата.

Для упрощения монтажа, перевозки и эксплуатации комплекса платформа может быть выполнена составной. Комплекс может содержать, по меньшей мере, два колесных движителя, расположенных на бортах платформы и закрепленных на осях двигателей, расположенных внутри полой платформы. Также комплекс может содержать винтовой движитель, представляющий собой элемент в том числе ротор-статорного двигателя, либо массив (2×2) винтовых движителей, расположенных в верхней части комплекса с возможностью поворота вокруг поперечной горизонтальной оси для осуществления управления по дифференту и имеющих поворотную кавитационную насадку для управления комплексом по курсу, прикрепленную к платформе на вертикально-расположенных кронштейнах. В предпочтительном варианте конструктивные элементы балластно-уравнительной системы выполнены с возможностью регулирования их плавучести. Это позволяет использовать комплекс в воде с различной плотностью, что обеспечивает применение комплекса как в морской, так и в речной воде и других жидкостях. Бортовой промышленный компьютер может быть подключен к системе энергообеспечения через указанное распределительное устройство. Однако в некоторых вариантах реализации он может быть подключен к автономной бортовой системе энергообеспечения, что обеспечит его работу в случае отключения комплекса от внешнего питания. Совокупность маяков и маяков-ответчиков содержит, по меньшей мере, установленный в верхней части конструкции гидроакустический маяк-ответчик, а также светоимпульсный маяк, установленный в задней части конструкции. Используемый навигационный комплекс содержит, по меньшей мере, трехкомпонентный ферромагнитный компас, комплексированный с волоконно-оптическим гирокомпасом, а также средства позиционирования по линейным координатам. Используемая система средств связи представляет собой, по меньшей мере, антенну GPS/ГЛОНАСС, гидроакустическую приемную антенну с ультракороткой базой и маяк-ответчик, а также радиомодем и спутниковый модем. Используемый информационно-измерительный комплекс включает, по меньшей мере, средства неразрушающего контроля, лазерные системы и телевизионные системы. Однако указанный перечень не ограничивает возможный состав информационно-измерительного комплекса.

По составу средств диагностики наиболее предпочтительным вариантом для промышленной реализации является известный подводный робототехнический комплекс [6], содержащий в своем составе более широкий ряд средств диагностики, по сравнению с известным телеуправляемым подводным аппаратом для мониторинга подводных конструкций типа «ROVINGBAT» [7]. Однако известный телеуправляемый подводный аппарат для мониторинга подводных конструкций типа «ROVINGBAT» [7] обладает более широкими функциональными возможностями, ввиду наличия шести движителей и средств очистки обследуемых подводных поверхностей, по сравнению с известным подводным робототехническим комплексом [6]. Общим недостатком известных устройств [6] и [7] является отсутствие в их составе технических средств для удаления ледообразовании с обследуемых поверхностей, что ограничивает их использование.

В известном подводном робототехническом комплексе, обследовательский комплекс может также дополнительно содержать контактно-очистительную систему типа циркулярной щетки и бесконтактную кавитационную гидропушку, а также средства механической обработки: циркулярную пилу, шлифовальный круг и прочие известные механические или электромеханические устройства, которые в принципе могут быть использованы для удаления ледовых образований на открытых прямых участках обследуемого объекта механическим путем, однако это может привести к нежелательному повреждению выступающих узлов и механизмов. Кроме тог, механическая очистка в трудно доступных местах практически невозможна.

Задачей настоящего технического решения является расширение функциональных возможностей подводного робототехнического комплекса.

Поставленная задача решается за счет того, что подводный робототехнический комплекс, содержащей носитель оборудования, движительно-рулевую систему, систему энергообеспечения, навигационную систему, систему средств обнаружения, систему средств связи, балластно-уравнительную систему, вычислительную бортовую систему, судовой/береговой блок управления, информационно-измерительную систему, блок системы управления и опциональный механический манипулятор, систему кавитационной очистки посредством струи высокого давления кавитационных пузырьков, направленной на корпус для удаления биологических наростов, при этом носитель оборудования выполнен в виде полой платформы, движительно-рулевая система содержит, по меньшей мере, один движитель, закрепленный на платформе, система энергообеспечения представляет собой распределительное устройство, расположенное в полости платформы и подключенное с одной стороны к сети электрических проводников, а с другой стороны к питающему электрическому кабелю, балластно-уравнительная система представляет собой набор конструктивных элементов, участвующих в создании плавучести аппарата, близкой к нулевой, вычислительная бортовая система расположена в полости платформы и представляет собой первый промышленный компьютер с установленной операционной системой, обеспечивающей управление всеми системами, входящими в комплекс, а также сбор, сохранение и передачу на внешний пульт управления собранной информации, судовой/береговой блок управления представляет собой второй промышленный компьютер, коммутируемый с подводной частью комплекса посредством энергоинформационного подводного герметичного кабеля, состоящего из информационно-управляющего оптоволокна и силового кабеля, система средств обнаружения аппарата представляет собой совокупность маяков и маяков-ответчиков, установленных на элементах комплекса, навигационная система размещена в полости платформы и представляет собой набор средств для осуществления навигации и позиционирования аппарата, в отличие от прототипа [7], дополнительно содержит, расположенные на нижней поверхности полой платформы нагревательные элементы, установленные перед системой кавитационной очистки и выполненные в виде вращающейся цилиндрической поверхности.

В отличие от аналогов и прототипа [7], подводный робототехнический комплекс дополнительно содержит, расположенные на нижней поверхности полой платформы нагревательные элементы, установленные перед системой кавитационной очистки. Нагревательные элементы, установленные перед системой кавитационной очистки могут быть выполнены в виде вращающейся цилиндрической поверхности, вал которой через втулки соединен с амортизаторами, закрепленными посредством кронштейнов с элементами корпуса полой платформы.

Как и в прототипе [7], движительно-рулевой комплекс может быть представлен двумя типами движителей. Колесные движители расположены по два с каждого борта платформы и крепятся с использованием валов (осей вращения) к двигателям, расположенным внутри полой платформы. Второй тип движителя - винтовой. Располагается в верхней части конструкции в кавитационной неповоротной насадке, прикрепленной к платформе на вертикально расположенных кронштейнах для увеличения расстояния между винтовой плоскостью и плоскостью верхней части платформы. Сам движитель является двигателем (то есть кавитационная насадка играет роль статора). Это ротор - статорный двигатель (типа RIM-Driven). Устройство может иметь еще несколько (предпочтительно, три) двигателей в задней части платформы, расположенных под углом друг к другу, для осуществления маневрирования при подходе к точке в подводном режиме. Благодаря этому комплекс имеет возможность маневрировать не только на твердой поверхности, но и в водной среде, управляясь в пространстве по 6-ти координатам.

Система энергообеспечения представляет собой распределительное устройство и развитую, питающую все системы сеть проводников, расходящуюся от него, расположенное в полости носителя-платформы, в задней его части, входным элементом которого является энергоуправляющий подводный кабель, стыкующийся с задней частью платформы.

Балластно-уравнительная система представляет собой набор конструктивных элементов, участвующих в создании плавучести аппарата, близкой к нулевой. Основными элементами системы являются детали из синтактика удобообтекаемой формы, располагающиеся в верхней части платформы и внутри ее полости. Косвенно к элементам можно отнести движители-колеса, имеющие положительную плавучесть, возможно регулируемую.

Вычислительная бортовая система (ВБС) расположена в полости платформы-носителя в прочном гидростатическом сферическом герметичном корпусе и представляет собой, по сути, одноплатный промышленный компьютер с установленной операционной системой реального времени и бортовым программным обеспечением, где выполняется в замкнутом цикле программа управления движением и выполнением автоматических действий робота. Электропитание ВБС обеспечивается от распределителя («краба»). В свою очередь электропитание и сигналы внешнего управления поступают на бортовой распределитель («краб») посредством энергоинформационного кабеля, подключенного к блоку энергообеспечения и внешнего управления берегового или судового базирования. С ВБС осуществляют управление всеми системами посредством герметичных управляющих связей, а именно: информационно-измерительным комплексом, движительным комплексом, освещением, манипулятором и т.д., кроме того, ВБС обеспечивает сбор, сохранение и передачу на внешний пульт управления собранной информации. Для отвода тепла система оснащена развитым радиатором большой площади поверхности, соприкасающимся с водной массой.

Вычислительная бортовая система построена на основе микропроцессора 1986ВЕ93У.

Судовой/береговой блок управления коммутирован с подводной частью системы посредством энергоинформационного подводного герметичного кабеля, состоящего из двух составляющих: информационно-управляющее оптоволокно и силовой кабель. Информационно-управляющее оптоволокно коммутировано с управляющей частью берегового БУ (блок управления) - промышленным компьютером с операционной системой реального времени (ОСРВ) и программным обеспечением для обмена собранной информацией, осуществления обратной связи машина - оператор, вывода текущей информации и сбора информации с информационно-измерительного комплекса. Силовой кабель коммутирован с силовой частью берегового БУ - питающим трансформатором.

Комплекс средств обнаружения аппарата представляет собой систему маяков и маяков-ответчиков: в верхней части конструкции жестко крепятся гидроакустический маяк-ответчик, светоимпульсный маяк и радиомаяк. Маяки используются для осуществления аварийных работ в условиях плохой видимости и поиска аппарата в ЧС.

Навигационный комплекс расположен в полости аппарата и представляет собой набор средств для осуществления навигации и позиционирования аппарата. Трехкомпонентный ферромагнитный компас, комплексированный с волоконно-оптическим гирокомпасом, позволяет получать информацию о положении аппарата по углам Эйлера. Позиционирование по линейным координатам осуществляется инерциально благодаря системе датчиков счисления пути и гидроакустическому доплеровскому (либо индукционному) лагу, а также используя сетку координат, заданную по GPS/ГЛОНАСС, или используя систему подводной навигации.

Комплекс средств связи представляет собой антенну GPS/ГЛОНАСС, гидроакустическую приемную антенну с ультракороткой базой и маяк-ответчик, а также радиомодем и спутниковый модем.

Указанные устройства могут располагаться на крышке платформы-носителя на мидельной плоскости аппарата.

Информационно-измерительный комплекс является основной информационной системой устройства. Он содержит, по меньшей мере:

- средства NDT (неразрушающего контроля),

- акустические системы,

- многолучевой эхолот,

- интерферометр,

- инструментарий фиксированного мониторинга,

- кувалду Шмидта,

- магнитный локатор арматуры,

- ультразвуковую систему для бетонных элементов,

- ультразвуковую систему определения толщины металла,

- подводную систему частичного магнитного тестирования (UWMT),

- радиографические системы (гамма- и рентген-излучений),

- системы вибродинамического исследования,

- инспекционный инструментарий,

- лазерные системы,

- стереотелевизионные системы,

- гидроакустические системы,

- фото-, видеосистемы,

- пробоотборники,

- систему анализа потенциала катодной защиты.

Датчики ультразвукового обследования располагаются массивом в межколесном пространстве или на дополнительной выносной платформе на прижимном механизме для осуществления плотного контакта с поверхностью при дискретном движении устройства.

Датчики могут располагаться на дополнительном манипуляторном устройстве на поворотной основе (располагается на кронштейнах кавитационной насадки винтового движителя) для осуществления работ в труднодоступных участках при обследовании геометрически сложных участков исследуемой поверхности подводной и надводной инфраструктуры.

Чувствительность устанавливаемых на борт измерительных датчиков должна быть достаточна для обнаружения в бетонах пустот объемом порядка, как минимум 30 см3 на глубинах до 300 мм или протяженных пустотных дефектов диаметром 15-20 мм на глубинах до 500 мм.

Комплекс может дополнительно содержать систему обследования протяженных и площадных подводных участков объектов инфраструктуры, содержащую размещенное на борту подвижного объекта вычислительное устройство, выполненное с возможностью подключения к каналам передачи информации. Это делает возможным определять дистанционно с пульта оператора аномалии и дефекты, а также системно и всецело их обследовать.

Обследовательский комплекс может также дополнительно содержать контактно-очистительную систему типа циркулярной щетки и бесконтактную кавитационную гидропушку, а также средства механической обработки: циркулярную пилу, шлифовальный круг и прочие известные механические или электромеханические устройства.

Подвижная платформа оснащена двумя типами движительных устройств, обеспечивающих ее перемещение в пространстве по трем степеням свободы при движении по плоскости.

Поступательное движение платформы вперед и реверсивное движение измерительного комплекса, а также движение платформы в стороны и поворот ее вокруг вертикальной собственной оси по углу курса обеспечивают спаренные между собой по бортам движители колесного типа (либо гусеничные траки, опирающиеся, помимо ведущего колеса-звезды, на ведомые поддерживающие ролики на плавающем креплении, для обеспечения плавности хода и возможности огибания неровностей), выполненные из жесткого либо упругого с шиловидной насечкой (в зависимости от степени обрастания биотой поверхности), устойчивого к коррозии и истиранию материала. Движители участвуют в создании плавучести и являются важным элементом конструкции. Опционально имеют шипы противоскольжения для создания хорошего сцепления со скользкой, обросшей биотой поверхностью. Момент на каждый из движителей передается от герметичных двигательных блоков посредством магнитной муфты. В зависимости от показаний гироскопических датчиков гидравлические или электромеханические приводы изменяют расстояния от днища платформы до поверхности основы, по которой перемещается платформа, с целью увеличения проходимости всего устройства. Движитель винтового типа, основанный на использовании двигателя типа RIM-Driven (статор-роторный двигатель) и расположенный в центре корпуса, обеспечивает позиционирование системы по третьей степени свободы вдоль собственной вертикальной оси, по сути, прижимая ее к исследуемой поверхности, путем создания упора P, выбрасываемой струей забортной воды через сопла. Таким образом, комплекс, находясь под водой, имеет возможность перемещаться по различным неметаллическим поверхностям, в том числе вертикальным и наклонным, по различным траекториям (например, галсами), поступательно изменять направление на 90 градусов без осуществления поворота, разворачиваться на месте и преодолевать возникшие на пути препятствия. При движении не по поверхности, а в толще воды (в режиме выхода в точку обследования) аппарат может управляться, маневрируя по 6-ти координатам, применяя для этого установленные бортовые движители. На борту платформы также расположены в нижней его части информационно-измерительный комплекс и блок системы управления в прочном корпусе.

На легком безынерциальном манипуляторе также могут быть установлены:

- датчики системы неразрушающего контроля для анализа труднодоступных поверхностей (донная часть гидротехнической инфраструктуры, основания, зоны контакта с дном);

- возможно размещение механических средств для проведения технических работ (циркулярной пилы, схвата, шлифовальных кругов и прочих известных механических устройств) для выполнения сложных подводных задач без привлечения аквалангистов.

- другие типы и виды систем, в зависимости от поставленной технической задачи

На дополнительной выносной раме могут быть расположены лазерные сенсоры для предварительного обмера очищенной поверхности с целью подготовки инициирующей карты обследуемой поверхности (картосновы, то есть базы, на которую накладываются текущие съемки поверхности, позволяющие анализировать изменения исследуемой поверхности).

Системой предусматривается обеспечение функции забора проб на месте проведения обследований и функция испытаний конструкций. Данные устройства размещают на корпусе системы и/или на опциональном механическом манипуляторе.

Акустическая ультразвуковая система обследования представляет собой массив ультразвуковых подводных датчиков, расположенных независимо друг от друга на подвижном прижимном основании (лепестковым или пружинном) для обеспечения функционирования комплекса в условиях сложной геометрии обследуемой поверхности.

Подвижное упругое независимое основание датчиков обеспечивает плотный контакт защищенного, неподверженным истиранию материалом, датчиков с поверхностью, массив которых располагается в нише между разнесенной колесной базой для возможности пропуска встречных препятствий и неровностей.

Опционально предусматривается замена или дополнение измерительного бортового оборудования и размещение на платформе контактного и бесконтактного очистительного оборудования поверхности типа циркулярной щетки и кавитационной гидропушки, исполненных в едином блоке с собственным приводом и редукторной передачей для возможности обследования загрязненного (обросшего органическими отложениями, заиленного) объекта с предварительной его очисткой. Вся подводная подвижная часть робототехнического комплекса имеет нулевую (нейтральную) плавучесть путем применения синтактик-пены для ее регулирования.

Управление платформой осуществляют по вектору скорости оператором с берегового/судового блока управления, представляющего собой компьютерную систему с операционной системой реального времени с подключенными органами управления системой (трекбол, джойстик). Включение/выключение различных режимов и систем, а также задание выполнения задач в автоматическом режиме осуществляется с клавиатуры. На дисплее берегового/судового блока отображается информация о режимах комплекса, потребления энергии, состоянии блоков и информация с информационно-измерительного комплекса. Эта информация представляет собой непрерывное видеоизображение с подводных телекамер с возможностью визуализации профилограммы и ультразвуковых картин с отображением дефектов, визуализация метаданных с лазерных систем. Эта информация может в реальном времени накладываться на предзагруженную карту протяженного подводного объекта. Сохранения, архивация и документирование происходит автоматически в блоке.

Вся передача управляющих сигналов от берегового/судового блока управления и информация от подвижной платформы в дуплексном режиме осуществляется посредством тонкого оптоволокна, входящего в состав герметичного высоковольтного кабеля нейтральной плавучести функцией которого является питание подводной части комплекса от берегового блока питания. Блок питания является понижающим/повышающим трансформатором в зависимости от конкретного применения комплекса (запитывания от портовой системы/судовой системы, использование внешнего дизель-генератора и пр.). Нейтральная плавучесть кабеля обеспечивается элементами плавучести, расположенными на кабеле с периодичностью в несколько метров либо использованием соответствующих материалов оплетки.

Без использования дополнительно развертываемой системы подводной навигации, навигационная система комплекса является инерциальной. Определение координат осуществляется посредством получения информации о количестве оборотов движителей, а также по информации трехкомпонентного ферромагнитного компаса и гироскопов, расположенных в блоке управления платформы. Одно из условий точного определения позиционирования является постоянный контакт движителей колесного типа с поверхностью.

В случае размещаемых внешних источников информации: приемников сигналов ГЛОНАСС/GPS и сигналов с источников дифференциальной поправки, а также передатчиков, генерирующих сигнал для распространения в подводном пространстве на требуемых частотах, осуществляется возможность нивелирования набегающей ошибки интегрирования инерциальной системы навигации комплекса, а точное определение координат местоположения подводной подвижной платформы измерительного комплекса и съемки участков исследуемой поверхности определяется специализированной программой, установленной на судовом/береговом вычислительном комплексе.

Оператор при помощи берегового/судового блока управления осуществляет навигацию подвижной подводной платформы по интересующему участку исследуемого объекта, получая необходимую визуальную информацию на дисплее.

Предусмотрена возможность установки дополнительной емкости со втягивающе-винтовой системой в центре платформы для обеспечения фильтрации и дальнейшего протока воды через систему грубых и/или тонких фильтров.

Работа может выполняться в ручном, автоматизированном и полностью автоматическом режиме (при обследовании больших площадей).

При движении подводного робототехнического комплекса дополнительно содержащего, расположенные на нижней поверхности полой платформы нагревательные элементы, при обнаружении ледовых образований на обследуемой конструкции визуальными или акустическими и/или оптическими средствами, на нагревательные элементы, установленные перед системой кавитационной очистки, подается напряжение. Посредством вала, который через втулки соединен с амортизаторами, закрепленными посредством кронштейнов с элементами корпуса полой платформы, нагревательные элементы, выполненные в виде вращающейся цилиндрической поверхности, начинают вращаться и по мере продвижения по обследуемой конструкции будут воздействовать на имеемые ледовые образования. При этом спайки ледяного образования со стенкой, например, добычной платформы, путем нагревания ее поверхности до положительных температур в области контакта с ледяным образованием, не происходит. Далее посредством системы кавитационной очистки нагретое ледовое образование может быть удалено.

Использование предлагаемой системы позволяет не только определить местонахождение проблемных участков подводной части инфраструктуры, включая ледовые образования, исследовать ее визуальными, лазерными, акустическими и другими средствами, но и осуществить зачистку поверхности без применения механических средств и водолазных расчетов с риском для жизни и здоровья.

Области применения изобретения: подводные части морских и речных объектов судовой, гидротехнической и нефтегазопромысловой инфраструктуры берегового и морского базирования, в том числе: корпуса судов, причальные стенки, плотины, трубопроводы, подводные части корпусов плавучих полупогружных буровых установок и погружных нефтегазодобывающих платформ и др.

Источники информации

1. Патент RU №2387570 C1, 27.04.2010.

2. Патент US №3559607.

3. Заявка FR №2046690.

4. Подводная техника морских нефтепромыслов. - Л.: Судостроение, 1980, с. 116-118.

5. Патент на полезную модель RU №102350, 27.02.2011.

6. Патент RU №2446983 C2, 10.04.2012.

7. ecahytec.sales@ecagroup.com-Web.

Подводный робототехнический комплекс, содержащий носитель оборудования, движительно-рулевую систему, систему энергообеспечения, навигационную систему, систему средств обнаружения, систему средств связи, балластно-уравнительную систему, вычислительную бортовую систему, судовой/береговой блок управления, информационно-измерительную систему, блок системы управления и опциональный механический манипулятор, систему кавитационной очистки посредством струи высокого давления кавитационных пузырьков, направленной на корпус для удаления биологических наростов, при этом носитель оборудования выполнен в виде полой платформы, движительно-рулевая система содержит по меньшей мере один движитель, закрепленный на платформе, система энергообеспечения представляет собой распределительное устройство, расположенное в полости платформы и подключенное с одной стороны к сети электрических проводников, а с другой стороны к питающему электрическому кабелю, балластно-уравнительная система представляет собой набор конструктивных элементов, участвующих в создании плавучести аппарата, близкой к нулевой, вычислительная бортовая система расположена в полости платформы и представляет собой первый промышленный компьютер с установленной операционной системой, обеспечивающей управление всеми системами, входящими в комплекс, а также сбор, сохранение и передачу на внешний пульт управления собранной информации, судовой/береговой блок управления представляет собой второй промышленный компьютер, коммутируемый с подводной частью комплекса посредством энергоинформационного подводного герметичного кабеля, состоящего из информационно-управляющего оптоволокна и силового кабеля, система средств обнаружения аппарата представляет собой совокупность маяков и маяков-ответчиков, установленных на элементах комплекса, навигационная система размещена в полости платформы и представляет собой набор средств для осуществления навигации и позиционирования аппарата, отличающийся тем, что подводный робототехнический комплекс дополнительно содержит расположенные на нижней поверхности полой платформы нагревательные элементы, установленные перед системой кавитационной очистки и выполненные в виде вращающейся цилиндрической поверхности.



 

Похожие патенты:

Изобретение относится к области кораблестроения и касается конструкции подводной лодки и ее эксплуатации в ледовых условиях. Предложена подводная лодка, которая имеет направленное вверх буровое устройство (12, 12′), при этом буровое устройство (12, 12′) расположено в прочном корпусе (4) подводной лодки и имеет бур (14, 14′), выдвигаемый из расположенного на верхней палубе отверстия (10) прочного корпуса (4), буровая головка (42, 42′) бура (14, 14′) образует закрывающее тело, закрывающее отверстие (10) прочного корпуса (4).

Изобретение относится к подводному судостроению, в частности к конструкции спуско-подъемных устройств для подводных транспортных средств, и может быть использовано для спуска на дно и подъёма грузов со дна моря.

Изобретение относится к области судостроения, а именно к обитаемым подводным аппаратам. Предложен многокорпусный глубоководный обитаемый аппарат, являющийся универсальной интегрированной системой, который состоит из нескольких (например, трех) корпусов, расположенных, например, в ряд, один из которых основной движущий, а остальные - взаимозаменяемые модули.

Изобретение относится к подводному кораблестроению и может быть использовано преимущественно для атомных подводных лодок. Предложен подводный авианосец, содержащий соединенные параллельно между собой модули, в том числе два двигательных модуля, всего выполнено четыре модуля, при этом третий модуль установлен между двигательными модулями, выполнен авианесущим и содержит взлетную палубу и индуктивную катушку, выполненную концентрично прочному корпусу, под ним выполнен модуль-ангар для самолетов, при этом передняя и задняя оконечности авианесущего модуля выполнены с закрывающимися отверстиями для взлета и посадки.

Изобретение относится к области судостроения, в частности к подводным судам, разрушающим ледяной покров при всплытии посредством нагружения льда снизу за счет создания силы плавучести.

Изобретение относится к транспортным средствам с винтовыми движителями. Предложено транспортное средство, содержащее корпус, головку, движитель, рулевой комплекс, при этом по периметру всего корпуса с возможностью вращения вокруг корпуса и собственной оси смонтирована пустотелая цилиндрическая винтовая рубашка с наружными напусками в виде винтовых лопастей по всей длине винтовой рубашки, изготовленная из трех или более прямоугольных полос одинаковых по ширине и по длине вогнутой или выпуклой формы относительно оси вращения винтовой рубашки, свернутых в вертикальной плоскости в продольном направлении и изогнутых по винтовым линиям в поперечном направлении на цилиндрической оправке, или винтовая рубашка может быть изготовлена из трех и более винтовых полос криволинейной формы различного порядка и степени кривизны с центрами, расположенными снаружи или внутри поперечного сечения винтовой рубашки, при этом полосы соединены между собой с образованием по периметру винтовой рубашки напусков в виде винтовых лопастей по всей длине винтовой рубашки, винтовых линий и винтовых криволинейных поверхностей в виде винтовых канавок вогнутой или выпуклой формы относительно оси вращения винтовой рубашки с центрами кривизны, расположенными снаружи или внутри поперечного сечения винтовой рубашки.

Изобретение относится к области судостроения, в частности к подводным аппаратам повышенной маневренности, и может использоваться при возведении морских нефтегазодобывающих платформ с прокладкой трубопроводов на дне моря.

Изобретение относится к транспортным средствам с винтовыми движителями. Предложено транспортное средство, содержащее корпус с двумя рядами рабочих шахт, движитель, рубку, рулевой комплекс, при этом по периметру передней части корпуса транспортного средства с возможностью вращения вокруг передней части корпуса смонтирована пустотелая коническая винтовая рубашка, изготовленная из винтовых полос криволинейной формы различного порядка и степени кривизны с центрами, расположенными снаружи или внутри поперечного сечения пустотелой конической винтовой рубашки с образованием по ее периметру многозаходной винтовой поверхности с винтовыми линиями и винтовыми канавками с углом наклона относительно оси вращения внутри или снаружи пустотелой конической винтовой рубашки, с разными размерами по ширине полос с увеличением их по длине конической винтовой рубашки от входного к выходному отверстию, свернутых в вертикальной плоскости в продольном направлении и изогнутых по винтовым линиям в поперечном направлении на оправке в виде параболоида вращения, причем по наружному периметру винтовой рубашки образованы напуски в виде винтовых лопастей по всей ее длине от входного до выходного отверстия.

Изобретение относится к области кораблестроения и касается конструкции подводных лодок. Предложена подводная боевая лодка, корпус которой сконструирован по блочно-модульной схеме.

Изобретение относится к области судостроения, а более конкретно - к техническим средствам для обеспечения технического обслуживания и ремонта подводных добычных комплексов и доставки технологического оборудования с борта надводного обеспечивающего судна на дно акватории, и может быть использовано при создании подводных аппаратов для выполнения работ на подводных добычных комплексах в арктических ледовых условиях.

Изобретение относится к области судостроения, а более конкретно - к техническим средствам для обеспечения технического обслуживания и ремонта подводных добычных комплексов и доставки технологического оборудования с борта надводного обеспечивающего судна на дно акватории, и может быть использовано при создании подводных аппаратов для выполнения работ на подводных добычных комплексах в арктических ледовых условиях.

Изобретение относится к области проведения обследования необитаемым подводным аппаратом затонувших объектов в ситуация, когда в районе работ имеется сильное течение.

Изобретение относится к технике наблюдения за подводной средой. В предложенной реактивной системе освещения подводной обстановки в качестве средства доставки используется управляемая ракета.

Изобретение относится к устройствам, предназначенным для океанографических и геологических исследований, ремонтных работ, установки и обслуживания подводного оборудования.
Изобретение относится к области измерительно-исполнительных телеуправляемых роботизированных систем. .
Изобретение относится к области роботизированных комплексов для обследования, обслуживания поверхностей гидротехнических и нефтегазопромысловых сооружений в автоматизированном и телеуправляемом режимах.

Изобретение относится к области производства подводных работ для зондирования морского дна в целях донного профилирования, прокладки трасс трубопроводов с привязкой к географическим координатам, обнаружения заиленных объектов.

Изобретение относится к гидроакустической технике и может быть использовано в составе водолазного оборудования. .
Изобретение относится к области удаленного обследования морского дна и подводных сооружений, находящихся на дне в акваториях объектов природного и техногенного происхождения, а также проведения профилактических, ремонтных, спускоподъемных, аварийно-спасательных и им подобных работ с осуществлением физического воздействия на объект.

Использование: изобретение относится к области гидроакустической техники и может быть использовано при поиске и распознавании подводных объектов в условиях ограниченной оптической видимости на основе формирования их акустического изображения. Сущность: устройство гидроакустической визуализации, содержащее размещенные в герметичном корпусе антенный блок, включающий установленные в одной плоскости перпендикулярно продольной оси герметичного корпуса излучающую и приемную многоэлементные решетки в виде взаимно перпендикулярных линеек, генератор излучаемого сигнала, соединенную с его выходом многоотводную линию задержки, многоканальный усилитель, выход которого соединен с излучающей многоэлементной решеткой, блок обработки принятого сигнала, включающий последовательно соединенные с выходом приемной антенной решетки приемный усилитель, аналого-цифровой преобразователь, формирователь характеристик направленности и блок вычисления корреляционной функции, второй вход которого подключен к выходу генератора излучаемого сигнала, а также размещенный в герметичном корпусе блок графического отображения акустического изображения, содержащий видеоконтроллер, соединенный кабельной линией связи с выходом блока обработки принятого сигнала, графический дисплей, соединенный с выходом видеоконтроллера, и пульт управления, подключенный к входу видеоконтроллера, снабжено блоком коммутаторов, включенным между многоотводной линией задержки и многоканальным усилителем, и блоком формирования линейно возрастающих времен задержки, включенным между генератором излучаемого сигнала и блоком коммутаторов, при этом управляющий вход блока коммутаторов соединен через кабельную линию связи с пультом управления блока отображения графической информации. Изобретение позволяет существенно увеличить скорость обзора пространства в режиме поиска (режим 2D) за счет облучения всего пространства обзора всего за одну посылку зондирующего сигнала. При необходимости распознавания обнаруженного подводного объекта включается режим 3D, который позволяет воспроизводить его трехмерное изображение, существенно расширяя при этом возможность распознавания. Технический результат: увеличение скорости обзора пространства в режиме поиска за счет обзора всего освещаемого пространства всего за одну посылку зондирующего сигнала. 3 ил.
Наверх