Способ эксплуатации скважин и компоновка внутрискважинного оборудования для его осуществления

Группа изобретений относится к нефтедобывающей промышленности и может быть применена для эксплуатации скважин. Способ включает добычу скважинного продукта электроцентробежным насосом (ЭЦН) и выполнение ремонтно-восстановительных работ с проведением спускоподъемных операций, промывки и шаблонирования скважины, декольматацию и ввод скважины в эксплуатацию. При нарушении герметичности эксплуатационной колонны негерметичность изолируют установкой пакера на уровне ниже интервала нарушения герметичности. Проводят обследование эксплуатационной колонны с выявлением интервала негерметичности и скреперование поверхности под пакер. На поверхности скважины выполняют монтаж внутрискважинного оборудования и по мере монтажа спускают с определенной скоростью в скважину. При этом конец силового кабеля пропускают через кабельный ввод пакера и герметично соединяют с приводом ЭЦН. К насосно-компрессорной трубе (НКТ) внутрискважинного оборудования неподвижным аксиальным соединением герметично пристыковывают пакер. На пакер навинчивают сбивной клапан, свинчивают НКТ с реперным патрубком и колонной НКТ. Колонну НКТ подгоночным патрубком на резьбе герметично закрепляют планшайбой в устье скважины и скважину вводят в рабочий режим эксплуатации постепенным увеличением частоты вращения ЭЦН под контролем параметров скважинного продукта телеметрической системой. Технический результат заключается в повышении эффективности эксплуатации скважин. 2 н. и 7 з.п. ф-лы, 1 ил.

 

Группа изобретений относится к области горного дела, в частности к нефтедобывающей промышленности, и может быть использована при эксплуатации скважин.

Известен способ эксплуатации скважины, включающий спуск на колонне насосно-компрессорных труб электроцентробежного насоса и хвостовика с перфорированной нижней частью, изоляцию потока жидкости в межтрубном пространстве пакером, установленным на хвостовике, и регулирование направления потока жидкости для распределения его через внутреннюю полость колонны насосно-компрессорных труб и межтрубное пространство. Перед спуском в скважину устанавливают обратный клапан на конце хвостовика и перфорируют колонну насосно-компрессорных труб в зоне устья скважины с образованием каналов, в 1,5-2 раза больше каналов в хвостовике. (Патент RU №2515646 C1. Способ эксплуатации скважины, оборудованной электроцентробежным насосом. - МПК: E21B 43/00, F04B 47/00. - 20.05.2014).

Известен способ эксплуатации скважины, включающий спуск в скважину колонны насосно-компрессорных труб, электроцентробежного насоса с входным модулем, электродвигателя с гидрозащитой, подачу откачиваемого продукта на устье скважины, последующую промывку внутренних полостей установки насоса от присутствия асфальтенов, парафинов, механических примесей выносимых пород. Эксплуатация скважины осуществляется в непрерывном режиме. Универсальный клапан, выполняющий функции обратного и промывочного клапанов, предварительно настраивают на определенные для данной скважины параметры давления: Pоткр - давление открытия клапана для режима промывки, Pизб - давление нагнетания промывочной жидкости. Универсальный клапан во время нефтедобычи работает как обратный. Подачу откачиваемого продукта на устье скважины осуществляют до момента повышения мощности электродвигателя, после чего электродвигатель останавливают. Агрегатом для нагнетания рабочих жидкостей при проведении промывочных работ на нефтяных и газовых скважинах нагнетают промывочную жидкость, универсальный клапан работает как промывочный. Работа клапанного устройства будет повторяться. (Патент RU №2421602 C1. Способ эксплуатации скважины. - МПК: E21B 43/00. - 20.06.2011.)

Наиболее близким аналогом заявляемого технического решения является способ эксплуатации скважины, включающий подъем внутрискважинного оборудования, промывку скважины, шаблонирование ствола, сборку и спуск подземного противопесочного оборудования с клапаном, ввод скважины в эксплуатацию, декольматацию фильтра. В процессе эксплуатации скважины осуществляют температурное воздействие на призабойную зону скважины, призабойную зону пласта и добываемый флюид путем пропускания через пористый карбид кремния напряжения в постоянном или периодическом режиме. (Патент RU №2419718 C1. Способ эксплуатации скважины. - МПК: E21B 43/24, E21B 43/08. - 02.11.2009.) Данное изобретение принято за прототип.

Известно устройство для освоения и эксплуатации скважин, содержащее компоновку, включающую пакер, глубинный насос, спущенный в скважину на насосно-компрессорных трубах, и по меньшей мере одно перепускное устройство, которое выполнено с возможностью управления гидравлическим давлением или дистанционно регулируемым электрическим сигналом, и/или по меньшей мере один посадочный элемент с глухой пробкой. Перепускное устройство и/или посадочный элемент с глухой пробкой установлен между пакером и глубинным насосом. (Патент RU №91371 U1. Устройство для освоения и эксплуатации скважин. - МПК: E21B 43/00. - 10.02.2010.) Данное устройства принято за прототип.

Недостатком известных технических решений является недостаточная надежность эксплуатации нефтедобывающих скважин, в том числе из-за прихвата пакера с колонной насосно-компрессорных труб песчано-гравийным осадком при извлечении внутрискважинного оборудования из эксплуатационной колонны скважины.

Основной задачей, на решение которой направлено заявляемое изобретение, является повышение надежности эксплуатации скважин и сокращение сроков восстановления скважин.

Техническим результатом является повышение надежности эксплуатации и сокращение сроков восстановления скважин.

Указанный технический результат достигается тем, что в известном способе эксплуатации скважин, включающем добычу скважинного продукта электроцентробежным насосом и выполнение ремонтно-восстановительных работ с проведением спускоподъемных операций, промывки и шаблонирования скважины, монтаж внутрискважинного оборудования из герметично свинченных насосно-компрессорными трубами электроцентробежного насоса и пакера, и колонну насосно-компрессорных труб, декольматацию и ввод скважины в эксплуатацию, согласно предложенному техническому решению,

при нарушении герметичности эксплуатационной колонны, негерметичность изолируют от потока скважинного продукта установкой пакера на уровне, ниже интервала нарушения герметичности, для чего проводят промывку скважины, из последней извлекают внутрискважинное оборудование, проводят шаблонирование эксплуатационной колонны, обследование с выявлением интервала негерметичности и скреперование интервала внутренней поверхности под пакер, затем на поверхности скважины осуществляют монтаж внутрискважинного оборудования, перед чем конец силового кабеля пропускают через кабельный ввод пакера и герметично соединяют с частотно-регулируемым приводом электроцентробежного насоса и по мере монтажа в эксплуатационную колонну с определенной скоростью спускают электроцентробежный насос, оснащенный блоком датчиков телеметрической системы контроля параметров скважинного продукта и входным модулем, соединенный с силовым кабелем, герметично свинчиваемый насосно-компрессорными трубами с запорно-промывочным и сбивным клапанами, к последнему насосно-компрессорной трубой и неподвижным аксиальным соединением герметично пристыковывают пакер с якорным устройством, в кабельном вводе которого с натяжением герметизируют силовой кабель, сверху пакер герметично свинчивают со вторым сбивным клапаном, который свинчивают насосно-компрессорной трубой с муфтой реперного патрубка, последний муфтой свинчивают с колонной насосно-компрессорных труб, к концу которой муфтой привинчивают подгоночный патрубок, и спуск продолжают до достижения пакером интервала разобщения межтрубного пространства с фиксированием глубины посадки пакера, нивелируемой репером, и веса внутрискважинного оборудования с помощью динамометра, затем при необходимости замены подгоночного патрубка из-за длины вылета из устья скважины с учетом относительного удлинения колонны насосно-компрессорных труб под воздействием собственного веса колонну насосно-компрессорных труб с внутрискважинным оборудованием поднимают на высоту, равную длине установленного подгоночного патрубка, который заменяют на патрубок соответствующей длины, и вновь спускают в скважину, затем якорным устройством пакер закрепляют в эксплуатационной колонне и изолируют негерметичность натяжением колонны насосно-компрессорных труб до определенной нагрузки на пакер с помощью динамометра, с которой колонну насосно-компрессорных труб подгоночным патрубком герметично соединяют с планшайбой и закрепляют на фланце эксплуатационной колонны в устье скважины, после чего скважину вводят в рабочий режим эксплуатации постепенным увеличением частоты вращения частотно-регулируемого привода электроцентробежного насоса под контролем параметров скважинного продукта телеметрической системой;

перед подъемом из скважины внутрискважинного оборудования сначала промывают надпакерное межтрубное пространство от песчано-гравийного осадка, для чего металлическим стержнем из устья скважины разрушают надпакерный сбивной клапан и по колонне насосно-компрессорных труб через полость сбивного клапана под давлением подают промывочную жидкость в надпакерное межтрубное пространство и удаляют жидкую песчано-гравийную смесь через устье скважины, затем металлическим стержнем разрушают сбивной клапан ниже пакера и через полости обоих сбивных клапанов выравнивают давление жидкости в межтрубных пространствах выше и ниже пакера, после чего за подгоночный патрубок колонной насосно-компрессорных труб из скважины извлекают внутрискважинное оборудование;

промывку центробежного насоса и декольматацию входного модуля от асфальтенов, парафинов и примесей выносных пород выполняют промывочной жидкостью, закачиваемой из устья скважины по насосно-компрессорным трубам, под давлением на запорно-промывочный клапан промывают электроцентробежный насос и входной модуль с выходом в забойную полость и пласт скважины при выключенном электроцентробежном насосе.

Указанный технический результат достигается тем, что в известной компоновке внутрискважинного оборудования, содержащей пакер, погружное внутрискважинное оборудование, включающее герметично свинченные насосно-компрессорными трубами электроцентробежный насос и сбивной клапан с возможностью сообщения полости насосно-компрессорных труб с подпакерным межтрубным пространством, и колонну насосно-компрессорных труб, согласно предложенному техническому решению,

погружное внутрискважинное оборудование включает последовательно свинчиваемые насосно-компрессорными трубами электроцентробежный насос, оснащенный входным модулем и соединенный силовым кабелем со станцией управления скважиной, запорно-промывочный и сбивной клапаны, присоединяемые насосно-компрессорной трубой и неподвижным аксиальным соединением к пакеру с кабельным вводом, в последнем герметично размещен силовой кабель, а над пакером установлен второй сбивной клапан с возможностью сообщения полости колонны насосно-компрессорных труб с надпакерным межтрубным пространством, который свинчен насосно-компрессорной трубой с муфтой реперного патрубка, последний муфтой свинчен с колонной насосно-компрессорных труб, на свободном конце которой посредством муфты герметично привинчен подгоночный патрубок, последним осуществляется нагрузка на пакер, с которой колонна насосно-компрессорных труб посредством подгоночного патрубка герметично на резьбе соединена с планшайбой и последней закрепляется на фланце эксплуатационной колонны в устье скважины;

электроцентробежный насос выполнен с частотно-регулируемым приводом;

компоновка оснащена блоком датчиков телеметрической системой контроля параметров скважинного продукта;

силовой кабель выполнен плоским с бронезащитным покровом;

силовой кабель при монтаже герметизируется в кабельном вводе пакера вместе с бронезащитным покровом;

силовой кабель дополнительно герметизируется в кабельном вводе пакера крышкой с дугообразным профилем.

Проведенный заявителем анализ уровня техники позволил установить, что аналоги, характеризующиеся совокупностями признаков, тождественными всем признакам заявленных способа эксплуатации скважин и компоновки внутрискважинного оборудования для осуществления способа, отсутствуют. Следовательно, заявляемые технические решения соответствуют условию патентоспособности «новизна».

Результаты поиска известных решений в данной области техники с целью выявления признаков, совпадающих с отличительными от прототипов признаками заявляемых технических решений, показали, что они не следуют явным образом из уровня техники. Из определенного заявителем уровня техники не выявлена известность влияния предусматриваемых существенными признаками заявляемых технических решений преобразований на достижение указанного технического результата. Следовательно, заявляемые технические решения соответствуют условию патентоспособности «изобретательский уровень».

Заявленные технические решения реализованы на скважинах нефтедобывающей отрасли. Следовательно, заявляемые технические решения соответствуют условию патентоспособности «промышленная применимость».

В настоящей заявке на выдачу патента соблюдено требование единства изобретения, поскольку способ эксплуатации скважин и компоновка внутрискважинного оборудования для осуществления способа решают одну и ту же задачу - повышение надежности эксплуатации нефтедобывающей скважины.

На фиг. 1 схематично показана компоновка скважинного оборудования для осуществления предложенного способа эксплуатации скважин.

Сущность предложенного способа эксплуатации скважины заключается в следующем.

Эксплуатация скважин включает добычу скважинного продукта электроцентробежным насосом с частотно-регулируемым приводом, оснащенным блоком датчиков телеметрической системы контроля параметров скважинного продукта, соединенным силовым кабелем со станцией управления и входным модулем, и выполнение ремонтно-восстановительных работ с проведением спускоподъемных операций внутрискважинного оборудования колонной насосно-компрессорных труб, промывки и шаблонирования скважины, декольматацию входного модуля и ввод скважины в рабочий режим эксплуатации постепенным увеличением частоты вращения частотно-регулируемого привода электроцентробежного насоса под контролем параметров скважинного продукта (давления, температуры, влажности и т.п.) телеметрической системой.

При нарушении герметичности эксплуатационной колонны скважины негерметичность изолируют от потока скважинного продукта установкой пакера на уровне, ниже интервала нарушения герметичности, перед чем проводят промывку скважины, из которой извлекают внутрискважинное оборудование, в эксплуатационной колонне проводят шаблонирование, обследование с выявлением интервала негерметичности и скреперование интервала внутренней поверхности под пакер. Затем на поверхности скважины осуществляют монтаж внутрискважинного оборудования, перед которым конец силового кабеля пропускают через кабельный ввод пакера и герметично соединяют с частотно-регулируемым приводом электроцентробежного насоса. К концу насосно-компрессорной трубы погружного внутрискважинного оборудования неподвижным аксиальным соединением герметично пристыковывают пакер с якорным устройством, в кабельном вводе которого герметизируют силовой кабель и по мере монтажа спускают в эксплуатационную колонну с определенной скоростью. Пакер сверху герметично свинчивают с другим сбивным клапаном, который свинчивают насосно-компрессорной трубой со специальной муфтой реперного патрубка, последний другой специальной муфтой свинчивают с колонной свинченных муфтами насосно-компрессорных труб, к концу последней посредством муфты привинчивают подгоночный патрубок и спуск продолжают до достижения пакером интервала разобщения межтрубного пространства с фиксированием глубины посадки пакера, нивелируемой репером, и веса внутрискважинного оборудования с помощью динамометра. При необходимости замены подгоночного патрубка из-за длины вылета из устья скважины с учетом относительного удлинения колонны насосно-компрессорных труб под воздействием собственного веса колонну насосно-компрессорных труб с внутрискважинным оборудованием поднимают на высоту, равную длине установленного подгоночного патрубка, который заменяют на патрубок соответствующей длины, и вновь спускают в скважину. Затем якорным устройством пакер закрепляют в эксплуатационной колонне и изолируют негерметичность натяжением колонны насосно-компрессорных труб до определенной нагрузки на пакер, с которой колонну насосно-компрессорных труб подгоночным патрубком герметично свинчивают с планшайбой в устье скважины. После этого скважину вводят в рабочий режим эксплуатации постепенным увеличением частоты вращения частотно-регулируемого привода электроцентробежного насоса под контролем параметров скважинного продукта телеметрической системой.

Перед подъемом из скважины внутрискважинного оборудования сначала промывают надпакерное межтрубное пространство от песчано-гравийного осадка, для чего металлическим стержнем из устья скважины разрушают надпакерный сбивной клапан и по колонне насосно-компрессорных труб через полость сбивного клапана под давлением подают промывочную жидкость в надпакерное межтрубное пространство и удаляют жидкую песчано-гравийную смесь через устье скважины, затем металлическим стержнем разрушают сбивной клапан ниже пакера и через полости обоих сбивных клапанов выравнивают давление жидкости в межтрубных пространствах выше и ниже пакера, после чего за подгоночный патрубок колонной насосно-компрессорных труб извлекают из скважины внутрискважинное оборудование.

Промывку центробежного насоса и декольматацию входного модуля от асфальтенов, парафинов и примесей выносных пород выполняют промывочной жидкостью, закачиваемой из устья скважины по насосно-компрессорным трубам, под давлением на запорно-промывочный клапан промывают электроцентробежный насос и входной модуль с выходом в забойную полость и пласт скважины при выключенном электроцентробежном насосе.

Компоновка внутрискважинного оборудования для эксплуатации скважин вышеуказанным способом содержит внутрискважинное оборудование, смонтированное на колонне 1 насосно-компрессорных труб, и оснащена телеметрической системой контроля параметров добываемого скважинного продукта. Внутрискважинное оборудование включает последовательно свинчиваемые на поверхности скважины насосно-компрессорными трубами 2 электроцентробежный насос 3 с частотно-регулируемым электроприводом 4, оснащенный входным модулем 5 и блоком датчиков 6 телеметрической системы, запорно-промывочный клапан 7 и сбивной клапан 8, с возможностью сообщения полости насосно-компрессорных труб 2 с подпакерным межтрубным пространством 9, которым внутрискважинное оборудование присоединяется насосно-компрессорной трубой 2 посредством неподвижного аксиального соединения 10 к пакеру 11, выполненному с якорным устройством 12 и кабельным вводом, в последнем герметично размещается силовой кабель 13, соединяющий электропривод 4 центробежного насоса 3 со станцией управления 14 скважиной. Силовой кабель 13 выполнен плоским с бронезащитным покровом и при монтаже в кабельном вводе пакера 11 герметизируется вместе с бронезащитным покровом. Силовой кабель 13 дополнительно герметизируется в кабельном вводе пакера 11 крышкой с дугообразным профилем (не показана). К пакеру 11 привинчивается колонна 1 насосно-компрессорных труб, которая включает второй сбивной клапан 8 с возможностью сообщения полости колонны 1 насосно-компрессорных труб с надпакерным межтрубным пространством 15, соединяемый насосно-компрессорной трубой 2 с муфтами 16 реперного патрубка 17. На свободном конце колонны 1 насосно-компрессорных труб муфтой 18 герметично присоединяется подгоночный патрубок 19, герметично закрепляемый резьбой в планшайбе 20, которым осуществляется нагрузка на пакер 11, герметично устанавливаемой на фланце 21 эксплуатационной колонны 22 скважины.

Пример осуществления способа эксплуатации скважины компоновкой внутрискважинного оборудования

Эксплуатация скважин включает добычу скважинного продукта и выполнение ремонтно-восстановительных работ с проведением спускоподъемных операций внутрискважинного оборудования, промывки и шаблонирования скважины, декольматацию и ввод скважины в рабочий режим эксплуатации.

Для добычи скважинного продукта из пласта П скважины в эксплуатационной колонне 22 диаметром 5″ (127 мм) с толщиной стенки 8 мм проводили промывку и шаблонирование шаблоном с диаметром 124 мм и длиной не менее 25 м от устья скважины до места установки электроцентробежного насоса 3 на глубине 2300 м, обследование на предмет выявления негерметичности и скреперование интервала ±20 м на внутренней поверхности под пакер 11 на глубине 1240 м. В эксплуатационную колонну 22 скважины спускали по мере монтажа компоновку внутрискважинного оборудования, состоящую из погружного внутрискважинного оборудования, включающего в себя свинчиваемые насосно-компрессорными трубами длиной 10 м электроцентробежный насос 3 с входным модулем 5 и частотно-регулируемым приводом 4, оснащенный блоком датчиков 6 телеметрической системы контроля параметров скважинного продукта (давления, температуры, влажности и т.п.), силовой кабель 13, соединяющий частотно-регулируемый привод 4 со станцией управления 14, запорно-промывочный клапан 7 и сбивной клапан 8, соединенный с пакером 11 насосно-компрессорной трубой длиной 20 м, а также колонны 1 насосно-компрессорных труб длиной 1200 м, последняя содержит второй сбивной клапан 8, соединенный насосно-компрессорной трубой 2 длиной 20 м с реперным патрубком 17 длиной 2 м, ограниченным с обеих концов специальными муфтами 16. На конце колонны 1 насосно-компрессорных труб муфтой 18 герметично привинчивали подгоночный патрубок 19. Перед монтажом компоновки внутрискважинного оборудования конец силового кабеля 13 длиной 40 м пропускали через кабельный ввод пакера 11 и герметично соединяли с частотно-регулируемым приводом 4 электроцентробежного насоса 3, затем по мере монтажа компоновки внутрискважинного оборудования ее продолжили спускать в эксплуатационную колонну 22 с скоростью 0,1 м/с. К концу насосно-компрессорной трубы 2 погружного внутрискважинного оборудования неподвижным аксиальным соединением 10 с помощью накидной гайки герметично пристыковали пакер 11 с якорным устройством 12, а в кабельном вводе загерметизировали силовой кабель 13. Пакер 11 сверху герметично свинтили со вторым сбивным клапаном 8, который свинтили насосно-компрессорной трубой 2 длиной 20 м со специальной муфтой 16 реперного патрубка 17, последний другой специальной муфтой 16 свинтили с колонной 1 свинченных муфтами 18 насосно-компрессорных труб, к концу последней посредством муфты 18 привинтили подгоночный патрубок 19, и спуск продолжили до достижения пакером 11 интервала разобщения межтрубного пространства с фиксированием глубины посадки пакера 11, равной 1240 м, нивелируемой репером на реперном патрубке 17, и веса внутрискважинного оборудования с помощью динамометра, установленного на лебедке. Из-за несоответствия длины вылета подгоночного патрубка 19 из устья скважины с учетом относительного удлинения колонны 1 насосно-компрессорных труб под воздействием собственного веса колонну 1 насосно-компрессорных труб с внутрискважинным оборудованием подняли на высоту, равную длине ранее установленного подгоночного патрубка 19, который заменили на другой патрубок соответствующей длины, и вновь спустили в скважину. Затем якорным устройством 12 пакер 11 соответствующим образом закрепили в эксплуатационной колонне и натяжением колонны 1 насосно-компрессорных труб до нагрузки 6 т на пакер 11, с которой колонну 1 насосно-компрессорных труб подгоночным патрубком 19 герметично закрепили планшайбой 20 на фланце 21 устья скважины. После этого скважину вводили в рабочий режим эксплуатации, начиная с минимальной частоты вращения частотно-регулируемого привода электроцентробежного насоса 40 Гц с постепенным линейным увеличением частоты вращения до 47 Гц в течение 2 суток под контролем параметров скважинного продукта телеметрической системой (давления, температуры, влажности и т.п.).

При нарушении герметичности эксплуатационной колонны 22 скважины негерметичность 23 изолировали от потока скважинного продукта установкой пакера 11 на уровне ниже интервала нарушения герметичности 23. Перед этим проводили промывку скважины, затем на станции управления 14 отключили электропитание электроцентробежного насоса 3 и внутрискважинное оборудование извлекли из скважины. Перед подъемом из скважины внутрискважинного оборудования сначала промыли надпакерное межтрубное пространство 15 от песчано-гравийного осадка, затем металлическим стержнем диаметром 22 мм и длиной 1,5 м из устья скважины разрушают сбивной клапан 8 выше пакера 11 и по колонне 1 насосно-компрессорных труб через полость сбивного клапана 8 под давлением подают промывочную жидкость в надпакерное межтрубное пространство 15 и удаляют жидкую песчано-гравийную смесь через устье скважины, затем этим же металлическим стержнем разрушают сбивной клапан 8 ниже пакера 11, через полости обоих пакеров выравнивают давление жидкости в межтрубных пространствах выше и ниже пакера 11, после чего колонной 1 насосно-компрессорных труб из скважины извлекают внутрискважинное оборудование. Затем в эксплуатационной колонне 22 провели шаблонирование, обследование с выявлением интервала негерметичности в пределах 896-897 м от устья скважины и провели скреперование интервала внутренней поверхности под пакер 11 на глубине 1240 м с разбегом ±20 м. После чего осуществили спуск внутрискважинного оборудования и закрепили пакер 11 в эксплуатационной колонне 22 якорным устройством 12 на уровне ниже интервала нарушения герметичности 23, затем негерметичность изолировали натяжением колонны 1 насосно-компрессорных труб до нагрузки в 6 т на пакер 11, с которой колонну 1 насосно-компрессорных труб подгоночным патрубком 19 герметично закрепили планшайбой 20 в устье скважины, и скважину ввели в эксплуатацию вышеописанным способом.

Промывку электроцентробежного насоса 3 и декольматацию входного модуля 5 от асфальтенов, парафинов и примесей выносных пород выполняли промывочной жидкостью, закачиваемой из устья скважины по колонне 1 насосно-компрессорных труб, под давлением на запорно-промывочный клапан 7 промывают электроцентробежный насос 3 и входной модуль 5 с выходом в забой скважины при выключенном электроцентробежном насосе.

Промывку надпакерного межтрубного пространства 15 от песчано-гравийного осадка выполняют промывочной жидкостью, закачиваемой под давлением по колонне 1 насосно-компрессорных труб через полость предварительно разрушенного сбивного клапана 8 в надпакерное межтрубное пространство 15, и удаляют жидкую песчано-гравийную смесь через устье на поверхность скважины.

Использование предлагаемого способа эксплуатации скважин компоновкой внутрискважинного оборудования позволит сократить сроки восстановления скважин и повысить надежность эксплуатации скважин.

1. Способ эксплуатации скважин, включающий добычу скважинного продукта электроцентробежным насосом и выполнение ремонтно-восстановительных работ с проведением спускоподъемных операций, промывки и шаблонирования скважины, монтаж внутрискважинного оборудования из герметично свинченных насосно-компрессорными трубами электроцентробежного насоса и пакера, и колонну насосно-компрессорных труб, декольматацию и ввод скважины в эксплуатацию, отличающийся тем, что при нарушении герметичности эксплуатационной колонны негерметичность изолируют от потока скважинного продукта установкой пакера на уровне ниже интервала нарушения герметичности, для чего проводят промывку скважины, из последней извлекают внутрискважинное оборудование, проводят шаблонирование эксплуатационной колонны, обследование с выявлением интервала негерметичности и скреперование интервала внутренней поверхности под пакер, затем на поверхности скважины осуществляют монтаж внутрискважинного оборудования, перед чем конец силового кабеля пропускают через кабельный ввод пакера и герметично соединяют с частотно-регулируемым приводом электроцентробежного насоса и по мере монтажа в эксплуатационную колонну с определенной скоростью спускают электроцентробежный насос, оснащенный блоком датчиков телеметрической системы контроля параметров скважинного продукта и входным модулем, соединенный с силовым кабелем, герметично свинчиваемый насосно-компрессорными трубами с запорно-промывочным и сбивным клапанами, к последнему насосно-компрессорной трубой и неподвижным аксиальным соединением герметично пристыковывают пакер с якорным устройством, в кабельном вводе которого с натяжением герметизируют силовой кабель, сверху пакер герметично свинчивают со вторым сбивным клапаном, который свинчивают насосно-компрессорной трубой с муфтой реперного патрубка, последний муфтой свинчивают с колонной насосно-компрессорных труб, к концу которой муфтой привинчивают подгоночный патрубок, и спуск продолжают до достижения пакером интервала разобщения межтрубного пространства с фиксированием глубины посадки пакера, нивелируемой репером, и веса внутрискважинного оборудования с помощью динамометра, затем при необходимости замены подгоночного патрубка из-за длины вылета из устья скважины с учетом относительного удлинения колонны насосно-компрессорных труб под воздействием собственного веса колонну насосно-компрессорных труб с внутрискважинным оборудованием поднимают на высоту, равную длине установленного подгоночного патрубка, который заменяют на патрубок соответствующей длины и вновь спускают в скважину, затем якорным устройством пакер закрепляют в эксплуатационной колонне и изолируют негерметичность натяжением колонны насосно-компрессорных труб до определенной нагрузки на пакер с помощью динамометра, с которой колонну насосно-компрессорных труб подгоночным патрубком герметично соединяют с планшайбой и закрепляют на фланце эксплуатационной колонны в устье скважины, после чего скважину вводят в рабочий режим эксплуатации постепенным увеличением частоты вращения частотно-регулируемого привода электроцентробежного насоса под контролем параметров скважинного продукта телеметрической системой.

2. Способ эксплуатации скважины по п.1, отличающийся тем, что перед подъемом из скважины внутрискважинного оборудования сначала промывают надпакерное межтрубное пространство от песчано-гравийного осадка, для чего металлическим стержнем из устья скважины разрушают надпакерный сбивной клапан и по колонне насосно-компрессорных труб через полость сбивного клапана под давлением подают промывочную жидкость в надпакерное межтрубное пространство и удаляют жидкую песчано-гравийную смесь через устье скважины, затем металлическим стержнем разрушают сбивной клапан ниже пакера и через полости обоих сбивных клапанов выравнивают давление жидкости в межтрубных пространствах выше и ниже пакера, после чего за подгоночный патрубок колонной насосно-компрессорных труб из скважины извлекают внутрискважинное оборудование.

3. Способ эксплуатации скважины по п.1, отличающийся тем, что промывку электроцентробежного насоса и декольматацию входного модуля от асфальтенов, парафинов и примесей выносных пород выполняют промывочной жидкостью, закачиваемой из устья скважины по насосно-компрессорным трубам, под давлением на запорно-промывочный клапан промывают электроцентробежный насос и входной модуль с выходом в забойную полость и пласт скважины при выключенном электроцентробежном насосе.

4. Компоновка внутрискважинного оборудования для осуществления способа эксплуатации скважины по п.1, содержащая пакер, погружное внутрискважинное оборудование, включающее герметично свинченные насосно-компрессорными трубами электроцентробежный насос и сбивной клапан с возможностью сообщения полости насосно-компрессорных труб с подпакерным межтрубным пространством, и колонну насосно-компрессорных труб, отличающаяся тем, что погружное внутрискважинное оборудование включает последовательно свинчиваемые насосно-компрессорными трубами электроцентробежный насос, оснащенный входным модулем и соединенный силовым кабелем со станцией управления скважиной, запорно-промывочный и сбивной клапаны, присоединяемые насосно-компрессорной трубой и неподвижным аксиальным соединением к пакеру с кабельным вводом, в последнем герметично размещен силовой кабель, а над пакером установлен второй сбивной клапан с возможностью сообщения полости колонны насосно-компрессорных труб с надпакерным межтрубным пространством, который свинчен насосно-компрессорной трубой с муфтой реперного патрубка, последний муфтой свинчен с колонной насосно-компрессорных труб, на свободном конце которой посредством муфты герметично привинчен подгоночный патрубок, последним осуществляется нагрузка на пакер, с которой колонна насосно-компрессорных труб посредством подгоночного патрубка герметично на резьбе соединена с планшайбой и последней закрепляется на фланце эксплуатационной колонны в устье скважины.

5. Компоновка по п.4, отличающаяся тем, что электроцентробежный насос выполнен с частотно-регулируемым приводом.

6. Компоновка по п.4, отличающаяся тем, что она оснащена блоком датчиков телеметрической системы контроля параметров скважинного продукта.

7. Компоновка по п.4, отличающаяся тем, что силовой кабель выполнен плоским с бронезащитным покровом.

8. Компоновка по п.4, отличающаяся тем, что силовой кабель при монтаже герметизируется в кабельном вводе пакера вместе с бронезащитным покровом.

9. Компоновка по п.4, отличающаяся тем, что силовой кабель дополнительно герметизируется в кабельном вводе пакера крышкой с дугообразным профилем.



 

Похожие патенты:

Изобретение относится к нефтяному машиностроению и может быть использовано в погружных центробежных высокоскоростных скважинных насосах для добычи нефти из скважин с высоким содержанием солей, свободного газа и механических примесей.

Изобретение относится к нефтедобывающему электрооборудованию. Электрооборудование включает в себя установки (2) погружных электронасосов по числу скважин (1), связанные через кабель (6), и повышающий трансформатор (3) с соответствующей наземной станцией (4) управления прямого пуска, подключенной к питающей сети.

Cистема насоса с непосредственным приводом предназначена для использования при перекачивании жидкостей из глубоких скважин. В насосе с непосредственным приводом подшипники или втулки имеют оптимальный шаг, учитывая различные эксплуатационные соображения, такие как нагрузка, путь, давление и натяжение.

Изобретение относится к насосам центробежным модульным для добычи нефти, воды и других жидкостей из скважин. Насос содержит насосные модули (1, 2) с соединительными деталями.

Изобретение относится к нефтедобывающей промышленности, а именно к оборудованию для добычи нефти с высокой концентрацией газа, и может быть использовано для поверхностной перекачки газожидкостной смеси.

Изобретение относится к нефтяной промышленности, в частности к погружным многоступенчатым центробежным насосам, предназначенным для добычи нефти в условиях, осложненных отложением солей.

Изобретение относится к области добычи углеводородов и предназначено для перекачки жидкости погружными насосами. Входной модуль погружного насоса с герметичными соединениями состоит из корпуса, выполненного без смещения оси относительно элементов кожуха, с фланцами для соединения с насосом и погружным электродвигателем.

Группа изобретений относится насосостроению, а именно к погружному центробежному многоступенчатому насосу. Центробежный насос, включающий лопастные колеса, которые не соединены центральным валом.

Изобретение относится к погружным насосным установкам для эксплуатации скважин, в которых необходимо увеличить депрессию на пласт, не заглубляя погружную насосную установку, и/или с негерметичной эксплуатационной колонной.

Изобретение относится к области насосостроения и, прежде всего, к многоступенчатым насосам, используемым для добычи нефти из скважин и для подачи воды в продуктивный нефтеносный пласт для поддержания и повышения в нем пластового давления.

Изобретение относится к области добычи газа и, в частности, к ремонту газодобывающих скважин, из которых необходимо удалять скапливающуюся на забое жидкость - воду, газоконденсат.

Способ относится к области газодобывающей промышленности и может быть использован при разработке трудноизвлекаемых запасов газа из подземных залежей. Технический результат - повышение эффективности разработки трудноизвлекаемых запасов газа на месторождениях, залежи которых представлены неконсолидированными, заглинизированными коллекторами с высокой остаточной водонасыщенностью и низкими фильтрационно-емкостными свойствами.
Изобретение относится к области добычи природного газа и, в частности, к предупреждению гидратообразования и разрушению гидратов в системах сбора газа - газосборных шлейфах газовых и газоконденсатных месторождений Крайнего Севера.

Изобретение относится к нефтегазодобывающей промышленности, в частности к области эксплуатации и ремонта скважин и изоляции притока пластовых вод в горизонтальные скважины.

Изобретение относится к газодобывающей промышленности и может быть использована на газовом промысле для автоматического управления и регулирования технологическими процессами сбора и подготовки газа к дальнему транспорту.

Изобретение относится к нефтяной промышленности и может найти применение при эксплуатации горизонтальной скважины. Технический результат - повышение эффективности способа за счет обеспечения полной выработки запасов нефти из продуктивного пласта независимо от величины депрессии на продуктивный пласт.

Изобретение относится к нефтегазодобывающей промышленности, а именно к способам автоматического управления технологическими процессами при эксплуатации скважин нефтегазового месторождения.

Способ относится к системам автоматического контроля работы нефтегазового оборудования и позволяет своевременно обнаруживать предаварийные ситуации, связанные с отложением гидратов в газовом оборудовании.

Изобретение относится к механизированной добыче жидкости из нефтяных скважин и может быть использовано для оптимизации технологии периодической эксплуатации скважин, дебит которых меньше минимальной допустимой подачи электроцентробежного насоса.

Изобретение относится к области геофизики и может быть использовано для определения характеристик буровой скважины для проведения операции бурения. Заявлены способы и системы для сбора, получения и отображения индекса азимутальной хрупкости буровой скважины.

Изобретение относится к нефтедобыче, а именно к устройству, используемому при свабировании в насосно-компрессорной трубе, в частности в насосно-компрессорной трубе диаметром 2 дюйма. Устройство включает металлический стержень, представляющий собой насосную штангу, головку, при помощи резьбового соединения прикрепленную к нижней части металлического стержня, манжету, установленную на металлическом стержне с возможностью перемещения вдоль его оси, шплинт, установленный в металлическом стержне и головке так, чтобы предотвращать отвинчивание головки, стопор. Стопор выполнен с возможностью закрепления в предварительно заданном месте на металлическом стержне так, чтобы обеспечивать движение манжеты в предварительно заданном диапазоне. Стопор представляет собой кольцо с трапецеидальным сечением, при этом диаметр кольца в ближней к головке части соответствует диаметру головки, и в стопоре выполнен по меньшей мере один канал для текучей среды. Повышается надежность и удобство эксплуатации свабовой мандрели. 3 з.п. ф-лы, 2 ил.

Группа изобретений относится к нефтедобывающей промышленности и может быть применена для эксплуатации скважин. Способ включает добычу скважинного продукта электроцентробежным насосом и выполнение ремонтно-восстановительных работ с проведением спускоподъемных операций, промывки и шаблонирования скважины, декольматацию и ввод скважины в эксплуатацию. При нарушении герметичности эксплуатационной колонны негерметичность изолируют установкой пакера на уровне ниже интервала нарушения герметичности. Проводят обследование эксплуатационной колонны с выявлением интервала негерметичности и скреперование поверхности под пакер. На поверхности скважины выполняют монтаж внутрискважинного оборудования и по мере монтажа спускают с определенной скоростью в скважину. При этом конец силового кабеля пропускают через кабельный ввод пакера и герметично соединяют с приводом ЭЦН. К насосно-компрессорной трубе внутрискважинного оборудования неподвижным аксиальным соединением герметично пристыковывают пакер. На пакер навинчивают сбивной клапан, свинчивают НКТ с реперным патрубком и колонной НКТ. Колонну НКТ подгоночным патрубком на резьбе герметично закрепляют планшайбой в устье скважины и скважину вводят в рабочий режим эксплуатации постепенным увеличением частоты вращения ЭЦН под контролем параметров скважинного продукта телеметрической системой. Технический результат заключается в повышении эффективности эксплуатации скважин. 2 н. и 7 з.п. ф-лы, 1 ил.

Наверх