Радиатор отопления

Изобретение относится к теплотехнике и может применяться в теплообменных устройствах, действующих по принципу «тепловой трубы» и используемых для отопления помещений. Радиатор отопления состоит из пустотелого корпуса, образованного участком трубы, заглушенной с одной стороны и представляющей камеру испарения. С камерой испарения соединяется камера конденсации, образованная размещенной над ней профилированной оболочкой. В оболочке грани профиля размещают горизонтально. Камера испарения содержит внутри себя коаксиально размещенную трубу, верхний конец которой выступает за ее пределы, а нижний установлен с зазором относительно ее дна, на верхнем конце трубы размещен раструб, при этом раструб установлен под гранями профиля. Площадь входного отверстия раструба больше площади наименьшего поперечного сечения камеры конденсации. Технический результат - повышение эффективности радиатора. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к теплотехнике и может применяться в теплообменных устройствах, действующих по принципу «тепловой трубы» и используемых для отопления помещений.

Известен радиатор отопления, содержащий тепловую трубу, один конец которой заглушен снизу и является зоной испарения, а другой заглушен сверху, является зоной конденсации (SU 319831, 02.11.1971). Недостатком данного радиатора является то, что в нем используется нагрев рабочего тела только теплоносителем, размещенным внутри него (например, электрическим), что затрудняет использование его для нагрева рабочего тела низкотемпературным теплоносителем, так как площадь теплоотдачи теплоносителя мала.

Наиболее близким по своей технической сущности является радиатор, содержащий тепловую трубу, один конец которой заглушен снизу и является зоной испарения, а другой заглушен сверху, является зоной конденсации, выполненной в виде камеры из профилированных листов металла (RU 2476802, 10.02.2012).

Недостатком данного устройства является то, что рабочее тело, используемое в нем для испарения, после конденсации стекает в зону испарения по стенкам трубы, осуществляющей его конвекционный нагрев. Происходит снижение температуры рабочего тела в зоне его испарения, и коэффициент полезного действия процесса снижается.

Задачей, решаемой настоящим изобретением, является повышение эффективности радиатора.

Настоящая задача решается тем, что в радиаторе отопления, содержащем составной пустотелый корпус, внутри которого размещены соединяющиеся друг с другом камеры испарения и конденсации, первая из которых образована участком трубы, заглушенным с одной стороны, а вторая - замкнутой оболочкой, оболочка камеры конденсации выполнена профилированной, грани профиля размещены на оболочке горизонтально, камера испарения содержит внутри себя коаксиально размещенную трубу, верхний конец которой выступает за ее пределы, а нижний установлен с зазором относительно ее дна, на верхнем конце трубы выполнен раструб, при этом края раструба выступают за внутренние грани профиля оболочки. Площадь входного отверстия раструба больше площади наименьшего поперечного сечения камеры конденсации.

Технической сущностью настоящего изобретения является повышение коэффициента полезного действия радиатора за счет исключения поступления конденсата в зону испарения и увеличения площади теплоотдачи при тех же габаритах, что и у прототипа.

На фиг. 1 дана общая схема радиатора.

Радиатор состоит из составного пустотелого корпуса 1, содержащего камеру испарения 2 и камеру конденсации 3. Камера испарения 2 образована участком трубы 4, заглушенным с одной стороны, и содержит в себе коаксиально размещенную трубу 5, нижний конец 6 которой установлен с зазором относительно дна камеры испарения 2, а верхний 7 - выступает за ее пределы. Камера конденсации 3 образована замкнутой профилированной оболочкой 8 с гранями 9, выступающими во внутрь ее и размещенными горизонтально. На верхнем конце 7 трубы 5 размещен раструб 10, имеющий площадь поперечного сечения больше площади наименьшего сечения камеры конденсации 3 (сечения по выступающим вовнутрь граням профилированной оболочки). Раструб 10 установлен в камере испарения 2 под выступающими во внутрь ее гранями 9 оболочки 8. Корпус радиатора монтируется в трубе 11 с теплоносителем 12, а вовнутрь его залито рабочее тело 13 с низкой температурой испарения.

Радиатор монтируется корпусом 1, содержащим камеру испарения 2, в трубу 11 таким образом, чтобы он омывался теплоносителем 12. Теплоноситель 12 нагревает рабочее тело 13, находящееся в камере испарения 2. Рабочее тело испаряется, и пар поступает в камеру конденсации 3. В камере конденсации 3 пар рабочего тела, конденсируясь, отдает свое тепло стенкам камер (при этом в момент фазового перехода происходит дополнительное выделение энергии).

Конденсат истекает с граней 9, попадает в раструб 10 и по коаксиально размещенной в камере испарения трубе 5 поступает в нижние слои рабочего тела 13, не понижая температуру его верхнего слоя и не нарушая его восходящее направленное перемещение, вызванное внешней конвекцией. Такая циркуляция повышает эффективность испарения рабочего тела 13, а следовательно, и самого радиатора.

1. Радиатор отопления, содержащий составной пустотелый корпус, внутри которого размещены соединяющиеся друг с другом камеры испарения и конденсации, первая из которых образована участком трубы, заглушенным с одной стороны, а вторая - замкнутой оболочкой, отличающийся тем, что оболочка камеры конденсации выполнена профилированной, грани профиля размещены на оболочке горизонтально, камера испарения содержит внутри себя коаксиально размещенную трубу, верхний конец которой выступает за ее пределы, а нижний установлен с зазором относительно ее дна, на верхнем конце трубы выполнен раструб, при этом края раструба выступают за внутренние грани профиля оболочки.

2. Радиатор отопления по п. 1, отличающийся тем, что площадь входного отверстия раструба больше площади наименьшего поперечного сечения камеры конденсации.



 

Похожие патенты:

Изобретение относится к двум вариантам выполнения гравитационной тепловой трубы, предназначенной для замораживания и предотвращения оттаивания грунта под сооружениями, возводимыми в зоне вечной мерзлоты.

Изобретение относится к области энергетического машиностроения и может быть использовано, в частности, в качестве двигателя летательного аппарата. Двигатель внешнего сгорания содержит герметичный корпус в форме усеченного конуса, частично заполненный теплоносителем.

Изобретение относится к теплотехнике и может быть использовано в теплообменниках с тепловыми трубами. Теплообменник с тепловыми трубами для передачи тепла от горячего газа холодному газу содержит корпус с первой камерой для подачи через нее горячего газа, второй камерой для подачи через нее холодного газа и множеством тепловых труб, простирающихся между первой камерой и второй камерой.

Теплопередающая панель космического аппарата относится к космической технике и может быть использована в системах терморегулирования космических аппаратов (КА) при обеспечении теплового режима оборудования, установленного на искусственных спутниках Земли, межпланетных станциях, спускаемых аппаратах и других космических объектах.

Изобретение относится к устройствам для отвода тепла от компонентов радиоэлектроники с высокой мощностью тепловыделений, в частности к тепловым трубам, и может использоваться в различных областях электронной промышленности.

Изобретение относится к электротехнике, к динамоэлектрическим машинам с системой охлаждения. Технический результат состоит в улучшении отвода тепла без усложнения конструкции.

Изобретение относится к области приборостроения и может быть использовано при регулировании расхода и температуры текучей среды. Материалы, компоненты и способы согласно настоящему изобретению направлены на изготовление и использование макромасштабных каналов, содержащих текучую среду, температура и расход которой регулируется с помощью геометрических размеров макромасштабного канала и конфигурации по крайней мере части стенки макромасштабного канала и потока составных частиц, образующих текучую среду.

Система охлаждения относится к области теплотехники, а именно к тепломассообмену, и может быть использована для охлаждения различных тепловыделяющих элементов путем отвода от них тепла по тепловой трубе к охладителю любого типа.

Изобретение относится к энергетике, преимущественно к технике конденсации пара, отработанного в паровой турбине АЭС или ТЭС. В конденсаторе в качестве средства охлаждения отработанного пара использованы теплообменные трубы, выполненные из термостойкого и теплоизолирующего материала, в которые вмонтированы термобатареи, холодные спаи которых обращены внутрь трубы, а горячие - наружу.

Изобретение относится к системам термостатирования (СТС) энергоемкого оборудования космических объектов (КО). СТС содержит две двухполостные жидкостные термоплаты (22), на которые устанавливается оборудование.

Изобретение относится к теплотехнике и может быть использовано при создании калориферов, работающих на электроэнергии и на продуктах сгорания газа. Универсальный калорифер, содержащий трубы, закрепленные в коллекторе с образованием одной полости испарительно-конденсационного цикла. Коллектор выполнен из двух расположенных одна в другой труб большего Д1 и меньшего Д2 диаметров. Внутри трубы меньшего диаметра Д2 расположена дополнительная труба диаметром Д3 с образованием коллектора горячих газов. По периметру коллектора расположены сопла газовых горелок с электрическими регуляторами расхода газа, а в полости между трубами большего и меньшего диаметров расположены электронагреватели. По длине трубы большего диаметра с двух сторон в ее верхней части закреплены паропроводы, присоединенные к паровым коллекторам, а в ее нижней части - конденсатопроводы. Теплообменники присоединены сверху парового коллектора и закрыты кожухом, количество их рядов n2=2-5. В кожухе расположен вентилятор для подвода воздуха. Наружная поверхность паропроводов и труба коллектора большего диаметра покрыта слоем теплоизоляции. В баке установлен датчик уровня теплоносителя. Калорифер снабжен системой автоматического управления. Подводимая мощность электронагревателей N определяется зависимостью Nk=αF1(tт-tв)nm , где F1 - поверхность одного теплообменника, α - коэффициент теплоотдачи воздуха, tт - средняя температура поверхности теплообменника, tв - средняя температура воздуха, n - количество теплообменников, k=0,8-0,97 - коэффициент преобразования электрической энергии в тепловую, m=1,05-1,15 - коэффициент неучтенных потерь тепла. Технический результат - повышение эффективности передачи тепла, снижение металлоемкости и расширение области применения калорифера. 2 ил.

Изобретение относится к области тепловых труб, а именно к гравитационным тепловым трубам, и может быть использовано для охлаждения и замораживания грунтов оснований зданий и сооружений в районах распространения многолетнемерзлых пород. Гравитационная тепловая труба содержит частично заправляемый теплоносителем корпус с зонами испарения, конденсации и транспортной зоной между ними. В транспортной зоне расположена вставка, образующая кольцевой карман со стенкой корпуса и имеющая радиальные каналы с открытым срезом со стороны их концов, обращенных к продольной оси корпуса. По периферии вставка имеет, по крайней мере, одну проточку, в которой расположен кольцеобразный элемент, контактирующий со стенкой корпуса, и полый хвостовик, сообщающийся с радиальными каналами. На хвостовик надета трубка, предназначенная для стекания конденсата. Нижний конец трубки прикреплен к выступу, расположенному на заглушке-конусе, которой снабжен торец корпуса в зоне испарения. Технический результат состоит в упрощении конструкции устройства и его монтажа, удешевлении стоимости устройства при одновременном повышении эксплуатационной надежности и эффективности работы устройства. 3 ил.

Изобретение относится к области энергетического машиностроения и может быть использовано в качестве двигателя летательного аппарата (ЛА). Двигатель внешнего сгорания содержит герметичный корпус (1) в форме усеченного конуса, частично заполненный теплоносителем. Корпус содержит испаритель (2) и конденсатор (3). В корпусе содержится теплоизоляционное кольцо (4), являющееся элементом корпуса и жестко скрепленное как с испарителем, так и с конденсатором двигателя. К теплоизоляционному кольцу жестко крепится рабочее колесо (5) турбины с рабочими лопатками, охваченными ободом (6). Рабочее колесо турбины жестко крепится к полому валу (7) двигателя. На полый вал установлено сопловое колесо (8) турбины, охваченное ободом (9), представляющим собою внутренний кольцевой магнит. Ободья обоих колес установлены с образованием кольцевого зазора (10) с корпусом. Колесо с сопловыми лопатками установлено с возможностью вращения по отношению к полому валу - на подшипниках (11). Над внутренним кольцевым магнитом установлен внешний кольцевой магнит (12), жестко связанный с корпусом (13) ЛА. На полый вал двигателя жестко крепится винт (14). В корпусе двигателя, в зоне конденсации, содержатся теплопроводные стержни (15), на которых жестко закреплены тарелки (16), профиль которых образован технологической операцией “накатка” с обеих сторон. Вокруг испарителя расположена спиральная камера сгорания (17) с форсунками (18). Внутри испарителя содержится металлическая мелкопористая губка (19). Достигается повышение мощности двигателя, безопасность его транспортировки в нерабочем состоянии, а также уменьшение массогабаритных характеристик. 2 з.п. ф-лы, 8 ил.

Изобретение относится к теплообменнику (1), содержащему первый модуль (10) теплообменника с первым каналом (120) испарителя и первым каналом (130) конденсатора. Указанные первый канал (120) испарителя и первый канал (130) конденсатора расположены в первой трубе (11). Первый канал (120) испарителя и первый канал (130) конденсатора соединены друг с другом по жидкости с помощью первого верхнего распределительного коллектора (30) и первого нижнего распределительного коллектора (33) так, что первый канал (120) испарителя и первый канал (130) конденсатора образуют первый замкнутый контур циркуляции теплоносителя. Первый модуль (10) теплообменника содержит первый теплопередающий элемент (28) испарителя, предназначенный для передачи теплоты в первый канал (120) испарителя, и первый теплопередающий элемент (29) конденсатора, служащий для отвода теплоты из первого канала (130) конденсатора. Теплообменник (1) содержит также второй модуль (210) теплообменника, соединенный с помощью элемента для соединения по жидкости с первым модулем (10) теплообменника для обмена теплоносителем между первым модулем (10) теплообменника и вторым модулем (210) теплообменника. 3 н. и 22 з.п. ф-лы, 7 ил.

Изобретение относится к теплотехнике, а именно к теплообменным аппаратам и может быть использовано для охлаждения энергонасыщенного авиационного оборудования, системы отопления и других тепловыделяющих устройств. Устройство содержит цельный корпус, состоящий их двух соосно расположенных вертикальных цилиндрических камер, верхней и нижней. Диаметр нижней камеры больше диаметра верхней камеры. В нижней камере, заполненной жидкостью, размещена воронка, узкая часть которой соединена с паропроводом, расположенным в верхней камере и имеющим форму витой трубы, на внутренней поверхности которой по всей ее длине выполнен прямоугольный выступ. На внутренней верхней поверхности корпуса выполнены одинаковые равномерно расположенные прямоугольные выступы, на которых образуются капли конденсата. Над верхней поверхностью корпуса расположены полые иглы, через которые перистальтическим насосом из бака с водой по силиконовым трубкам, пропущенным через сквозные равномерно расположенные отверстия пластины, закрепленной с помощью стержня, приваренного к боковой поверхности корпуса, нагнетаются капли, охлаждающие верхнюю наружную поверхность корпуса термосифона. Бортовая часть воронки соединена с внутренними боковыми поверхностями нижней камеры и выполнена с равномерно расположенными по окружности отверстиями для перетока жидкости. Часть нижней камеры отведена для аккумулирования воздуха и других газообразных примесей, изначально содержащихся в термосифоне. В нижней камере, выше уровня заполняющей ее жидкости, расположен выпускной клапан, через который часть воздуха удаляется из термосифона. Корпус и прямоугольные выступы на его внутренней верхней поверхности выполнены из материала с высоким коэффициентом теплопроводности. Технический результат: повышение эффективности передачи тепла от охлаждаемой части к нагреваемому участку путем интенсификации теплообмена в верхней камере двухфазного термосифона. 2 ил.

Теплообменная секция содержит: две пластины и раму, соединяющую две пластины, причем две пластины и рама вместе образуют узкую пластинчатую полую камеру; слой капиллярной структуры, плотно прикрепленный непосредственно к внутренней поверхности камеры; и рабочую среду с фазовым переходом, заключенную в камере. Часть периферии одной из двух пластин или часть рамы служит зоной испарения теплообменной секции, и остальная часть камеры служит зоной конденсации теплообменной секции. Теплообменная секция имеет увеличенные площадь проходного сечения для пара, ширину прохода для обратного потока текучей среды и площадь теплопередачи зоны конденсации и уменьшенное расстояние между центром и краем зоны испарения и, следовательно, способна обеспечить значительное улучшение теплопередающей способности и плотности теплового потока. 4 з.п. ф-лы, 11 ил.

Изобретение относится к электротермическим устройствам электродного типа и предназначено для нагрева и перекачивания текучих сред. Термосифонный нагреватель с электродным подогревом электролита, содержащий герметичный корпус 1, снабженный нагнетательным и всасывающим патрубками 9, 10 с обратными клапанами 8, электроды 4 и клеммы для подвода электроэнергии. При этом термосифонный нагреватель снабжен поршнем 2, герметично разделяющим корпус на нижнюю часть 3 с раствором электролита 5 и верхнюю часть 6 с текучей средой 7, плоскопараллельными горизонтальными электродами 4, затопленными в растворе электролита 5, и теплообменником 11, выполненным в виде водяной рубашки, охватывающей нижнюю часть корпуса 1. Изобретение позволяет расширить функциональные возможности устройства для разогрева двигателей внутреннего сгорания с принудительной циркуляцией любого, в том числе неэлектропроводного теплоносителя, а также позволяет расширить функциональные возможности электрического нагревателя для систем отопления с одновременной функцией перекачивания нагреваемой среды. 1 ил.

Изобретение относится к теплотехнике и может быть использовано при изготовлении тепловых труб. Способ изготовления тепловой трубы с алюминиевым корпусом и водой в качестве теплоносителя включает покрытие всей внутренней поверхности корпуса инертным к воде слоем меди, вакуумирование корпуса, заполнение корпуса необходимым количеством воды и герметизацию корпуса. Для расширения функциональных возможностей способа покрытие внутренней поверхности корпуса медью осуществляют гальваническим методом в два этапа при плотностях тока осаждения 0,5-3 А/дм2 на первом этапе и 40-70 А/дм2 на втором этапе. Технический результат – расширение арсенала технических средств. 5 ил.

Изобретение относится к области теплотехники. Тепловая труба с электрогидродинамическим генератором, у которой внутри парового канала 4 на уровне сопел 8 установлена перегородка 17. Также снаружи корпуса расположены две металлические емкости 13, внутри которых установлено по одному ионизирующему электроду и коллектору зарядов. При этом сверху и снизу относительно перегородки 17 дополнительно установлены паровые подводящие каналы 18 и отводящие каналы 20, а между верхними концами конденсатопроводов 7 и соплами 8 установлены вихревые камеры 19. Причём подводящие паровые каналы 18 установлены тангенциально относительно вихревых камер 19, что позволяет обеспечить более эффективный распыл конденсата, тем самым увеличивая расстояние, преодолеваемое каплями между ионизирующими электродами и коллекторами 6 в металлических емкостях 13. Изобретение позволяет поднять эффективность электростатического генератора. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области теплотехники и может быть использовано для передачи большого количества тепла при малых перепадах (градиентах) температуры на большие расстояния. В соответствии с заявленным изобретением предложен способ теплопередачи и устройство, реализующее заявленный способ. Устройство теплопередачи содержит емкость испарителя, заполненную по меньшей мере двумя различными текучими средами, причем первая текучая среда находится в газообразной фазе, а вторая текучая среда находится в жидкой фазе. Трубопровод соединяет емкость испарителя с конденсатором и накопительной емкостью, которые заполнены первой текучей средой, находящейся в газообразной фазе с давлением Р0 от 0,3 атм до 50 атм и более. Технический результат - исключение перегрева емкости испарителя, излишних затрат топлива, а также снижение использования дополнительного объема для аккумулирования тепла горелки, снижение затрат на производство емкости испарителя и обеспечение возможности непрерывной подачи теплоты к потребителю теплоты. 2 н. и 36 з.п. ф-лы, 3 ил.
Наверх