Датчик линейных перемещений на основе пленки vox

Изобретение относится к оптическим датчикам, предназначенным для измерения линейных перемещений объекта наблюдения. Датчик линейных перемещений содержит источник света и подложку. На последней размещены две прямолинейные шкалы в виде первого и второго рядов полосок, разделенных общей проводящий шиной. Полоски выполнены из материала с гистерезисной зависимостью сопротивления от температуры. Ряды полосок смещены относительно друг друга на одну полоску. Каждая из последних имеет сигнальный вывод. На другой стороне подложки расположены пленочные нагреватель и термопара. Термочувствительные полоски подключены к аналоговому коммутатору, входящему в интерфейс измерительной системы. Световая полоса излучения по высоте равна вертикальному размеру двойной шкалы из термочувствительных полосок. При этом подложка установлена в герметичной камере с прозрачной боковой стенкой, на верхней и нижней гранях которой выполнены выступы с продольными пазами. Источник излучения установлен на подвижной каретке, закрепленной с возможностью перемещения по пазам выступов с помощью расположенных в этих пазах шариков, закрепленных на верхней и нижней гранях каретки. Технический результат - повышение точности измерения за счет механической связи датчика с объектом наблюдения, получение компактной конструкции, которая может использоваться автономно в полевых условиях. 2 з.п. ф-лы, 4 ил.

 

Изобретение относится к методам измерения неэлектрических величин и может быть использовано для измерения линейных и угловых перемещений объекта наблюдения.

Известно устройство, содержащие подложку, покрытую термочувствительными элементами из пленки VOx. Источник света помещается на контрольном объекте. При движении объекта световой луч перемещается относительно чувствительных элементов, которые обладают памятью воздействия. Облученный элемент изменяет свое сопротивление. Выходной импульс с каждого элемента подсчитывается реверсивным счетчиком. Разрешающая способность датчика определяется размером элемента. (Бриндли К. Измерительные преобразователи: Справочное пособие: Перевод с английского. - Энергоатомиздат, 1991, 144 с.) .Недостатками устройства является необходимость возвращение подложки в начальное положение для возможности проведения измерения объекта наблюдения.

Наиболее близким предлагаемому изобретению является датчик перемещений, содержащий источник света, установленный на объекте наблюдателя, подложку с прямолинейной или угловой шкалой, образованной поглощающими полосками, расположенными на подложке на расстоянии друг от друга, равными размеру полоски, полоски на подложке расположены с образованием первого и второго рядов, смещенных относительно полосок второго ряда на одну полоску, полоски выполнены из материала с гистерезисной зависимостью сопротивления от температуры и каждая полоска снабжена сигнальным выводом, на другой стороне подложки размещены пленочные нагреватель и термопара, термочувствительные полоски подключены к аналоговому коммутатору, входящему в интерфейс измерительной системы (патент РФ №2297605. Датчик перемещений, МПК G01K 1/00 / А.С Олейник. Опубл. 20.04.2007).

Недостатками устройства являются необходимость закрепления источника света на контролируемом объекте наблюдения.

Основными требованиями, предъявляемыми к датчикам перемещения, являются: автономность, малые габариты, устойчивость к внешним воздействиям окружающей среды.

Рассмотренные выше датчики перемещения воспринимают перемещение объекта дистанционно. В оптическом датчике имеется подложка, покрытая элементами из пленки VOx. Источник света помещается на контрольном объекте. При движении объекта световой луч перемещается относительно чувствительных элементов, которые обладают памятью воздействия. Облученный элемент изменяет свое сопротивление. Выходной импульс с каждого элемента подсчитывается реверсивным счетчиком. Разрешающая способность датчика определяется размером элемента.

Задачей настоящего изобретения является

- повышение точности измерения за счет осуществления механического контакта между объектом наблюдения и датчиком линейных перемещений,

- обеспечение автономного режима измерений датчиком, пригодным для эксплуатации в полевых условиях.

Поставленная задача достигается тем, что подложка установлена в герметичной камере с прозрачной боковой стенкой, на верхней и нижней гранях которой выполнены выступы с продольными пазами, источник излучения установлен на подвижной каретке, закрепленной с возможностью перемещения по пазам выступов с помощью расположенных в этих пазах шариков, закрепленных на верхней и нижней гранях каретки.

Технический результат - повышение точности измерения за счет механической связи датчика с объектом наблюдения, получение компактной конструкции датчика, которая может использоваться автономно в полевых условиях.

Сопоставительный анализ с прототипом показывает, что подвижная каретка датчика, скользящая на металлических шарах, обеспечивает практически безлюфтовое соединение объекта наблюдения с датчиком. Использование фокона дополнительно сужает ширину световой полосы, что повышает точность измерения. Герметичная камера датчика с прозрачной крышкой надежно защищает термочувствительный слой датчика от воздействия окружающей среды.

Предлагаемое изобретение иллюстрируется чертежами, представленными на фиг. 1-3. На фиг. 1 приведен общий вид датчика линейных перемещений, на фиг. 2 показан внешний вид каретки с защелками, на фиг. 3 приведена топология пленочных элементов датчика, на фиг. 4 приведена гистерезисная зависимость термочувствительного слоя датчика.

На Фиг. 1 показан внешний вид датчика линейных перемещений. Датчик представляет собой прямоугольную герметичную камеру 1 с прозрачной стенкой 2. В камере имеются выступы 3, на внутренних верхней и нижней гранях которых выполнены продольные пазы 4. Внутри выступов 3 установлена с помощью металлических шаров 5 каретка 6, имеющая пазы 7 на своих верхней и нижней гранях. На боковых гранях каретки 6 расположены защелки 8, препятствующие сдвигу шаров из-под каретки. Каретка 6 свободно перемещается вперед/назад вдоль герметичной камеры 1. На каретке 6 установлен штырь 9, обеспечивающий механическое крепление наблюдаемого объекта относительно датчика, и световод 10, сопряженный со светодиодом. Внутри камеры расположена подложка 11, покрытая термочувствительными элементами в виде шкалы 12. На верхней поверхности кожуха размещены цифровой индикатор 13, элементы управления и сигнализации 14, а внутри камеры находится плата со схемой управления датчиком 15.

На фиг. 2 показан внешний вид каретки. На верхней и и нижней гранях каретки 6 выполнены пазы 4. Высота каретки соответствует расстоянию между выступами 3 герметичной камеры 1 (должен быть минимальный зазор). На ширине каретки 6 умещается по два шара (сверху и снизу) на каждой грани. Шары 5 расположены вплотную друг к другу и удерживаются в таком положении благодаря наличию защелок 8, размещенных на боковых гранях каретки 6. Защелка 8 представляет собой плоскую пластину из пружинистой стали. Размеры шаровидных зазоров между пазами 4 внутренних выступов 3 камеры 1 и пазами 7 граняей каретки 6 должны соответствовать размеру шаров. Перемещению каретки 6, при передаче усилия от объекта наблюдения за счет механической связи, противодействует трение качения шаров, величина которого незначительна. Для обеспечения работы устройства в диапазоне температур +40 - -40°С в зазор между шарами вводят органическую смазку (Циатим).

На Фиг. 3 показана топология пленочных слоев подложки 11: на лицевой стороне расположена линейка из термочувствительных элементов с контактами 12; на обратной стороне подложки размещены пленочный нагреватель 16 и термодатчик 17.

На Фиг. 4 приведена гистерезисная зависимость сопротивления термочувствительного слоя от температуры.

В качестве термочувствительного слоя датчика используется пленка VO2 толщиной 100 нм. Ширина петли температурной гистерезисной пленки VO2 равна 21°С, при этом скачок электропроводности равен 20:1. Путем термостатирования пленки VO2 на уровне 45°С реализуется режим внутренней памяти. Фазовый переход полупроводник-металл (ФППМ) в пленке VO2 имеет гистерезисный характер и протекает в диапазоне 44-69°С.

Устройство работает следующим образом.

Световой луч в форме полосы облучает поверхность термочувствительного элемента, который нагреваясь изменяет свое сопротивление. При движении объекта световой луч перемещается относительно термочувствительных элементов, которые обладают памятью воздействия. Термочувствительные элементы электрически соединены со счетчиком импульсов. Выходной импульс с каждого элемента подсчитывается реверсивным счетчиком. Точность датчика определяется размером термочувствительного элемента.

Пример.

Был изготовлен датчик линейных перемещений, представляющий собой прямоугольный корпус. Внутри корпуса с помощью системы металлических шаров крепится каретка внутри основания с возможностью перемещения вдоль основания. На каретке размещены светодиод L-53SF7C и металлический штырь, с помощью которого происходит механическое соединение перемещаемого объекта и датчика. В полости основания расположена герметичная камера, закрытая прозрачной крышкой. В камере расположена диэлектрическая подложка, лицевая сторона которой покрыта термочувствительными элементами из пленки VOx с электродами из Ni. На обратной стороне подложке размещен пленочный нагреватель из NiCr и термодатчик. С помощью пленочного нагревателя и терморегулятора точность термостатирования термочувствительных полосок датчика составляет ±1°С. Для устойчивой работы датчика требуется обеспечить нагрев термочувствительного слоя на 5°С. Постоянная времени датчика не более 10-4с, при этом облученность термочувствительного для его нагрева на 5°С составляет 40 мДж/мм2. При постоянной засветке термочувствительного слоя облученность для его нагрева на 5°С составляет 8,5 нВт/мм2. Пленочный нагреватель обеспечивает нагрев пленки VO2 до температуры, равной середине петли гистерезиса. Наличие внутренней памяти у термочувствительного слоя теплового датчика на основе пленки VO2 обеспечивает абсолютную фиксацию объекта наблюдения и резко упрощает схему управления.

Схема управления датчиком описана (патент РФ №2297605 Датчик перемещений, МПК G01K 1/00 / А.С. Олейник. Опубл. 20.04.2007).

1. Датчик линейных перемещений, содержащий источник света и подложку, на которой размещены две прямолинейные шкалы в виде первого и второго рядов полосок, разделенных общей проводящий шиной, выполненных из материала с гистерезисной зависимостью сопротивления от температуры, ряды полосок смещены относительно друг друга на одну полоску, каждая полоска имеет сигнальный вывод, на другой стороне подложки расположены пленочные нагреватель и термопара, термочувствительные полоски подключены к аналоговому коммутатору, входящему в интерфейс измерительной системы, световая полоса излучения по высоте равна вертикальному размеру двойной шкалы из термочувствительных полосок, отличающийся тем, что подложка установлена в герметичной камере с прозрачной боковой стенкой, на верхней и нижней гранях которой выполнены выступы с продольными пазами, источник излучения установлен на подвижной каретке, закрепленной с возможностью перемещения по пазам выступов с помощью расположенных в этих пазах шариков, закрепленных на верхней и нижней гранях каретки.

2. Датчик линейных перемещений по п. 1, отличающийся тем, что термочувствительные полоски выполнены на основе пленки VOx.

3. Датчик линейных перемещений по п. 1, отличающийся тем, что внутри камеры находится плата со схемой управления, на верхней поверхности камеры размещены цифровой индикатор и элементы управления и сигнализации.



 

Похожие патенты:

Заявленное изобретение относится к устройству и способу изготовления аккумуляторной батареи, а именно к устройству, укладывающему электроды стопкой, и способу укладывания электродов стопкой.

Изобретение относится к способу определения положения детали в процессе сборки. Деталь 1 захватывают с помощью зажимного патрона 2 в положении захвата, которое зарегистрировано как положение А начала отсчета при измерении.

Изобретение может быть использовано для автоматического измерения объема пучка лесоматериалов, находящегося на движущемся объекте. В способе движущийся объект пропускают через измерительное устройство - измерительную рамку, оснащенную лазерными сканерами, которые измеряют внешний контур пучка, его длину и суммарную площадь торцов лесоматериалов.

Изобретение относится к области контрольно-измерительной техники и может быть использовано для автоматизации процессов контроля и сортировки листового проката и других подобных изделий.

Изобретение относится к прецизионной измерительной технике и может быть использовано в различных отраслях: метрологии, приборостроении, в отсчетных системах измерительных приборов, координатно-измерительных машин и прецизионных станков, аэрокосмической промышленности, при обработке материалов, автоматизации, в робототехнике, в оптико-механической промышленности, а также во всех высокотехнологичных отраслях техники, науки и т.д.

Изобретение относится к контрольно-измерительной технике и может быть использовано для измерения геометрических параметров протяженных объектов, в частности композитной арматуры, а также кабельной продукции, проволоки и других в процессе производства.

Изобретение относится к области измерительной техники, к измерительным устройствам, характеризующимся дистанционными оптическими средствами измерений, и может быть использовано при решении задач, требующих одновременного определения двух линейных и двух угловых координат объекта при постоянной дистанции до объекта. Предложено одноканальное двухкоординатное устройство измерения угловых и линейных координат объекта, работающее в большом диапазоне дистанций с высокой точностью и изменяемым диапазоном измерений. Такой технический результат достигнут нами, когда в устройстве измерения линейных и угловых координат объекта, содержащем осветитель, объектив с матричным фотоприемником, связанным с устройством обработки информации и установленным в плоскости, сопряженной с объектом, и измерительную марку, установленную на объекте, новым является то, что измерительная марка снабжена осветителем, включающим расположенные по ходу луча источник света, конденсор и рассеиватель, и двумя визирными элементами, образующими кольцевую и точечную структуры и разнесенными по оптической оси, за второй структурой по ходу луча установлен компенсатор оптического хода, при этом объектив выполнен с переменным фокусным расстоянием. 5 ил. .

Способ заключается в формировании подаваемого на поверхность исследуемого объекта потока светового излучения, регистрации в фиксированной точке отраженного света и преобразовании его в электрический сигнал, величину которого используют для определения расстояния от поверхности исследуемого объекта по формуле: Δ x = x 0 − x 0 2 U 0 U , где х0 - начальное расстояние от светоотражающей поверхности исследуемого объекта до фотоприемника; U0 - амплитуда выходного сигнала с фотоприемника, соответствующая х0; U - амплитуда выходного сигнала с фотоприемника, соответствующая Δх.

Устройство содержит закрепленное на основании (1) устройство (2) для регулировки и фиксации его положения относительно поверхности (12) объекта (13), соединенный с ним цилиндрический корпус (4), во внутренней полости (5) которого установлены источник (6) когерентного оптического излучения и фокусирующая излучение (31) на поверхность (12) объекта (13) оптическая система (8) с устройствами для регулировки и фиксации их положения (7) и (9), опорную балку (14), выполненную составной из однотипных цилиндрических элементов (28), светонепроницаемый защитный корпус (19) с окном (20), установленный с возможностью перемещения вдоль опорной балки (14), во внутренней полости (21) которого установлены светоделитель (22) и отражатель (23), жестко скрепленные между собой, и экран с устройствами для регулировки и фиксации их положения (24) и (26).

Способ заключается в том, что изображение объекта фокусируют объективом в плоскости приемника, сканируют его возвратно-поступательно вдоль линейки элементов приемника, предварительно определяют номер N облучаемого элемента приемника, выключают выходы остальных элементов, осуществляют периодическое равномерное возвратно-поступательное сканирование изображения объекта облучаемым элементом с амплитудой, равной ширине элемента b, формируют опорные импульсы в середине каждого полупериода сканирования, измеряют временные интервалы Δt1 и Δt2 между фронтами сигналов и опорными импульсами в каждом полупериоде сканирования и измеряют их разность Δt=Δt2-Δt1.

Изобретение относится к деревообрабатывающей промышленности, в частности к распиловке круглого леса. Продольно-распиловочный станок для распиловки бревен содержит пильный инструмент с механизмом его перемещения и устройство отображения на экране монитора торца бревна и предполагаемой карты распила, выполненное в виде устройства дополненной реальности. Устройство дополненной реальности содержит компьютер с монитором, видеокамеру и специальное программное средство. Видеокамера соединена с компьютером и установлена с возможностью обзора торца бревна. Программное средство установлено на компьютер и содержит модуль преобразования расчетной карты распила в ее виртуальное изображение на плоскости торца бревна и модуль совмещения на мониторе указанного виртуального изображения карты распила с изображением торца бревна. Повышается точность пиления. 5 з.п. ф-лы, 6 ил.

Изобретение относится к эксплуатации и строительству зданий и сооружений и может быть использовано для проведения оперативного обследования зданий и сооружений, подвергшихся внутренним и/или внешним факторам, вызывающим их износ. Способ включает выполнение измерений с высокой скоростью (от нескольких тысяч до миллиона точек в секунду) расстояния от сканера до поверхности сооружения, имеющего сложную конструктивную форму, и регистрацию соответствующих направлений (вертикальные и горизонтальные углы) с последующим формированием трехмерного изображения 3D-модели сооружения, имеющего сложную конструктивную форму, представляющую рой точек {Xi, Yi, Zi, i=1, n}. Для выявления деформаций по рою точек выполняется построение ряда горизонтальных и вертикальных сечений 3D-модели, строится карта отклонений и графики отклонений стены от идеальной стеновой вертикальной плоскости. По сформированной числовой карте отклонений выполняется построение карты изолиний, цветотоновой карты, графиков поверхности, теневой карты, при построении цветотоновых карт отклонений используется шкала раскраски впадин - от темно-синего до голубого, выпуклостей - от желтого до темно-коричневого. Вертикальный масштаб графиков отклонений выбирается таким, чтобы наглядно представить микронеровности стены, а сечение карты изолиний отклонений выбирается в погрешности построения модели 1 мм. В случае, если сооружение имеет сложную форму с закруглениями, то в качестве поверхности, относительно которой изучается отклонение от вертикали, выбирается касательная к закруглению, вертикальная плоскость с азимутом 0°. При этом выявление дефектов строительства и начальной фазы деформационного процесса осуществляется по результатам сопоставления фактических отклонений и относительных изгибных деформаций с нормативными отклонениями и критическими значениями деформации сооружения, имеющего сложную конструктивную форму. Технический результат заключается в расширении эксплуатационных возможностей способа для оперативного определения степени деформации сооружения, имеющего сложную конструктивную форму. 4 ил.

Изобретение относится к эксплуатации и строительству зданий и сооружений и может быть использовано для проведения оперативного обследования зданий и сооружений, подвергшихся внутренним и/или внешним факторам, вызывающим их износ. Способ включает выполнение измерений с высокой скоростью (от нескольких тысяч до миллиона точек в секунду) расстояния от сканера до поверхности сооружения, имеющего сложную конструктивную форму, и регистрацию соответствующих направлений (вертикальные и горизонтальные углы) с последующим формированием трехмерного изображения 3D-модели сооружения, имеющего сложную конструктивную форму, представляющей рой точек {Xi, Yi, Zi, i=1, n}. Для выявления деформаций по рою точек выполняется построение ряда горизонтальных и вертикальных сечений 3D-модели, строится карта отклонений и графики отклонений стены от идеальной стеновой вертикальной плоскости, по сформированной числовой карте отклонений выполняется построение карты изолиний, цветотоновой карты, графиков поверхности, теневой карты, при построении цветотоновых карт отклонений используется шкала раскраски впадин - от темно-синего до голубого, выпуклостей - от желтого до темно-коричневого. Вертикальный масштаб графиков отклонений выбирается таким, чтобы наглядно представить микронеровности стены, а сечение карты изолиний отклонений выбирается в погрешности построения модели 3 мм. В случае если сооружение имеет сложную форму с закруглениями, то в качестве поверхности, относительно которой изучается отклонение от вертикали, выбирается касательная к закруглению, вертикальная плоскость с азимутом 0°. При этом выявление дефектов строительства и начальной фазы деформационного процесса осуществляется по результатам сопоставления фактических отклонений и относительных изгибных деформаций с нормативными отклонениями и критическими значениями деформации сооружения, имеющего сложную конструктивную форму. Технический результат заключается в расширении эксплуатационных возможностей способа для оперативного определения степени деформации сооружения, имеющего сложную конструктивную форму. 4 ил.

Изобретение относится к эксплуатации и строительству зданий и сооружений и может быть использовано для проведения оперативного обследования зданий и сооружений, подвергшихся внутренним и/или внешним факторам, вызывающим их износ. Способ включает выполнение измерений с высокой скоростью (от нескольких тысяч до миллиона точек в секунду) расстояния от сканера до поверхности сооружения, имеющего сложную конструктивную форму, и регистрацию соответствующих направлений (вертикальные и горизонтальные углы) с последующим формированием трехмерного изображения 3D-модели сооружения, имеющего сложную конструктивную форму, представляющей рой точек {Xi,Yi,Zi, i=1,n}. Для выявления деформаций по рою точек выполняется построение ряда горизонтальных и вертикальных сечений 3D-модели, строится карта отклонений и графики отклонений стены от идеальной стеновой вертикальной плоскости, по сформированной числовой карте отклонений выполняется построение карты изолиний, цветотоновой карты, графиков поверхности, теневой карты. При построении цветотоновых карт отклонений используется шкала раскраски впадин - от темно-синего до голубого, выпуклостей - от желтого до темно-коричневого. Вертикальный масштаб графиков отклонений выбирается таким, чтобы наглядно представить микронеровности стены, а сечение карты изолиний отклонений выбирается в погрешности построения модели 5 мм. В случае если сооружение имеет сложную форму с закруглениями, то в качестве поверхности, относительно которой изучается отклонение от вертикали, выбирается касательная к закруглению, вертикальная плоскость с азимутом 0°. При этом выявление дефектов строительства и начальной фазы деформационного процесса осуществляется по результатам сопоставления фактических отклонений и относительных изгибных деформаций с нормативными отклонениями и критическими значениями деформации сооружения, имеющего сложную конструктивную форму. Технический результат заключается в расширении эксплуатационных возможностей способа для оперативного определения степени деформации сооружения, имеющего сложную конструктивную форму. 4 ил.

Изобретение относится к эксплуатации и строительству зданий и сооружений и может быть использовано для проведения оперативного обследования зданий и сооружений, подвергшихся внутренним и/или внешним факторам, вызывающим их износ. Способ включает выполнение измерений с высокой скоростью (от нескольких тысяч до миллиона точек в секунду) расстояния от сканера до поверхности панельного сооружения и регистрацию соответствующих направлений (вертикальные и горизонтальные углы) с последующим формированием трехмерного изображения 3D-модели сооружения, представляющей рой точек {Xi, Yi, Z, i=l, n}. Для выявления деформаций по рою точек выполняется построение ряда горизонтальных и вертикальных сечений 3D-модели, строится карта отклонений и графики отклонений стены от идеальной стеновой вертикальной плоскости. По сформированной числовой карте отклонений выполняется построение карты изолиний, цветотоновой карты, графиков поверхности, теневой карты, при построении цветотоновых карт отклонений используется шкала раскраски впадин - от темно-синего до голубого, выпуклостей - от желтого до темно-коричневого. Вертикальный масштаб графиков отклонений выбирается таким, чтобы наглядно представить микронеровности стены, а сечение карты изолиний отклонений выбирается в погрешности построения модели 5 мм. При этом выявление дефектов строительства и начальной фазы деформационного процесса осуществляется по результатам сопоставления фактических отклонений и относительных изгибных деформаций с нормативными отклонениями и критическими значениями деформации панельного сооружения. Технический результат заключается в расширении эксплуатационных возможностей для оперативного определения степени деформации сооружения. 6 ил.

Изобретение относится к эксплуатации и строительству зданий и сооружений и может быть использовано для проведения оперативного обследования зданий и сооружений, подвергшихся внутренним и/или внешним факторам, вызывающим их износ. Способ включает выполнение измерений с высокой скоростью (от нескольких тысяч до миллиона точек в секунду) расстояния от сканера до поверхности панельного сооружения и регистрирующий соответствующие направления (вертикальные и горизонтальные углы) с последующим формированием трехмерного изображения 3D-модели панельного сооружения, представляющей рой точек {Xi, Yi, Zi, i=1, n}. Для выявления деформаций по рою точек выполняется построение ряда горизонтальных и вертикальных сечений 3D-модели, строится карта отклонений и графики отклонений стены от идеальной стеновой вертикальной плоскости. По сформированной числовой карте отклонений выполняется построение карты изолиний, цветотоновой карты, графиков поверхности, теневой карты, при построении цветотоновых карт отклонений используется шкала раскраски впадин - от темно-синего до голубого, выпуклостей - от желтого до темно-коричневого. Вертикальный масштаб графиков отклонений выбирается таким, чтобы наглядно представить микронеровности стены, а сечение карты изолиний отклонений выбирается в погрешности построения модели 1 мм. При этом выявление дефектов строительства и начальной фазы деформационного процесса осуществляется по результатам сопоставления фактических отклонений и относительных изгибных деформаций с нормативными отклонениями и критическими значениями деформации панельного сооружения. Технический результат заключается в расширении эксплуатационных возможностей для оперативного определения степени деформации сооружения. 6 ил.

Изобретение относится к области видеонаблюдения, в частности к видеонаблюдению с использованием поворотных (PTZ) камер. Техническим результатом является уменьшение ошибки позиционирования камеры и увеличение повторяемости позиционирования. Предложен способ уменьшения ошибки позиционирования PTZ-камеры, характеризующийся тем, что получают целевую позицию поворота камеры, затем определяют по крайней мере одну промежуточную позицию камеры и ее координаты на основе данных о целевой позиции поворота камеры, после чего последовательно поворачивают камеру в целевую позицию через вышеупомянутые промежуточные позиции. 2 н. и 19 з.п. ф-лы, 4 ил.

Изобретение относится к измерительной технике и может быть использовано для определения положения трубопровода в пространстве при эксплуатации и строительстве магистральных и технологических нефте-, нефтепродуктопроводов. Способ состоит в том, что измерения производятся с помощью лазерного построителя плоскости, а далее с помощью тахометра и рулетки. При этом, если геодезические измерения содержат ошибки, то для горизонтального радиуса кривизны трубопровода определяют значения дистанций для выбранных точек li и соответствующие значения координат xi и yi, i=1…N, где N - количество точек измерения, а для горизонтального радиуса кривизны трубопровода - соответствующие высоты zi. Техническим результатом изобретения является повышение точности определения радиуса кривизны трубопровода в вертикальной и горизонтальной плоскостях. 1 ил.

Способ измерения линейных перемещений объекта основан на том, что лучи двух лазерных дальномеров направляют параллельно на плоскую поверхность, находящуюся на объекте измерений. Линейное перемещение объекта определяют на основании определенных двумя указанными дальномерами расстояний с учётом угла между линией ожидаемого перемещения объекта и плоской поверхностью, а также с учётом расстояния между линиями визирования дальномеров. Технический результат заявленного решения заключается в повышении точности измерения. 1 з.п. ф-лы, 2 ил.

Изобретение относится к способу калибровки камеры. Техническим результатом является обеспечение эффективной калибровки камеры. Предложен способ и система калибровки камеры, содержащая источник энергии и калибруемую камеру, при этом по меньшей мере источник энергии или камера установлены на механическом приводе с возможностью перемещения относительно друг друга. Процессор соединен с источником энергии, механическим приводом и камерой, и процессор запрограммирован на управление механическим приводом с целью перемещения по меньшей мере источника энергии или камеры относительно друг друга через множество дискретных точек целевой модели калибровки. Процессор дополнительно управляет камерой в каждой из дискретных точек с целью получения цифрового изображения и определяет параметры дисторсии объектива на каждом изображении. Определяют фокусное расстояние камеры, содержащей любой соединенный с камерой объектив, а затем определяют постороннее положение камеры для каждого изображения. 2 н. и 18 з.п. ф-лы, 2 ил.
Наверх