Способ определения положения кольцевых сварных швов подземного стального трубопровода

Изобретение относится к области диагностики и контроля состояния подземных стальных трубопроводов и может быть использовано в нефтегазодобывающей промышленности, коммунальном хозяйстве и других областях промышленности, эксплуатирующих стальные трубопроводы. Способ определения положения кольцевых сварных швов подземного трубопровода, изготовленного из ферромагнитного материала, включает измерение индукции постоянного магнитного поля над осью трубопровода с определенным шагом, построение графика и поиск экстремумов зависимости параметров индукции магнитного поля от линейной координаты, осуществляют приведение измеренных значений параметров индукции к среднему значению глубины заложения трубопровода, определяют значения высоты экстремумов, линейные координаты экстремумов, высота которых превышает заданное пороговое значение, считают вероятными координатами кольцевых сварных швов трубопровода. Технический результат - повышение достоверности определения линейных координат кольцевых сварных швов подземного трубопровода на основании результатов наземных магнитометрических измерений и обеспечение возможности проведения поиска швов в автоматизированном режиме. 1 з.п. ф-лы, 10 ил., 1 табл.

 

Изобретение относится к области диагностики и контроля состояния подземных стальных трубопроводов. Изобретение может быть использовано в нефтегазодобывающей промышленности, коммунальном хозяйстве и других областях промышленности, эксплуатирующих стальные трубопроводы.

Известны способы бесконтактной диагностики трубопроводов (патент РФ 2510500, G01N 27/82, опубликован 27.03.2014 г.; патент РФ 2453760, F17D 5/00, опубликован 20.06.2012 г.; патент РФ 2294482, F17D 5/02, опубликован 27.02.2007 г.; патент РФ 2264617, G01N 27/28, опубликован 20.11.2005 г.). При реализации этих способов производят измерения магнитных параметров с поверхности грунта при перемещении датчиков вдоль оси трубопровода.

В указанных выше способах полученные в результате измерений данные не рассматривают с точки зрения определения местоположения кольцевых сварных швов.

Известен способ поиска положения кольцевых сварных швов подземных стальных трубопроводов (РД 12-411-01. Инструкция по диагностированию технического состояния подземных стальных газопроводов. Введена в действие с 15.09.01 постановлением Госгортехнадзора России от 24.07.01 №33). При реализации этого способа производят измерения магнитных параметров с поверхности грунта при перемещении датчиков магнитометра вдоль оси трубопровода. Местоположением сварных швов считают точки измерения, в которых установлены периодические экстремумы магнитных параметров, имеющих вид остроконечных пиков с амплитудой 15% значения диапазона и повторяющиеся через 10-12 м.

Недостатком указанного способа является низкая достоверность, так как способ не учитывает изменения расстояния от точки измерения магнитной индукции до оси трубопровода, что приводит к некорректному определению величины измеренных значений.

Наиболее близким к предлагаемому способу является способ поиска положения кольцевых сварных швов трубопроводов, основанный на измерении постоянного магнитного поля над осью трубопровода (Крапивский Е.И., Некучаев В.О. Дистанционная магнитометрия газонефтепроводов. Ухта: УГТУ, 2011). В соответствии с этим способом кольцевые сварные швы выделяются знакопеременными аномалиями магнитного поля. При этом периодичность аномалий соответствует длине труб.

Недостатками указанного способа являются низкая достоверность и скорость интерпретации результатов измерений, обусловленные следующим:

- не учитывается различие расстояний от трубопровода до точек измерения, что приводит к некорректной оценке измеренных значений магнитной индукции;

- поиск аномалий осуществляется визуально по графику, что вносит субъективную ошибку при интерпретации данных, указанный способ не может быть использован для автоматизированного поиска кольцевых сварных швов;

- отсутствует количественный критерий величины аномалий, которые считаются связанными с кольцевыми сварными швами;

Задачей предлагаемого изобретения является повышение точности определения положения кольцевых сварных швов подземного трубопровода и автоматизация процесса обработки результатов магнитометрических измерений.

Достигаемый технический результат состоит в повышении достоверности определения линейных координат кольцевых сварных швов подземного трубопровода на основании результатов наземных магнитометрических измерений и в обеспечении возможности проведения поиска швов в автоматизированном режиме.

Поставленная задача решается тем, что в способе определения положения кольцевых сварных швов подземного трубопровода, изготовленного из ферромагнитного материала, включающем измерение индукции постоянного магнитного поля над осью трубопровода с определенным шагом, построение графика и поиск экстремумов зависимости параметров индукции магнитного поля от линейной координаты, отсчитываемой вдоль оси трубопровода, согласно изобретению в каждой точке измерения магнитного поля измеряют глубину заложения оси трубопровода, определяют среднюю глубину заложения оси трубопровода на рассматриваемом участке, осуществляют приведение измеренных значений параметров индукции к среднему значению глубины, определяют значения высоты экстремумов, линейные координаты экстремумов, высота которых превышает заданное пороговое значение, считают вероятными координатами кольцевых сварных швов трубопровода, дополнительно из проектной или эксплуатационной документации получают данные о длинах и последовательности расположения труб на рассматриваемом участке, выбирают интервал поиска, в пределах этого интервала производят смещение предполагаемого положения швов вдоль магнитограммы с заданным шагом, для каждого значения смещения рассчитывают величину, характеризующую степень совпадения швов и экстремумов, значения смещения, соответствующие наиболее полному совпадению, считают наиболее вероятными значениями смещения, для найденных значений смещения рассчитывают координаты всех кольцевых сварных швов на рассматриваемом участке.

В качестве пояснения приводим следующее.

В процессе изготовления элементы трубопровода приобретают определенный уровень остаточной намагниченности. При строительстве трубопровода вектора суммарных магнитных моментов элементов трубопровода располагаются хаотично. При эксплуатации трубопровода намагниченность его элементов может изменяться под действием внутреннего давления или из-за влияния различных внешних факторов. Некоторым вариантам сочетаний остаточной намагниченности соседних элементов трубопровода соответствуют характерные особенности распределения магнитного поля. Измерив распределение постоянного магнитного поля вдоль проекции оси трубопровода на поверхность грунта и проанализировав полученные магнитограммы, можно определить положение границ между некоторыми элементами трубопровода с различной ориентацией векторов суммарных магнитных моментов, эти границы соответствуют кольцевым сварным швам трубопровода. Поиск кольцевых сварных швов может быть проведен с достаточной достоверностью только при условии наличия на обследуемом участке характерных особенностей распределения магнитного поля.

На фиг. 1 представлена схема, иллюстрирующая задачу определения значения высоты локальных экстремумов.

На фиг. 2 представлена схема, иллюстрирующая задачу определения положения кольцевых сварных швов при известной информации о длинах и последовательности расположения швов на рассматриваемом участке трубопровода.

На фиг. 3 представлен график зависимости разности вертикальных компонент индукции измеренного магнитного поля и индукции магнитного поля Земли от линейной координаты точки измерения.

На фиг. 4 представлены результаты измерения глубины заложения оси трубопровода в точках измерения.

На фиг. 5 представлен график зависимости приведенных к средней глубине значений вертикальной компоненты индукции магнитного поля от линейной координаты точки измерения.

На фиг. 6 представлен график усредненной производной вертикальной компоненты индукции магнитного поля по линейной координате.

На фиг. 7 представлен график зависимости приведенных к средней глубине значений вертикальной компоненты индукции магнитного поля от линейной координаты точки измерения с указанием результатов определения кольцевых сварных швов (прямоугольники, вытянутые в вертикальном направлении, высота прямоугольников пропорциональна абсолютному значению высоты соответствующих экстремумов).

На фиг. 8 представлен график зависимости приведенных к средней глубине значений вертикальной компоненты индукции магнитного поля от линейной координаты точки измерения с указанием истинного положения кольцевых сварных швов (вертикальные сплошные линии).

На фиг. 9 представлен график зависимости степени совпадения кольцевых сварных швов и экстремумов от линейной координаты кольцевого сварного шва №1.

На фиг. 10 представлен график зависимости приведенных к средней глубине значений вертикальной компоненты индукции магнитного поля от линейной координаты точки измерения с указанием результатов определения кольцевых сварных швов (вертикальные штриховые линии).

Способ реализуется следующим образом. Проводят измерение индукции постоянного магнитного поля Земли в точке, расположенной на удалении от трубопровода и от посторонних ферромагнитных предметов, таким образом, чтобы источники индукции постоянного магнитного поля не оказывали влияния на результаты измерения магнитного поля Земли. Проводят измерение с поверхности земли индукции постоянного магнитного поля при перемещении датчиков над осью трубопровода. В каждой точке измерения рассчитывают разность вертикальных компонент индукции измеренного магнитного поля и индукции магнитного поля Земли Bmxi (i - номер точки измерения, i=1, 2,…, n, n - количество точек измерения):

где Buxi - вертикальная компонента индукции измеренного поля в i-й точке измерения, Bзx - вертикальная компонента индукции магнитного поля Земли.

В каждой точке измерения магнитного поля измеряют глубину заложения оси трубопровода hi. Определяют среднюю глубину заложения оси трубопровода на рассматриваемом участке h0:

Осуществляют приведение измеренных значений вертикальной компоненты индукции постоянного магнитного поля к среднему значению глубины:

где Bmxi - вертикальная компонента индукции магнитного поля трубопровода в i-й точке измерения, Bxi - приведенное к глубине h0 значение вертикальной компоненты индукции магнитного поля трубопровода в i-й точке измерения.

Исключают из рассмотрения участки с магнитными помехами (краны, тройники, врезки, пересечения с коммуникациями, металлические предметы, положение которых известно при проведении измерений).

Проводят поиск локальных экстремумов зависимости приведенных значений вертикальной компоненты индукции Вх от линейной координаты у точек измерения, отсчитываемой вдоль оси трубопровода. Для поиска экстремумов может использоваться, например, следующий способ. Участок зависимости Вх(y) в окрестностях i-й точки измерений аппроксимируется отрезком прямой Bx=Eiy+Gt. Коэффициент Ei при переменной у представляет собой значение усредненной производной Вх по координате y в i-й точке. Для вычисления Ei используется следующее выражение:

где Bxi - приведенное значение вертикальной компоненты индукции в i-й точке измерений, yi - линейная координата i-й точки измерений, k=-m,…, -1, 0, 1, m, m - величина, характеризующая количество точек, используемых при аппроксимации. Значение m зависит от шага измерений вдоль оси y. При шаге 1 м оптимальное значение m=2. Точки, в которых производная dBx/dy=0, представляют собой точки локальных экстремумов Вх.

Для каждого локального экстремума определяют значение высоты w следующим образом. Рассмотрим локальный экстремум 2 зависимости Вх(y) и соседние по отношению к нему локальные экстремумы 1 и 3 (фиг. 1). Очевидно, что если экстремум 2 - максимум, то экстремумы 1 и 3 - минимумы. И наоборот, если экстремум 2 - минимум, то экстремумы 1 и 3 - максимумы. Проведем прямую, соединяющую точки 1 и 3, и определим значение Вх4, соответствующее точке пересечения 4 этой прямой с вертикальной прямой y=y2. Абсолютное значение разности величин Вх2 и Вх4 представляет собой значение высоты w, соответствующей рассматриваемому экстремуму 2:

Чем больше значение высоты w, тем больше вероятность наличия кольцевого сварного шва в непосредственной близости от данного экстремума. Считают, что предполагаемые координаты кольцевых сварных швов совпадают с координатами локальных экстремумов Вх(y), для которых выполняется условие

где wt - заданное граничное значение высоты. Оптимальное значение wt находится в диапазоне от 1,0·sx до 3,0·sx, где sx - среднеквадратичное отклонение значений Вх на рассматриваемом участке измерений:

Если длины труб известны, то вероятное положение кольцевых сварных швов определяют на основании анализа взаимного расположения всех экстремумов Вх(y) на данном участке с учетом реальных расстояний между кольцевыми сварными швами. Предполагают, что истинная координата выбранного шва yu находится в интервале [у0-d0, У0+d0] (фиг. 2). Поиск швов осуществляют в пределах указанного интервала. Текущее положение выбранного шва характеризуется координатой у. При данной у для каждого шва производят поиск экстремумов, расстояние от которых до шва не превышает заданной величины ds (полуширина окна поиска). Если таких экстремумов несколько, то выбирают экстремум, находящийся на минимальном расстоянии от шва. Выбранный таким образом экстремум для k-го шва характеризуются двумя числами - значение высоты wk и расстоянием до шва dk. Рассчитывают степень совпадения q положения экстремумов Вх(y) и кольцевых сварных швов по формуле

Суммирование осуществляют по швам, в окрестностях которых обнаружены экстремумы. Если на расстоянии ds от шва экстремумов не имеется, то такой шов в суммировании не участвует.

Расчет q производят при изменении y в пределах заданного интервала с заданным шагом. Если зависимость q(y) имеет максимумы, то значения y, соответствующие этим максимумам, считают наиболее вероятными координатами выбранного шва. Зная координату одного из швов, длины и последовательность расположения труб, определяют координаты остальных швов.

Предлагаемый способ может быть реализован при использовании вместо вертикальной компоненты Вх индукции магнитного поля модуля В индукции магнитного поля. При этом в формулах (1), (3)-(5), (7) проводят замену величин Buxi, Взх, Bmxi, Bxi на соответствующие величины Bui, Вз, Bmi, Bi.

Предлагаемый способ позволяет осуществлять определение линейных координат кольцевых сварных швов подземного трубопровода на основании результатов наземных магнитометрических измерений в автоматизированном режиме с использованием соответствующего программного обеспечения, в котором реализуется представленная последовательность действий.

Пример

Необходимо дистанционно, без вскрытия грунта, определить положение кольцевых сварных швов на участке подземного магистрального нефтепровода длиной 200 м и диаметром 1220 мм. Измерения производят с помощью устройства дистанционного магнитометрического контроля состояния металла трубопровода «МАГ-01» (изготовитель ОАО «Гипрогазцентр»). Измеряют вертикальную компоненту индукции постоянного магнитного поля Земли в точке, расположенной на удалении от посторонних ферромагнитных предметов, в том числе от трубопровода: Взх=51,2 мкТл. Измеряют величину вертикальной компоненты индукции постоянного магнитного поля в точках, расположенных вдоль проекции оси газопровода на поверхность грунта. Расстояние между точками измерения 1 м. В каждой точке измерения рассчитывают разность вертикальных компонент индукции измеренного магнитного поля и индукции магнитного поля Земли по формуле (1), строят график. Результаты расчета представлены на фиг. 3. В каждой точке измерения магнитного поля измеряют глубину заложения оси трубопровода. Результаты измерения представлены на фиг. 4. Определяют среднюю глубину заложения оси трубопровода на рассматриваемом участке по формуле (2): h0=2,2 м. Осуществляют приведение измеренных значений вертикальной компоненты индукции постоянного магнитного поля к среднему значению глубины по формуле (3). Результаты расчета представлены на фиг. 5. Для каждой точки измерений рассчитывают усредненную производную Вх по координате у с использованием формулы (4). При расчетах используют значение параметра аппроксимации m=2. Результаты расчета представлены на фиг. 6. Определяют координаты локальных экстремумов зависимости Вх(y), то есть линейные координаты точек, в которых усредненная производная dBx/dy равна нулю. Для каждого локального экстремума определяют значение высоты w. Характеристики найденных локальных экстремумов представлены в таблице 1 и показаны на фиг. 7. Рассчитывают среднеквадратичное отклонение значений Вх на рассматриваемом участке измерений по формуле (7): sx=4,8 мкТл. Выбирают граничное значение wt=1,0·sx=4,8 мкТл. Определяют локальные экстремумы, для которых выполняется условие (6) при выбранном значении wt. Это условие выполняется для экстремумов с номерами 1-6, 9, 14-17, 19, 20. Делают заключение о том, что кольцевые сварные швы расположены в окрестностях точек с линейными координатами 4,3 м, 17,1 м, 28,8 м, 41,1 м, 51,2 м, 62,8 м, 97,1 м, 132,7 м, 142,2 м, 153,4 м, 165,6 м, 177,0 м, 188,4 м.

По результатам диагностического обследования на данном участке нефтепровода ближайшие к предполагаемым кольцевым сварным швам истинные швы имеют следующие линейные координаты: 5,4 м, 16,9 м, 28,5 м, 40,0 м, 51,5 м, 62,7 м, 97,3 м, 131,5 м, 142,5 м, 154,0 м, 165,5 м, 177,0 м, 188,5 м (фиг. 8). Таким образом, на данном участке определено положение тринадцати швов из семнадцати с ошибкой до 1,2 м. При этом положение девяти швов определено с ошибкой менее 0,5 м.

Рассмотрим пример поиска кольцевых сварных швов на том же участке при известных длинах и последовательности расположения труб. Определение положения кольцевых сварных швов при наличии указанной информации может быть полезно, например, для уточнения координат мест шурфований по результатам внутритрубной диагностики и соответствующего снижения объемов земляных работ. По данным внутритрубной диагностики кольцевой сварной шов с условным номером 1 имеет линейную координату y=-5±5 м относительно начала участка магнитометрических измерений. Выбирают интервал поиска от -10 до 0 м и шаг поиска 0,1 м. При изменении положения шва №1 в пределах указанного интервала с указанным шагом производят расчет степени совпадения швов и экстремумов на рассматриваемом участке по формуле (8). Результаты расчета представлены на фиг. 9. Зависимость q(y) имеет максимум, соответствующий значению у=-5,9 м. Делают заключение о том, что линейная координата шва №1 равна -5,9 м. Определяют линейные координаты остальных кольцевых сварных швов на рассматриваемом участке путем последовательного прибавления известных длин труб к линейной координате шва №1 (фиг. 10).

По результатам диагностического обследования истинная линейная координата кольцевого сварного шва №1 равна -6,2 м. Таким образом, положение всех кольцевых сварных швов на данном участке определено с ошибкой 0,3 м.

1. Способ определения положения кольцевых сварных швов подземного трубопровода, изготовленного из ферромагнитного материала, включающий измерение индукции постоянного магнитного поля над осью трубопровода с определенным шагом, построение графика, поиск экстремумов графика зависимости параметров индукции магнитного поля от линейной координаты, отсчитываемой вдоль оси трубопровода, отличающийся тем, что в каждой точке измерения магнитного поля измеряют глубину заложения оси трубопровода, определяют среднюю глубину заложения оси трубопровода на рассматриваемом участке, осуществляют приведение измеренных значений параметров индукции к среднему значению глубины, определяют линейные координаты экстремумов графика параметров индукции магнитного поля, для каждого экстремума вычисляют значения высоты, линейные координаты экстремумов, значения высоты которых превышают заданное пороговое значение, считают вероятными координатами кольцевых сварных швов трубопровода.

2. Способ по п. 1, отличающийся тем, что из проектной или эксплуатационной документации получают данные о длинах и последовательности расположения труб на рассматриваемом участке, выбирают интервал поиска, в пределах этого интервала производят смещение предполагаемого положения швов вдоль магнитограммы с заданным шагом, для каждого значения смещения рассчитывают величину, характеризующую степень совпадения швов и экстремумов, значения смещения, соответствующие наиболее полному совпадению, считают наиболее вероятными значениями смещения, для найденных значений смещения рассчитывают координаты всех кольцевых сварных швов на рассматриваемом участке.



 

Похожие патенты:

Изобретение относится к области мониторинга состояния трубопроводов. Технический результат - повышение точности контроля.

Изобретение относится к трубопроводному транспорту. Технический результат - создание экономичной, стационарной оптической системы мониторинга надземных переходов магистральных трубопроводов, позволяющей получать информацию о реальном изменении геометрии трубы надземного перехода и положения ее опор в формате 3D.

Изобретение относится к технике неразрушающего контроля качества магистральных трубопроводов, в частности, к способам внутритрубной дефектоскопии с помощью дефектоскопов-снарядов.

Устройство и способ предназначены для определения положения трубопровода в пространстве при эксплуатации и строительстве трубопроводов. Устройство состоит из аппаратной части: акселерометров, гироскопов и одометра, и программной части, при этом аппаратная часть установлена на внутритрубный инспекционный прибор и состоит из набора датчиков.

Способ относится к системам автоматического контроля работы нефтегазового оборудования и позволяет своевременно обнаруживать предаварийные ситуации, связанные с отложением гидратов в газовом оборудовании.

Изобретение относится к системам управления, предназначенным для обеспечения дистанционного контроля технологическим процессом транспортировки нефти по магистральным нефтепроводам.

Изобретение относится к измерительной технике и может быть использовано для измерения профиля искривления протяженных трубчатых каналов. Измеритель искривления трубчатого канала содержит датчики изгиба (4), подключенные к измерительной схеме.

Изобретение относится к трубопроводному транспорту и может быть использовано для определения пространственного положения подводного трубопровода. В способе измеряют модуль вектора индукции магнитного поля Земли (ВИМПЗ) при помощи магнитометров, установленных совместно с точкой приема сигнала на одном вертикальном носителе, буксируемом за судном.

Группа изобретений относится к трубопроводному транспорту, в частности к защитным устройствам и к устройствам для наблюдения за оборудованием. Предложено предохранительное устройство для заглушки трубы и для трубы, в котором заглушка содержит закрывающую внутреннюю стенку трубы гильзу, при этом предохранительное устройство выполнено для выработки сигнала тревоги.

Изобретение относится к трубопроводному транспорту и может быть использовано для автоматического контроля технологического процесса транспортировки жидкости и газа, например для контроля и управления блоком электроприводных задвижек на участках нефтепроводов, газопроводов, водоводов, расположенных в труднодоступной местности.

Изобретение относится к средствам неразрушающего контроля и может быть использовано для диагностики напряженно-деформированного состояния магистральных трубопроводов. Комплекс содержит герметичный контейнер 1, GSV-канал связи 8, сервер 9, электронный блок 2, магнитошумовые датчики 3,4,5,6 напряженно-деформированного состояния. На боковых образующих трубопровода во взаимно перпендикулярных осях с привязкой к линии горизонта устанавливают четыре тензометрических датчика 10,11,12,13 в точках, сходных с точками установки магнитошумовых датчиков. Комплект из четырех тензометрических датчиков связан с электронным узлом 20, входящим в электронный блок 2. С помощью электронного узла происходит вычисление вектора механических деформаций трубопровода в плоскости установки тензометрических датчиков и определение угла и направления действия оползневых масс на трубопровод. Достигается предотвращение разрушения трубопровода. 3 ил.

Изобретение относится к области добычи природного газа и, в частности, к определению коэффициента фактического гидравлического сопротивления газосборного шлейфа. Автоматизированная система управления технологическими процессами газового промысла в реальном масштабе времени контролирует значение коэффициента эффективности эксплуатации газопромыслового шлейфа Е по паспортным параметрам шлейфа, данным по его эксплуатации и контролируемым технологическим параметрам. Если значение коэффициента Е вышло за допустимые границы, то констатируют: нормальный режим работы скважин и шлейфа нарушены (в шлейфе кроме газа присутствует выше допустимой нормы иной фактор: газовый гидрат, пластовая вода, механические примеси). Способ позволяет оперативно выявлять потенциальную возможность отказа газосборного шлейфа.

Изобретение относится к области экспертизы промышленной безопасности опасных производственных объектов. Технический результат - повышение точности определения срока службы трубопровода. Способ заключается в том, что проводят количественную оценку процесса деградации трубопровода от переменных нагрузок, количественно выраженную в усталостной поврежденности трубопровода как функции времени эксплуатации, характеризующей процесс накопления усталостных повреждений в трубопроводе. Определяют поврежденность трубопровода, характеризующую процесс деградации трубопровода от коррозии и коррозионного растрескивания под напряжением и поврежденность трубопровода от эксплуатационных дефектов, в частности трещин, язв, гофр, вмятин, задиров или царапин. 1 з.п. ф-лы,3 табл., 1 ил.
Изобретение относится к области мониторинга трубопроводных систем, эксплуатируемых в сложных климатических условиях, в частности к способам оценки технического состояния трубопроводов надземной прокладки в условиях вечной мерзлоты. Способ мониторинга заключается в выполнении этапов установки контрольного и измерительного оборудования, сбора данных по показаниям контрольного и измерительного оборудования, передачи и записи данных, анализа и оценки результатов обработки и принятия решения о необходимости проведения компенсационных мероприятий по результатам комплексного мониторинга технического состояния трубопроводов надземной прокладки. В процессе выполнения способа определяют текущее положение трубопровода и опор трубопровода и его отклонение от проектного положения, величины нагрузок на опоры, напряжение изгиба трубопровода, напряжения компенсатора, и оценивают допустимость напряженно-деформированного состояния трубопровода. Изобретение позволяет проводить оценку технического состояния и определение режимов безаварийной работы трубопроводов надземной прокладки, эксплуатируемых в условиях вечной мерзлоты.

Изобретение относится к системам контроля состояния магистральных и промысловых нефтепроводов, газопроводов и нефтепродуктопроводов и может быть использовано для отслеживания прохождения внутри обследуемых трубопроводов внутритрубных диагностических снарядов и определения местоположения особенностей трубопроводов. Техническим результатом является повышение точности определения времени прохождения внутритрубного снаряда вблизи контрольных точек и тем самым точности определения положения особенностей трубопровода. Этот результат достигается тем, что снаряд пропускают внутри трубопровода, измеряют измерительной системой снаряда физические величины, характеризующие состояние и/или характеристики снаряда и/или трубопровода, и записывают их в накопитель данных снаряда с привязкой ко времени по часам снаряда. С помощью регистратора, установленного вблизи контрольной точки трубопровода, измеряют физические величины, позволяющие идентифицировать прохождение снаряда вблизи регистратора, формируют и записывают в накопитель данных регистратора характеристики, идентифицирующие соответствующие моменты времени прохождения снаряда по часам регистратора. С помощью передатчика, расположенного в одном из пары объектов, состоящей из снаряда и регистратора, передают сигнал с временной характеристикой, связанной с показаниями часов на стороне передатчика; принимают переданный сигнал приемником, расположенным в другом из указанной пары объектов, и записывают в накопитель данных на стороне приемника характеристику, связанную с временной характеристикой принятого сигнала, с привязкой к часам на стороне приемника. Определяют разность показаний часов на стороне передатчика и приемника, тем самым величину расхождения времени по часам регистратора и снаряда, и используют ее в контрольной точке для определения характеристик трубопровода. 2 н. и 36 з.п. ф-лы, 7 ил.

Изобретение относится к обеспечению безопасности эксплуатируемых подземных трубопроводов и предназначено для предотвращения врезок в трубу, установке боеприпасов для ее подрыва, имитаторов утечек перекачиваемого продукта для дезинформации службы безопасности, а также для обнаружения утечек перекачиваемого продукта. Технический результат позволяет повысить надежность обнаружения. В способе анализируется суммарный сигнал от детекторов упругих колебаний, установленных по обе стороны трубопровода на наличие в нем составляющих от шагов нарушителей с определением их численности. При обнаружении такой информации оценивают минимально возможное время доступа к трубопроводу группой нарушителей установленной численности. Одновременно формируют огибающие энергии и плотности переходов через нуль суммарного сигнала и решение принимают при превышении ими эталонных уровней в течение указанного минимально возможного времени доступа к трубопроводу. 8 з.п. ф-лы, 3 ил., 1 табл.

Новое техническое решение обеспечивает расширение функциональных возможностей, повышение удобства и снижение трудоемкости обслуживания, а также создание компактной конструкции контрольно-измерительного пункта, благодаря тому, что стойка контрольно-измерительного пункта выполнена из отрезка трубы прямоугольного поперечного сечения, на верхнем торце которой размещен клеммный терминал, содержащий опорно-соединительное кольцо, на внутренней поверхности которого выполнены держатели в виде вертикальных направляющих с пазами, в которых установлены взаимозаменяемые клеммные панели; на каждой клеммной панели выполнена сетка монтажных отверстий, при этом соседние отверстия расположены на одинаковом расстоянии друг от друга, крышка выполнена в виде съемного колпака, представляющего собой четырехгранную призму, установленную с возможностью взаимодействия с опорно-соединительным кольцом, километровый знак выполнен сборно-разборным и состоит из двух указательных пластин и двух соединительных кронштейнов. 8 ил.

Изобретение относится к области автоматизированных систем мониторинга и диагностики технического состояния металлических подземных сооружений. Технический результат - повышение качества комплексного дистанционного мониторинга и анализа уровня коррозионной защиты подземных сооружений для определения причин возникновения коррозии и принятие своевременных мер по ее предотвращению. Аппаратно-программный комплекс мониторинга коррозионной защиты подземных сооружений состоит из связанных между собой системы измерений и обработки результатов измерений, системы обеспечения измерений и дистанционного управления, системы связи, центра мониторинга и управления. 4 ил.

Способ предназначен для обеспечения промышленной безопасности технологического оборудования установок. Способ включает анализ требований нормативных документов на технические устройства и занесение сведений об их характеристиках в информационную базу данных, оценку технического состояния технических устройств в разные периоды эксплуатации их с учетом их технического состояния до начала эксплуатации, формирование общей информационной базы данных о фактическом техническом состоянии устройств в разные периоды времени и динамики развития технического состояния в будущем на основе сведений, полученных при оценке технического состояния на предыдущих стадиях. При этом при оценке проводят техническую генетику состояния технических устройств с получением данных об их техническом состоянии за предыдущий период времени, проводят техническую диагностику их состояния на настоящий период времени, проводят техническую прогностику их состояния на последующий период их эксплуатации. Выделяют из общего числа технические устройства, входящие в производственный комплекс оборудования, отнесенные к категории слабых звеньев, наиболее подверженных деградационным процессам, снижающим их эксплуатационную надежность. Устанавливают причины, снижающие их работоспособность. На основе экспертно-бальной оценки с помощью матричной формы анализа полученной информации о степени надежности и безопасности эксплуатации тому или иному обследуемому устройству присваивают числовое значение ранга опасности от 1 до 4 в зависимости от их технического состояния на основе полученных результатов при проведении технической генетики, технической диагностики, технической прогностики. Далее в зависимости от присвоенного техническому устройству ранга опасности устанавливают уровень, объем и периодичность проводимого неразрушающего контроля технического состояния технического устройства. Технический результат - обеспечение промышленной безопасности технологического оборудования установок. 9 з.п. ф-лы, 27 табл.

Изобретение относится к области инженерной геодезии и может быть использовано для контроля положения трубопроводов надземной прокладки. На сваи опор трубопровода устанавливают деформационные марки. На расстоянии не более 50 м от трубопровода устанавливают грунтовые глубинные реперы, вдоль трубопровода с интервалом 20-40 км устанавливают референцные станции, определяют их координаты в государственной сети и переводят в местные координаты, которые передают на сервер. Затем в местной системе координат осуществляют нулевой цикл измерений координат деформационных марок относительно грунтовых глубинных реперов, определяют нулевое планово-высотное положение трубопровода и по результатам всех измерений строят проектную цифровую модель трубопровода. В процессе эксплуатации трубопровода с помощью мобильных GPS/ГЛОНАСС приемников осуществляют контрольные измерения координат деформационных марок, характеризующих текущее планово-высотное положение трубопровода, передают данные измерений на сервер и строят текущую цифровую модель трубопровода. По результатам сравнения с проектной цифровой моделью определяют участки, на которых отклонение текущего положения трубопровода от проектного превышает допустимые значения. Технический результат: упрощения процедуры обращения, хранения и передачи данных, повышение точности и скорости определения текущего положения трубопровода. 10 з.п. ф-лы, 11 ил.
Наверх