Способ определения свежести гречневой крупы



Способ определения свежести гречневой крупы
Способ определения свежести гречневой крупы
Способ определения свежести гречневой крупы
Способ определения свежести гречневой крупы

 


Владельцы патента RU 2563820:

Федеральное государственное бюджетное учреждение Научно-исследовательский институт проблем хранения Федерального агентства по государственным резервам (RU)

Изобретение относится к пищевой промышленности. Согласно способу отбирают пробу гречневой крупы, варят в воде в соотношении 1:3 в течение 15-20 мин для усиления аромата, охлаждают до температуры 20-25°C, раздельно помещают по 5 г пробы в пять виал, опускают виалы в автоматическое устройство отбора проб мультисенсорной системы распознавания компонентов газовых смесей типа «VOCmeter», нагревают до температуры 50-55°C в течение 10-20 мин, отбирают из емкостей летучие вещества, пропускают их через четыре неселективных металл-оксидных сенсора, реагирующих на летучие компоненты образца изменением электрической проводимости чувствительного слоя, которая преобразовывается в электрический сигнал. Далее регистрируют сигнал на компьютере, обрабатывают, сравнивают с эталонными образцами методом главных компонент, получают отчет в виде диаграммы, по которой определяют координаты центра тяжести кластера из пяти точек, соответствующего центру кластера по оси главных компонент, и устанавливают свежесть гречневой крупы. Причем гречневую крупу считают свежей, если центр тяжести кластера не превышает 45000 условных единиц. Достигается повышение точности, а также ускорение и упрощение определения. 4 ил., 2 пр.

 

Изобретение относится к пищевой промышленности в области контроля качества круп и может быть использовано для определения свежести гречневой крупы и ее пригодности для дальнейшего хранения и переработки.

Известен способ органолептической оценки свежести гречневой крупы описательным методом, предусматривающим определение цвета, вкуса и запаха. При этом в продукте не должно быть прогорклого и кислого вкуса, затхлого и плесневелого запаха (ГОСТ 5550-74 Крупа гречневая. Технические условия).

Недостатками указанного способа являются:

- субъективность, т.к. ощущения цвета, вкуса и запаха зависят от физического, психологического состояния экспертов;

- невозможность получить численные значения исследуемых характеристик продукта, и, следовательно, недостаточно высокая точность определения;

- сложность организации дегустационной оценки;

- необходимость перерывов для восстановления обонятельных и вкусовых рецепторов экспертов, что существенно удлиняет процесс;

- трудность выявления порчи крупы на начальных этапах.

Известен способ определения свежести круп по кислотному числу жира, заключающийся в экстракции жира н-гексаном, последующем удалении растворителя, высушивании, взвешивании жира и титровании извлеченных свободных жирных кислот КОН концентрацией 0,1 моль/дм3 (ГОСТ Ρ 52466-2005 Зерно и продукты его переработки. Метод определения кислотного числа жира).

К недостаткам известного способа относятся трудоемкость, длительность процесса, отсутствие точных критериев для оценки свежести гречневой крупы.

Технический результат предлагаемого изобретения заключается в повышении точности, сокращении продолжительности и трудоемкости исследования.

Для достижения указанного технического результата в способе определения свежести гречневой крупы согласно изобретению отбирают пробу гречневой крупы, варят в воде в соотношении 1:3 в течение 15-20 мин для усиления аромата, охлаждают до температуры 20-25°C, раздельно помещают по 5 г пробы в пять стеклянных герметично закрытых емкостей (виал), опускают виалы в автоматическое устройство отбора проб мультисенсорной системы распознавания компонентов газовых смесей типа «VOCmeter», нагревают до температуры 50-55°C в течение 10-20 мин, отбирают из емкостей летучие вещества, пропускают их через четыре неселективных металл-оксидных сенсора, реагирующих на летучие компоненты образца изменением электрической проводимости чувствительного слоя, которая преобразовывается в электрический сигнал, регистрируют сигнал на компьютере, обрабатывают, сравнивают с эталонными образцами методом главных компонент (РСА), получают отчет в виде диаграммы, по которой определяют координаты центра тяжести кластера (L), соответствующего центру кластера по оси главных компонент (PCl), и устанавливают свежесть гречневой крупы. Причем гречневую крупу считают свежей, если центр тяжести кластера не превышает 45000 условных единиц.

Сущность способа заключается в следующем.

При хранении пищевых продуктов, в том числе гречневой крупы, происходит разложение химических веществ (белков, углеводов и пр.) с образованием летучих соединений (СО, NO, NO2, SO2, СН4 и др.). Кроме того, каждый продукт отличается химическим составом и содержанием ароматических соединений. Например, характерной особенностью гречневой муки является высокое содержание белков.

С целью повышения точности, сокращения длительности проведения испытания и снижения трудоемкости свежесть гречневой крупы устанавливают по значению координаты центра кластера по оси главных компонент, полученного при исследовании образца с помощью мультисенсорной системы распознавания компонентов газовых смесей типа «VOCmeter».

Для этого отбирают пробу гречневой крупы, варят в воде в соотношении 1:3 в течение 15-20 мин для усиления аромата, охлаждают до температуры 20-25°C, раздельно помещают по 5 г пробы в пять стеклянных чистых виал, которые затем пломбируют ручным устройством для закупоривания алюминиевого обжимного колпачка.

Далее виалы опускают в автоматическое устройство отбора проб мультисенсорной системы распознавания компонентов газовых смесей типа «VOCmeter» и нагревают до температуры 50-55°C в течение 10-20 мин. При температуре ниже 50°C происходит недостаточно интенсивное выделение ароматических компонентов крупы, а при температуре выше 55°C возможна денатурация белков, что снижает точность и достоверность определения. Указанный временной интервал термостатирования является оптимальным для выделения достаточного количества летучих веществ, необходимого для реакции сенсоров.

Затем отобранные из емкостей летучие вещества пропускают через четыре неселективных металл-оксидных сенсора (MOS), реагирующих на летучие компоненты образца изменением электрической проводимости чувствительного слоя, которая преобразовывается в электрический сигнал и передается по присоединенному кабелю на внешний персональный компьютер.

Далее результаты исследования обрабатывают с помощью компьютерной программы «ARGUS» методом главных компонент (РСА), получают отчет в виде диаграммы, полученные значения сенсоров прибора в условных единицах сравнивают с эталонными образцами.

На рис.1 (а) приведен общий вид пространственного расположения точек мультисенсорного анализа эталонных проб гречневой крупы.

На рис.1 (б) представлен увеличенный фрагмент пространственного расположения точек мультисенсорного анализа эталонных проб гречневой крупы, соответствующих свежему продукту.

Экспериментально установлено, что если пространственное расположение точек мультисенсорного анализа проб гречневой муки близко к кластерам с точками 1 и 2, то образец гречневой крупы является свежим. Резкое увеличение размеров кластеров 3, 4 и 5 демонстрирует, что образец приобретает совершенно другой аромат вследствие порчи (рис. 1).

При качественном определении свежести гречневой крупы методом главных компонент с помощью компьютерной программы «ARGUS» осуществляется сравнение показаний прибора с базой данных и их распределение к ближайшему кластеру.

Для количественного определения свежести гречневой крупы определяют координаты центра тяжести кластера L из пяти точек, соответствующего центру кластера по оси главных компонент (PCl). При этом установлено, что гречневая крупа является свежей, если центр тяжести кластера не превышает 45000 условных единиц (рис.2).

На рис.2 изображено пространственное расположение кластеров свежести проб гречневой крупы (база данных эталонных образцов гречневой крупы), где «fresh» - уровень, характеризующий продукт питания как свежий, «stale» - уровень, характеризующий продукт питания как несвежий.

Использование для количественного определения свежести гречневой крупы компьютерной программы позволяет ускорить процесс, получать более достоверные данные, выраженные в цифровом виде.

Предлагаемое изобретение поясняется на следующих примерах.

Пример 1. Отбирают 50 г гречневой крупы, варят в 150 г воды 20 мин, охлаждают до температуры 22°C, помещают по 5 г пробы в пять стеклянных виал, которые затем пломбируют ручным устройством для закупоривания алюминиевого обжимного колпачка. Виалы с анализируемыми образцами опускают в автоматическое устройство отбора проб мультисенсорной системы распознавания компонентов газовых смесей VOCmeter, нагревают до температуры 55°C в течение 15 мин, отбирают из емкостей летучие вещества, пропускают их через четыре неселективных металл-оксидных сенсора, реагирующих на изменение электрической проводимости в присутствии анализируемых газов. Полученные сигналы сенсоров обрабатывают на компьютере, сравнивают с базой данных эталонных образцов гречневой крупы методом главных компонент с помощью компьютерной программы, получают отчет в виде диаграммы (рис.3), по которой определяют пространственное положение кластера из 5 точек и координаты его центра тяжести.

На рис.3 представлено пространственное расположение точек при обработке методом главных компонент показаний сенсоров MOS мультисенсорного анализа образцов гречневой крупы для Примера 1 (П1), отнесенной обрабатывающей программой к категории свежее («fresh»).

Получают, что все точки мультисенсорного исследования попадают в кластер свежести «fresh» (свежий), при этом центр тяжести кластера L равен 31000 условных единиц по оси главных компонент (PCl). Следовательно, образец гречневой крупы является свежим и может использоваться для длительного хранения и переработки.

Пример 2. Процесс определения свежести образца гречневой крупы проводят аналогично примеру 1.

На рис.4 представлено пространственное расположение точек при обработке методом главных компонент показаний сенсоров MOS мультисенсорного анализа образцов гречневой крупы для Примера 2 (П2), отнесенной обрабатывающей программой к категории несвежее («stale»).

После обработки результатов мультисенсорного исследования получают, что все точки попадают в кластер свежести «stale» (несвежий), при этом центр тяжести кластера L равен 195000 условных единиц по оси главных компонент (рис. 4). Следовательно, образец гречневой крупы является несвежим и не может использоваться для длительного хранения и переработки.

Таким образом, изобретение позволяет повысить точность, сократить длительность, снизить трудоемкость способа определения свежести гречневой крупы, а также оценить ее количественно.

Способ определения свежести гречневой крупы, характеризующийся тем, что отбирают пробу гречневой крупы, варят в воде в соотношении 1:3 в течение 15-20 мин для усиления аромата, охлаждают до температуры 20-25°C, раздельно помещают по 5 г пробы в пять стеклянных герметично закрытых емкостей (виал), опускают виалы в автоматическое устройство отбора проб мультисенсорной системы распознавания компонентов газовых смесей типа «VOCmeter», нагревают до температуры 50-55°C в течение 10-20 мин, отбирают из емкостей летучие вещества, пропускают их через четыре неселективных металл-оксидных сенсора, реагирующих на летучие компоненты образца изменением электрической проводимости чувствительного слоя, которая преобразовывается в электрический сигнал, регистрируют сигнал на компьютере, обрабатывают, сравнивают с эталонными образцами методом главных компонент, получают отчет в виде диаграммы, по которой определяют координаты центра тяжести кластера из пяти точек, соответствующего центру кластера по оси главных компонент, и устанавливают свежесть гречневой крупы, причем гречневую крупу считают свежей, если центр тяжести кластера не превышает 45000 условных единиц.



 

Похожие патенты:

Изобретение относится к пищевой промышленности, а именно к определениию свежести рисовой крупы. Для этого отбирают пробу крупы и варят в воде в соотношении 1:3 в течение 15-20 мин для усиления аромата, а затем охлаждают до температуры 20-25°C.

Изобретение относится к аналитической химии азота, в частности к определению общего азота в сельскохозяйственном сырье и продуктах его переработки. Способ характеризуется тем, что предусматривает термическое кислотное разложение пробы растительного образца, кратное разбавление пробы до содержания аммонийного азота не более 1000 мг/дм3 и выполнение анализа методом капиллярного электрофореза в кварцевом капилляре, эффективной длиной 0,5 м, внутренним диаметром 75 мкм с получением электрофореграммы, причем общий азот определяют по содержанию аммонийного азота и остаточному содержанию нитрат- и нитрит- ионов, причем для определения аммонийного азота используют водный раствор ведущего электролита, содержащий бензимидазол, 18-краун-эфир-6, сульфат натрия при положительном напряжении на капилляре 12 кВ и длине волны детектирования - 254 нм, а для определения методом капиллярного электрофореза остаточного содержания нитрат- и нитрит-ионов применяют водный раствор ведущего электролита, содержащего хромат калия, уротропин и Трилон Б при отрицательном напряжении на капилляре 14 кВ и длине волны детектирования -254 нм.

Изобретение относится к области пищевой промышленности и касается способа определения массовой доли моносахаридов в инвертном сиропе. Способ предусматривает взвешивание навески, растворение в дистиллированной воде, тщательное перемешивание до растворения навески, экстракцию в ультразвуковой бане, фильтрацию раствора и центрифугирование.

Изобретение относится к аналитической аппаратуре. Устройство для экспресс-оценки качества продуктов питания включает в себя пьезоэлектрические преобразователи со щупами, генератор высокой частоты, генератор импульсов низкой частоты, смеситель, усилитель, преобразователь выходного сигнала, блок отображения информации.

Изобретение относится к области биотехнологии и может быть использовано для повышения эффективности и достоверности определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях путем проведения твердофазного иммуноферментного анализа.

Изобретение относится к сельскому хозяйству и может быть использовано для определения степени зрелости у сортов томатов с красной, желтой, оранжевой и коричневой окраской плодов.

Изобретение относится к области пищевой промышленности и предназначено для контроля качества зефира и мармелада. Способ определения предусматривает взвешивание 2,0-5,0 г образца изделия, помещение образца в мерную колбу объемом 1000 мл, добавление 100-200 см3 дистиллированной воды с температурой 50-70°С, тщательное перемешивание до растворения образца в течение 10-20 мин на водяной бане при температуре 75-85°С, фильтрацию раствора, доведение объема до метки дистиллированной водой и центрифугирование в течение 25-40 мин при скорости 3000-3500 об/мин, после чего прозрачный раствор переносят в емкость для проведения исследований состава органических кислот и макроэлементов методом капиллярного электрофореза с косвенным детектированием.
Способ определения механических микроповреждений зерна включает покрытие зерна металлическим нанопорошком с размером частиц 5-15 нм, очистку поверхности зерна от металлического порошка, определение количества порошка, оставшегося в микротрещинах зерна, для определения степени микроповреждения зерна.

Настоящее изобретение относится к детектору микроволнового излучения для измерения внутренней температуры образца белковосодержащего вещества, например мяса. Заявлено устройство тепловой обработки, предназначенное для тепловой обработки белковосодержащих пищевых продуктов (3) и включающее детектор (1) микроволнового излучения для измерения внутренней температуры белковосодержащего пищевого продукта (3), средство перемещения для транспортировки продуктов (3) через устройство в направлении перемещения (y-направление), так что продукты (3) проходят под неподвижным детектором (1), и средства воздействия на тепловую обработку, управляемые по сигналу детектора (1).

Изобретение относится к пищевой промышленности, в частности к кондитерской отрасли, и может быть использовано для контроля качества пастильного изделия - зефира. Способ определения предусматривает взвешивание 2,0-5,0 г образца зефира.
Изобретение относится к области биохимии и микробиологии, а именно к выявлению бактерий рода Salmonella. Для этого проводят обогащение сальмонелл в неселективной питательной среде, содержащей забуференную пептонную воду и компонент для продуцирования кислоты сальмонеллами. Закисление рН среды реакции указывает на наличие сальмонелл. В качестве компонента для продуцирования кислоты сальмонеллами используют пропиленгликоль, 0,6 г которого вводят во флаконы с 225 мл готовой забуференной пептонной воды. Изобретение позволяет сократить срок выявление бактерий рода Salmonella в пищевых продуктах с 48 до 24 часов. 3 пр.
Изобретение относится к области определения качества кормов. Техническим результатом является сокращение времени пробоподготовки и проведения анализа в наиболее адекватной «in-vivo» тест-системе с получением полной информации по интегральному показателю качества - биологической полноценности корма. Для этого исследуемые пробы вносят в инкубационную среду для выращивания чайного гриба штамма Medusomyces Gisevii Lindau, инкубируют микроорганизм в течение 12-14 суток и затем биомассу гриба взвешивают и по кратности значений биомассы гриба в опыте и контроле (г) определяют коэффициент эффективности (КЭ). По коэффициенту эффективности, равному 1,1-1,6, судят о низком качестве кормов; 1,7-2,5 - о среднем качестве; 2,6-3,0 - хорошем качестве и 3,1-4,0 - высшем качестве кормов. 8 пр.

Изобретение относится к сельскому хозяйству и может быть использовано для объективной оценки степени зрелости различных ботанических сортов томатов при высокоточном отборе плодов необходимой стадии зрелости. Способ оценки степени зрелости плодов томата заключается в измерении максимума медленной индукции флуоресценции хлорофилла и его вариабельности, при этом стадия незрелых плодов характеризуется высокими значениями максимума медленной индукции флуоресценции хлорофилла при его низкой вариабельности; стадия, предшествующая созреванию, характеризуется средними значениями максимума медленной индукции флуоресценции хлорофилла при его высокой вариабельности; а стадия полного созревания - низкими значениями максимума медленной индукции флуоресценции хлорофилла при его низкой вариабельности. Разделение плодов на группы зрелости внутри каждой стадии проводят в соответствии со следующими критериями: для двух первых стадий созревания - чем меньше максимум медленной индукции флуоресценции хлорофилла, но выше его вариабельность, тем более зрелый плод; для стадий полного созревания - чем меньше максимум медленной индукции флуоресценции хлорофилла, но ниже его вариабельность, тем более зрелый плод. Изобретение позволяет повысить точность и эффективность анализа степени зрелости томатов посредством количественной оценки функционального состояния плодов по оптическим характеристикам. 5 табл., 1 пр.
Наверх