Теплообменник

Изобретение относится к теплотехнике и может быть использовано в рекуперативных теплообменниках. Теплообменник содержит внешнюю трубу с подводящим и отводящим патрубками греющей среды и вставленную в нее внутреннюю трубу с подводящим и отводящим патрубками нагреваемой среды, в межтрубном пространстве установлены вставки, которые ступенчато расположены по длине внешней трубы с образованием ходов в межтрубном пространстве и введены во внутреннюю трубу с перекрытием не менее половины ее сечения. Вставки межтрубного пространства выполнены в виде тепловых труб. Технический результат - повышение эффективности работы теплообменника при уменьшении его материалоемкости и упрощении его конструкции. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к области энергетики и может быть использовано в конструкциях рекуперативных теплообменных аппаратов.

Известен теплообменник, включающий корпус с патрубками подвода пара и отвода его конденсата, водяную камеру с патрубками подвода и отвода нагреваемой воды, размещенную в корпусе трубную систему с поверхностью теплообмена первого и второго хода, имеющую зону конденсации пара и зону охладителя конденсата, охладитель конденсата выполнен встроенным, образован частью трубной системы с поверхностью теплообмена первого хода, ограниченной кожухом, образованным из горизонтальных перегородок и вертикальных стенок, и расположен под зоной конденсации пара, трубная система выполнена из U-образных труб, и охладитель конденсата содержит дополнительную зону на втором ходу трубной системы, с возможностью поступления конденсата пара в охладитель конденсата и поперечного омывания поверхности теплообмена сначала второго, а затем первого хода трубной системы (RU №140783, МПК F28D 7/00, опубл. 20.05.2014 г.).

Недостатком известного решения является относительная сложность конструкции устройства.

Известен теплообменник типа труба в трубе, состоящий из корпуса с патрубками для подвода нагреваемого теплоносителя, отвода охлажденного теплоносителя, внутренней трубы с наружным и внутренним оребрением, выполненным в виде цельнометаллических стержней, расположенных в шахматном порядке, и интенсификатора потока, представляющего собой заглушенную с двух сторон трубу (RU №135101, МПК F28D 7/10, опубл. 27.11.2013 г.).

Недостатком известного решения является относительно низкая эффективность теплопередачи движущихся потоков между собой, обусловленная степенью турбулизации движущихся потоков, которую позволяют обеспечить элементы конструкции теплообменника.

Наиболее близким техническим решением по совокупности существенных признаков является теплообменник типа труба в трубе, во внутренней трубе и в межтрубном пространстве которого установлены винтовые вставки, внутреннее пространство внутренней трубы и межтрубное пространство между внутренней и наружной трубами представляют из себя винтовые полости, образованные стенками труб и винтовыми вставками, внутренняя винтовая вставка соединена, преимущественно с помощью сварки или пайки, с внутренней поверхностью внутренней трубы, винтовая вставка в межтрубном пространстве соединена таким же образом с наружной поверхностью внутренней трубы и с внутренней поверхностью наружной трубы, причем материалы внутренней трубы, винтовых вставок и мест стыков винтовых вставок со стенками внутренней трубы имеют минимальное термическое сопротивление, потоки сред (жидких или газообразных) во внутренней трубе и в межтрубном пространстве протекают по винтовым спиралям (RU №2502931, МПК F28F 1/42, опубл. 27.12.2013 г.). Названная конструкция выбрана за прототип.

Недостатками прототипа являются относительно большая материалоемкость и сложность самой конструкции от наличия отдельных направляющих вставок в виде спиралей во внутренней трубе и межтрубном пространстве.

Технический результат заключается в повышении эффективности работы теплообменника при уменьшении его материалоемкости и упрощении его конструкции.

Технический результат достигается тем, что теплообменник содержит внешнюю трубу с подводящим и отводящим патрубками греющей среды и вставленную в нее внутреннюю трубу с подводящим и отводящим патрубками нагреваемой среды, в межтрубном пространстве установлены вставки. Вставки межтрубного пространства ступенчато расположены по длине внешней трубы с образованием ходов в межтрубном пространстве и введены во внутреннюю трубу с перекрытием не менее половины ее сечения. Вставки межтрубного пространства выполнены в виде тепловых труб.

На (фиг. 1) изображена конструкция теплообменника, которая включает внешнюю трубу 1 с подводящим 2 и отводящим 3 патрубками греющей среды и вставленную в нее внутреннюю трубу 4 с подводящим 5 и отводящим 6 патрубками нагреваемой среды. В межтрубном пространстве 7 установлены вставки 8, которые 7 введены в сечение внутренней трубы 4 с частичным его перекрытием и ступенчато расположены по ее длине. Вставки 8 выполнены полыми тепловыми трубами.

Теплообменник (фиг. 1) работает следующим образом. Изначально для наибольшей эффективности работы теплообменника организуют схему движения греющей и нагреваемой среды в противоточном направлении. Для этого во внутреннюю полость внутренней трубы 4 с частично перекрытым при помощи вставок 8 сечением через подводящий 5 и отводящий 6 патрубки нагреваемой среды осуществляют подачу нагреваемой среды. Затем в межтрубное пространство 7 теплообменника, ограниченное внутренней поверхностью внешней трубы 1, наружной поверхностью внутренней трубы 4 и вставками 8, через подводящий 2 и отводящий 3 патрубки осуществляют подачу греющей среды. Движение греющей и нагреваемой среды в теплообменнике происходит вдоль вставок 8, которые создают на их пути местные гидравлические сопротивления (ходы), условия для турбулизации и увеличивают время нахождения (контакта теплообмена) сред в теплообменнике, в результате чего интенсифицируется процесс теплообмена (согласно теории гидродинамического подобия).

В случае использования настоящего теплообменника для сред вода-вода его пространственная ориентация может быть произвольной.

В том случае когда теплообменник используется для конденсации пара, то пар для максимальной эффективности процесса конденсации направляется во внутреннюю трубу 4, ориентированную вертикально, сверху через подводящий патрубок 5, а конденсат отводится через отводящий патрубок 6, охлаждающая среда подается в межтрубное пространство 7 снизу через подводящий патрубок 2 и отводится через отводящий патрубок 3.

Эффективность работы теплообменника может быть увеличена за счет применения вставок из тепловых труб, рабочее вещество которых выбирается с учетом расчетного температурного напора и области применения теплообменника.

В настоящем теплообменнике интенсивность теплообмена между греющей и нагреваемой средой увеличивается при помощи межтрубных вставок из тепловых труб, которые благодаря особому расположению способствуют организации местных гидравлических сопротивлений, обеспечивающих турбулизацию самих движущихся потоков, общая материалоемкость конструкции уменьшается, чем достигается его упрощение, а следовательно, обеспечивается снижение себестоимости, что в итоге характеризует его относительно известных технических решений как более энергоэффективный.

1. Теплообменник, содержащий внешнюю трубу с подводящим и отводящим патрубками греющей среды и вставленную в нее внутреннюю трубу с подводящим и отводящим патрубками нагреваемой среды, в межтрубном пространстве внешней трубы установлены вставки, отличающийся тем, что вставки ступенчато расположены по длине внешней трубы с образованием ходов в межтрубном пространстве и введены во внутреннюю трубу с перекрытием не менее половины ее сечения.

2. Теплообменник по п. 1, отличающийся тем, что вставки выполнены в виде тепловых труб.



 

Похожие патенты:

Изобретение относится к области энергетики, предназначено для одновременного получения пресной воды, холода и электроэнергии. Достигаемые технические результаты - более высокая экономия потребляемой электроэнергии, вплоть до полной компенсации энергозатрат на собственные нужды установки, сопровождающаяся снижением количества выбросов токсичных и парниковых газов судовой энергетической установки, больший коэффициент полезного действия, а также возможность получать холод - получены путем совмещения процесса опреснения воды с получением холода и электроэнергии.

Изобретение относится к области теплотехники и может использоваться в теплообменниках для подогрева или охлаждения среды в жилищно-коммунальном хозяйстве. Теплообменник содержит наружную и U-образную внутреннюю трубы, встроенные друг в друга, присоединительный фланец, патрубки подвода и отвода греющей или охлаждающей среды, внутренняя труба теплообменника жестко закреплена к фланцу наружной трубы, которая выполнена цилиндрической, заглушена с одной стороны и имеет с другой стороны фланец с патрубками подвода и отвода греющей или охлаждающей среды, причем патрубок подвода удлинен, во внутреннюю трубу встроен турбулизатор в виде винтообразной ленты, периодически витой в различных направлениях.
Изобретение относится к охладителю синтез-газа и способу его сборки. Описан охладитель синтез-газа, предназначенный для использования в системе газификации, включающий верхнюю часть (216), содержащую насадки (314) трубопроводов.

Изобретение относится к области теплотехники, а именно к теплообменникам корпусного или погружного типа. Изобретение заключается в том, что теплообменник имеет вертикальные теплообменные трубы для прохода охлаждающего теплоносителя, простирающиеся вдоль всей теплообменной полости, при этом теплообменные трубы объединены в отдельные группы труб и отдельные группы труб разделены между собой вертикальными каналами.

Изобретение относится к машиностроению, а именно к трубам Фильда для высокотемпературных трубчатых теплообменных аппаратов, например, для прямоточных парогенераторов ядерных энергетических установок с нагревающим жидкометаллическим теплоносителем (например, сплав свинца с висмутом).

Изобретение относится к термосифонным теплообменным аппаратам, которые могут использоваться в химической, нефтехимической и других отраслях промышленности. Техническим результатом заявленного изобретения является повышение эффективности и экономичности работы аппарата, а также упрощение процесса изготовления.

Изобретение относится к области теплотехники тяжелых жидкометаллических теплоносителей и может быть использовано в исследовательских, испытательных стендах и установках атомной техники с реакторами на быстрых нейтронах.

Изобретение относится к области теплообмена и может быть использовано преимущественно в области машиностроения для использования теплоты от выхлопных газов двигателей внутреннего сгорания (ДВС).

Изобретение относится к области теплотехники. Устройство для компримирования и осушки газа содержит многоступенчатый компрессор со ступенью низкого давления, ступенью высокого давления и нагнетательным патрубком и адсорбционный осушитель с зоной осушения и зоной регенерации, причем между ступенью низкого давления и ступенью высокого давления помещен промежуточный холодильник, и при этом устройство дополнительно снабжено теплообменником, имеющим главную камеру с входной частью и выходной частью для первой первичной текучей среды, а концы трубок теплообменника соединены с отдельной входной камерой и выходной камерой для каждого трубного пучка; и при этом первый трубный пучок образует охлаждающий контур промежуточного холодильника, служащий для разогрева газа из ступени высокого давления для регенерации адсорбционного осушителя.

Изобретение относится к области теплотехники и может быть использовано в энергетике, нефтехимической и других отраслях промышленности, в частности в процессах, протекающих с большими тепловыми эффектами.

Изобретения относятся к химической, нефтяной, газовой и другим отраслям промышленности, а именно к технологии и оборудованию, предназначенным для охлаждения влажного природного газа. Охлаждение газа осуществляют в теплообменной секции одного устройства, которую разделяют на не менее чем две ступени охлаждения и располагают встык по боковым сторонам, при этом газ направляют последовательно от первой ступени охлаждения к следующей через соединяющий переходной коллектор, подачу охлаждающего воздуха осуществляют вращением от электродвигателей вентиляторов, которые располагают, по меньшей мере, по два над каждой ступенью охлаждения, организуют внутреннюю рециркуляцию нагретого воздуха на последней ступени охлаждения, контроль образования гидратов осуществляют датчиками, выполненными в виде дифференциальных термопар, которые подают сигнал в момент перекрытия гидратами проходного сечения наиболее охлаждаемых теплообменных труб. Управление теплообменными процессами осуществляется реверсированием и частотным регулированием вращения вентиляторов последней ступени охлаждения с поддержанием заданной температуры газа на выходе путем внутренней рециркуляции. Технический результат - предотвращение повышения температуры охлаждающего воздуха на входе в последнюю ступень охлаждения и обеспечение поддержания заданной температуры газа на выходе при непрерывном режиме работы оборудования. 2 н. и 10 з.п. ф-лы, 4 ил.

Изобретение относится к химической, нефтехимической и энергетической промышленности и может быть использовано для проведения каталитических процессов со значительными тепловыми эффектами при частичном превращении углеводородов. Способ проведения экзотермических и эндотермических каталитических процессов частичного превращения углеводородов включает подачу углеводородной смеси в слой гетерогенного катализатора, контактирование смеси с поверхностью данного катализатора, при этом процесс проводят последовательно в двух вертикальных кожухотрубных реакторах, направляя углеводородную смесь сначала в основной реактор и реакционную смесь из основного реактора в дополнительный реактор, при этом расход охлаждающего теплоносителя при экзотермическом процессе и горячего теплоносителя при эндотермическом процессе в дополнительном реакторе поддерживают ниже по сравнению с расходом охлаждающего или горячего теплоносителя в основном реакторе. Реакторная группа для осуществления способа включает основной реактор, кожух и трубки внутри него выполнены в форме усеченного конуса, кроме того трубки внутри кожуха наклонены относительно центральной оси и вокруг этой оси с образованием конусообразной полости, входные и выходные патрубки расположены тангенциально, и дополнительный реактор, идентичный основному, реакторы установлены вертикально и расположены относительно друг друга с чередованием малых и больших днищ, при этом основной и дополнительный реакторы соединены между собой последовательно. Изобретение обеспечивает повышение равномерности осуществляемых процессов и увеличение производительности. 2 н. и 8 з.п. ф-лы, 3 ил.

Изобретение относится к области теплотехники и может быть использовано для создания высокоэффективных малогабаритных теплообменников. В теплообменном модуле, включающем полый цилиндрический корпус, ограниченный торцевыми концевыми пластинами с отверстиями для прохождения первой среды по расположенным внутри корпуса сквозным каналам и имеющий в боковой стенке вблизи торцевых концевых пластин отверстия для входа и выхода второй среды, а также примыкающие к наружным сторонам торцевых концевых пластин замкнутые полости для подвода и отвода первой среды, все соседние каналы для прохождения первой среды соединены между собой продольными ребрами, разделяющими межканальное пространство на отдельные продольные каналы для прохождения второй среды и имеющими длину, меньшую длины каналов для прохождения первой среды с образованием кольцевых камер для накапливания второй среды, включающих отверстия в стенке корпуса для входа и выхода второй среды. Технический результат - обеспечение максимальной теплопередачи при минимальных габаритах теплообменника. 2 з.п. ф-лы, 2 ил.

Изобретение относится к системе трубопроводов для теплообменников для транспорта вязких жидкостей с большим количеством отдельных теплообменников в виде элементов трубопроводов и с предопределенным контролируемым распределением температуры и/или давления вдоль системы трубопроводов, а также в поперечном сечении трубопроводов, отличающейся тем, что на равных промежутках системы трубопроводов предусматриваются теплообменники в виде элементов трубопроводов, причем равные промежутки выбираются таким образом, чтобы поддержать предопределенное распределение температуры и/или давления, причем в теплообменниках предусматриваются средства, поддерживающие определенную температуру вязкой жидкости, транспортируемой в трубопроводе для теплообменника, а также в качестве опции смесительные элементы, чтобы в зависимости от поперечного сечения трубопроводов поддерживать заданное распределение температуры и/или давления в поперечном сечении трубопроводов, и причем, по меньшей мере, 30% длины системы трубопроводов для теплообменников оборудовано теплообменниками, а также к способу транспорта вязких жидкостей с помощью трубопроводов для теплообменников. 2 н. и 14 з. п. ф-лы, 11 ил., 2 табл., 1 пр.
Изобретение относится к теплотехнике и может быть использовано в энергетической, нефтехимической, пищевой и других отраслях. Сущность изобретения: теплообменный элемент кожухотрубных теплообменников, имеющий в своем составе трубные доски и теплообменные трубки, характеризующийся тем, что теплообменные трубки после короткого технологического прямолинейного участка выполнены по винтообразной линии диаметром, соответствующим месту входа-выхода трубки в трубных досках, а теплогидравлические характеристики трубок по направлению от периферии к центру выравниваются увеличением по дуге угла между входом-выходом трубки, изменением диаметра трубок, дросселированием, а также их комбинацией, выдерживая равенство отношения I/dэ. Технический результат - теплообменник с предлагаемой конструкцией теплообменного элемента позволит увеличить, без снижения надежности, относительно теплообменников с прямыми трубками до 20% и более тепловую мощность при тех же габаритных размерах теплообменника, увеличить скорость разогрева-охлаждения и соизмерим по тепловой мощности со спиральными.

Изобретение относится к оборудованию гидрометаллургических производств, предназначено для охлаждения суспензий и растворов, например, в процессе разложения алюминатных растворов методом декомпозиции при производстве глинозема из любых видов глиноземсодержащего сырья. Аппарат включает цилиндрический корпус с крышкой и днищем, трубные решетки, закрепленные в верхней и нижней частях корпуса, трубы для подачи суспензии или раствора, герметично закрепленные в трубных решетках, патрубки для подачи в трубное пространство и отвода из него суспензии или раствора, патрубки для подачи в межтрубное пространство и отвода из него воды - хладоагента. Дополнительно аппарат включает среднюю трубную решетку, разделяющую корпус на две отдельные цилиндрические обечайки с образованием зазора между нижней и средней трубными решетками, не охватываемого поверхностью обечаек, составляющих корпус. В трубы для подачи раствора или суспензии врезаны патрубки для подачи воздуха. Технический результат: улучшение условий охлаждения суспензии или раствора, что повышает величину коэффициента теплоотдачи; предотвращение отложений твердой фазы на поверхности труб; повышение работоспособности аппарата; снижение металлоемкости. 2 з.п. ф-лы, 2 ил., 2 табл.

Настоящее изобретение относится к области лабораторных теплофизических измерений и, в частности, к определению тепловых, аэродинамических и гидравлических параметров рекуперативных теплообменных аппаратов различных типов, выполняемых в ходе учебной подготовки специалистов в области теплотехнического оборудования, испытаний теплообменных аппаратов с целью определения их основных параметров. Предлагаемая экспериментальная установка для изучения теплообменных аппаратов позволит проводить теплотехнические и гидравлические испытания различных теплообменных аппаратов с целью выявления их реальных параметров и характеристик. Также экспериментальная установка для изучения теплообменных аппаратов может использоваться и в учебном процессе для проведения лабораторных работ у студентов инженерных специальностей. Технический результат - полученные результаты позволят повысить точность выполняемых расчетов, а также сравнивать эффективность различных типов теплообменных аппаратов. 3 ил.

Изобретение относится к области теплотехники и может быть использовано в теплообменных аппаратах, в частности, для установок с интегральным ядерным реактором. В теплообменном аппарате коллектор 2 подвода питательной среды выполнен в крышке 4. Центральная полость 5 соединена наклонными каналами 6 с периферийной полостью 7 и подводящими питательную среду трубами 8. Подводящие питательную среду трубы 8 закреплены в крышке 4 и расположены соосно отводящим трубам питательной среды 9, размещенным в отверстиях трубной доски 10. Трубная доска 10 образует с крышкой 4 полость 11, предназначенную для отвода питательной среды. Причем каждая отводящая труба 9 снабжена переходником 12, один конец которого закреплен в трубной доске 10, а другой с возможностью осевого перемещения соединен с отводящей трубой 9. Отводящая труба 9 установлена с зазором относительно отверстия в трубной доске 10 и снабжена кольцевым выступом 13, контактирующим с возможностью осевого перемещения с внутренней стенкой указанного отверстия, т.е. является подвижной опорой модуля 3. Технический результат - выравнивание температурного поля подводящих и отводящих теплообменных труб за счет исключения холодных бросков питательной среды на корпус и теплообменную поверхность. 3 з.п. ф-лы, 3 ил.

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении теплообменников, содержащих множество теплообменных элементов. Каждый теплообменный элемент выполнен из ребристого листа, имеющего множество полых ребер для создания внутреннего объема. При это он имеет впускную и выпускную магистрали и отверстие. Делитель потока помещается во внутреннем объеме между впускной магистралью и выпускной магистралью с внутренними вершинами полых ребер, находящимися в контакте с делителем потока. Базовый элемент соединен поверх отверстия внутреннего объема. Причем базовый элемент содержит вход и выход, помещенные с сообщением по текучей среде с впускной магистралью и выпускной магистралью соответственно. Расширяются технологические возможности и улучшается перенос тепла между потоками текучих сред. 2 н. и 18 з.п. ф-лы, 15 ил.

Изобретение относится к теплотехнике и может быть использовано в теплообменниках и реакторах кожухотрубчатой конструкции. В теплообменник, состоящий из корпуса, трубных решеток, перегородок и труб, трубы установлены с предварительным прогибом, при этом предварительный прогиб осуществляется за счет смещения отверстий для труб в перегородках или за счет смещения перегородок механизмом перемещения, а перегородки установлены с возможностью смещения в направлении предварительного смещения, причем перегородки в средней части теплообменника установлены неподвижно со смещением отверстий для труб, а корпус может быть выполнен с прогибом. Остальные перегородки установлены с возможностью дальнейшего смещения в направлении предварительного смещения труб для компенсации их удлинения при температурной деформации, при этом предварительный прогиб труб осуществляется в процессе сборки теплообменника из прямых труб, которые изгибаются в пределах упругой деформации. Технический результат - обеспечение компенсации удлинения труб при температурной деформации. 5 з.п. ф-лы, 5 ил.
Наверх