Способ определения обрабатываемости материалов

Изобретение относится к обработке материалов резанием и может быть использовано в машиностроении для ускоренной автоматизированной оценки обрабатываемости как традиционно применяемых сталей и сплавов в изменяющихся условиях резания, так и новых марок сплавов, наплавленных и композиционных материалов и т.д. Сущность: осуществляют регистрацию параметров сигналов акустической эмиссии - числа импульсов моды амплитудного распределения, соответствующих пластическому деформированию при точении. Для регистрируемого датчиком сигнала акустической эмиссии рассчитывают среднее квадратическое значение сигнала в рассматриваемом интервале времени (Urms). С помощью преобразования Фурье получают амплитудно-частотное представление сигнала акустической эмиссии, определяют значение медианной частоты (Fmed). По их произведению (Urms×Fmed) судят об обрабатываемости материала. Технический результат: сокращение времени и трудоемкости определения обрабатываемости материалов, определение не относительного, а абсолютного значения обрабатываемости. 3 ил., 2 табл.

 

Изобретение относится к обработке материалов резанием и может быть использовано в машиностроении для ускоренной автоматизированной оценки обрабатываемости как традиционно применяемых сталей и сплавов в изменяющихся условиях резания, так и новых марок сплавов, наплавленных и композиционных материалов и т.д.

Известен способ определения оптимальной скорости резания (SU 1306649 А1, МПК B23B 25/06, дата подачи заявки 18.11.1985), как одного из параметров, характеризующих обрабатываемость материала.

Сущность известного способа состоит в следующем. Осуществляют изменение скорости резания в заданном диапазоне и одновременно регистрируют виброакустический сигнал, излучаемый зоной резания, из которого выделяют сигнал о срыве нароста, определяемый сопоставлением составляющих виброакустического сигнала и частиц нароста на поверхности резания в одинаковые моменты времени, определяют частоты выделенного сигнала, а в качестве оптимальной принимают скорость, при которой частота выделяемого сигнала минимальна. Частота срыва нароста коррелирует со скоростью износа режущего инструмента.

Основной недостаток данного способа состоит в том, что для определения скорости резания, при которой частота срыва нароста, а значит и скорость износа режущего инструмента, минимальна, необходимо провести измерения в широком диапазоне скоростей резания, таком, чтобы искомое значение оптимальной скорости резания (минимальной скорости износа) заведомо попадало в этот диапазон. А это существенно увеличивает потребное время и трудоемкость.

Известен также способ оценки обрабатываемости материалов (SU 1377675 А1, МПК G01N 3/58, дата подачи заявки 19.12.1985), заключающийся в том, что осуществляют торцовое точение дисков из эталонного и испытуемого обрабатываемого материалов при одном и том же значении числа оборотов шпинделя, выбранного из условия непревышения величины износа инструмента за один цикл обработки торца критического значения, а в качестве параметра, характеризующего обрабатываемость материала, определяют число импульсов моды амплитудного распределения сигналов акустической эмиссии, соответствующих пластическому деформированию при точении.

Способ требует соблюдения относительного постоянства условий проведения исследований для определенной партии материалов и позволяет определить только относительный коэффициент обрабатываемости материалов данной партии по сравнению с эталонным, что существенно ограничивает его возможности широкого применения на практике. Кроме того, остается открытым вопрос: какой материал выбрать в качестве эталонного для данной партии?

Задачами изобретения являются: сокращение времени и трудоемкости определения обрабатываемости материалов, определение не относительного, а абсолютного значения обрабатываемости.

Поставленные задачи решаются тем, что в способе оценки обрабатываемости материалов резанием, состоящем в регистрации параметров сигналов акустической эмиссии - числа импульсов моды амплитудного распределения, соответствующих пластическому деформированию при точении, согласно изобретению для регистрируемого датчиком сигнала акустической эмиссии рассчитывают среднее квадратическое значение сигнала в рассматриваемом интервале времени (Urms), с помощью преобразования Фурье получают амплитудно-частотное представление сигнала акустической эмиссии, определяют значение медианной частоты (Fmed), а по их произведению судят об обрабатываемости материалов.

Технический результат предлагаемого изобретения выражается в следующем. За счет существования линейной связи между обрабатываемостью материала и значением произведения параметров сигналов акустической эмиссии (Urms×Fmed) появляется возможность значительного сокращения трудоемкости и времени процесса оценки обрабатываемости материалов, расширяются границы применения его на практике. Кроме того, все необходимые процедуры предлагаемого изобретения могут быть автоматизированы.

Предлагаемый способ реализуется следующим образом. При точении широкополосный датчик акустической эмиссии (АЭ) устанавливают на державку резца, осуществляют точение, получаемый сигнал АЭ подвергают обработке в автоматизированном режиме - рассчитывают среднее квадратическое значение сигнала в рассматриваемом интервале времени, с помощью преобразования Фурье получают амплитудно-частотное представление сигнала, для которого рассчитывают значение медианной частоты (Fmed). Величина произведения Urms×Fmed этих двух параметров сигналов АЭ позволяет однозначно судить об обрабатываемости материалов.

Пример. Для эксперимента в качестве обрабатываемого материала использовали 6 образцов легированной стали (таблица1)

Таблица 1

п/п
Марка стали Условное обозначение образца
1 18Х1Г1ФР 2
2 20Х1Г1Ф 3
3 20Х1Г1Р 4
4 АЦ40Х 5
5 40ХГНМ 6
6 20Х1Г1ФР 9

Для обеспечения быстрого изнашивания в качестве инструмента были выбраны пластины из быстрорежущей стали Р6М5Ф3 квадратные 13-0,1 мм, задний угол 12°, толщина 4,5 мм, устанавливаемые в державку. Геометрические параметры пластины, установленной в державку: передний угол 0, задний угол 12°, главный и вспомогательный угол в плане 45°. Величину износа определяли на микроскопе МБС-10 (увеличение-шкала 4) с камерой-окуляром MU500.

В качестве критерия для сравнения использовали расчетный удельный износ РУИ, мкм/торец.

РУИ=h/N·1000,

где N - число обработанных торцов, величина износа (максимальная высота фаски износа резца в направлении, перпендикулярном режущей кромке).

Обработку сигналов АЭ осуществляли в среде Matlab. Рассчитывали среднеквадратическое значение сигнала и значение Fmed медианной частоты амплитудно-частотного представления сигналов АЭ. Затем строили графики зависимости расчетного удельного износа РУИ от произведения Urms×Fmed.

Обработку резанием проводили на трех скоростях точения: 315, 400, 500 об/мин, фиг.1, фиг.2, фиг.3.

Полученные результаты сведены в таблицу 2 и для наглядности представлены графически. Видно, что с коэффициентом корреляции R2, близким к единице, обнаруживается линейная связь РУИ от Urms×Fmed, что позволяет быстро определять значения обрабатываемости материала для данной скорости резания. Значения обрабатываемости для других скоростей резания можно получить аппроксимацией уже известных данных.

Таблица 2
Сталь №5 №2 №3 №6 №4 №9
РУИ (расчет, удел, износ точения) 5,50 4,00 3,25 1,88 1,50 1,30
Скорость 315 об/мин
Urms, усл.ед. 0,29 0,19 0,18 0,15 0,13
Fmed, кГц 146,28 138,27 117,30 111,87 115,45 108,17
Urms×Fmed 41,72 26,49 21,37 16,54 15,31 11,64
Скорость 400 об/мин
Urms, усл.ед. 0,44 0,32 0,28 0,16 0,15 0,12
Fmed, кГц 136,25 130,41 110,54 109,16 107,68 95,78
Urms×Fmed 60,37 41,20 30,74 17,58 15,91 11,91
Скорость 500 об/мин
Urms, усл.ед. 0,68 0,54 0,47 0,24 0,20 0,19
Fmed, кГц 104,09 99,31 90,78 85,79 85,72 86,06
Urms×Fmed 71,11 54,03 42,80 20,44 17,54 15,98

Способ определения обрабатываемости материалов резанием, состоящий в регистрации параметров сигналов акустической эмиссии - числа импульсов моды амплитудного распределения, соответствующих пластическому деформированию при точении, отличающийся тем, что для регистрируемого датчиком сигнала акустической эмиссии рассчитывают среднее квадратическое значение сигнала в рассматриваемом интервале времени (Urms), с помощью преобразования Фурье получают амплитудно-частотное представление сигнала акустической эмиссии, определяют значение медианной частоты (Fmed), а по их произведению (Urms×Fmed) судят об обрабатываемости материала.



 

Похожие патенты:

Использование: для определения ударной вязкости испытуемого образца. Сущность изобретения заключается в том, что собирают акустические данные от акустического датчика с помощью средства сбора акустических данных при приложении к испытуемому образцу нагрузки, при этом указанный акустический датчик связан с испытуемым образцом; определяют одну или более фоновых точек с помощью средства определения фоновых точек; определяют одну или более точек возможного акустического события с помощью средства определения точек возможного акустического события; интерполируют кривую характеристики фонового шума с использованием фоновых точек с помощью средства интерполяции кривой характеристики фонового шума; определяют одну или более точек фактического акустического события с использованием точек возможного акустического события и кривой характеристики фонового шума с помощью средства определения точек фактического акустического события; и вычисляют площадь акустического события, заключенную между точкой фактического акустического события и кривой характеристики фонового шума с помощью средства вычисления площади фактического акустического события.

Устройство и способ исследования образцов горной породы, основанные на явлении акустической эмиссии. Для осуществления исследования образца горной породы заявленным способом исследуемый образец помещается в заявленное устройство, содержащее в своей конструкции камеру повышенного давления и один или более акустических датчиков, присоединяемых к исследуемому образцу горной породы, с возможностью передачи сигналов.

Использование: для тестирования истинной прочности или жесткости твердых или сверхтвердых компонентов, используя акустическую эмиссию. Сущность изобретения заключается в том, что устройство тестирования на основе акустической эмиссии содержит тестируемый образец, включающий твердую поверхность, акустический датчик, индентор, соединенный с твердой поверхностью, и нагрузку.

Изобретение относится к области испытания материалов и может использоваться при испытании алмазной кольцевой коронки для колонкового бурения. Сущность: на корпусе коронки формируют одинаковые пары алмазосодержащих режущих секторов, расположенные по окружности корпуса коронки под углом 180° друг к другу, причем высота каждой пары секторов убывает по ходу вращения буровой коронки.

Изобретение относится к области машиностроения и касается прогнозирования и контроля износостойкости твердосплавных группы применяемости К режущих инструментов по содержанию водорода в поверхностной и приповерхностной структуре.

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации.
Изобретение относится к измерительной технике и касается, в частности, определения силы, необходимой для обработки резанием металлов и сплавов. Сущность: стандартную экспериментальную кривую упрочнения перестраивают в координаты «напряжение (σ) - истинная относительная деформация (ε)», максимальным значением деформации εв предопределяют предельно возможное значение коэффициента усадки стружки K, как lnK=εв, а расчет предельно возможной величины силы резания вычисляют по уравнению Р=σв t s К/sinθ, затем ведут пробную резку, измеряют параметры для вычисления фактического коэффициента К усадки стружки, по нему определяют угол θ и по исходному уравнению находят фактическую величину силы резания.

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования-контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации.

Изобретение относится к области абразивной обработки и может быть использовано для определения режущей способности абразивно-алмазного инструмента с однослойным алмазно-гальваническим покрытием (АГП).

Изобретение относится к машиностроению и может быть использовано для изучения деформированного состояния обрабатываемого материала в зоне пластического деформирования при механической обработке с помощью делительных сеток.

Использование: для определения ударной вязкости испытуемого образца. Сущность изобретения заключается в том, что собирают акустические данные от акустического датчика с помощью средства сбора акустических данных при приложении к испытуемому образцу нагрузки, при этом указанный акустический датчик связан с испытуемым образцом; определяют одну или более фоновых точек с помощью средства определения фоновых точек; определяют одну или более точек возможного акустического события с помощью средства определения точек возможного акустического события; интерполируют кривую характеристики фонового шума с использованием фоновых точек с помощью средства интерполяции кривой характеристики фонового шума; определяют одну или более точек фактического акустического события с использованием точек возможного акустического события и кривой характеристики фонового шума с помощью средства определения точек фактического акустического события; и вычисляют площадь акустического события, заключенную между точкой фактического акустического события и кривой характеристики фонового шума с помощью средства вычисления площади фактического акустического события.

Изобретение относится к области соединения или предотвращения относительного смещения деталей машин или элементов конструкций и направлено на возможность осуществления сплошного контроля натяжения болта.

Изобретение относится к акустическим методам неразрушающего контроля и предназначено для определения прочностных характеристик материала. Сущность изобретения заключается в том, что способ регистрации сигналов акустической эмиссии, в котором образец материала нагружают с помощью гидропресса, и фиксируют сигнал акустической эмиссии, образец подвергают импульсному воздействию, формируя продольную упругую волну, которая стимулирует массовый синхронный выход дислокаций из кристалла материала, что в результате создает суммарный сигнал акустической эмиссии, устойчиво фиксируемый пьезодатчиком.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для определения оптимальной депрессии на нефтяной пласт. Техническим результатом является повышение точности определения оптимальной депрессии на пласт.

Использование: для акустико-эмиссионной диагностики морских ледостойких сооружений. Сущность изобретения заключается в том, что в критичных узлах конструкции сооружения устанавливают акустико-эмиссионные преобразователи звукового диапазона частот, регистрируют сигналы акустической эмиссии и по параметрам сигналов акустической эмиссии определяют степень дефекта конструкции сооружения, при этом дополнительно устанавливают в критичных узлах конструкции сооружения группу акселерометров, воспринимающих механические напряжения низкочастотных колебаний инфразвукового диапазона частот, а затем вычисляют первую функцию взаимной корреляции между сигналами, поступающими от акустико-эмиссионных преобразователей и акселерометров, а затем вторую функцию взаимной корреляции между сигналами, поступающими от каждой пары ближайших акустико-эмиссионных преобразователей, при этом дефекты сооружения обнаруживают по амплитуде и форме максимумов от каждой функции корреляции, а координаты дефектов определяют по временной задержке максимума второй функции корреляции между каждой парой акустико-эмиссионных преобразователей.

Использование: для диагностики и неразрушающего контроля металлических конструкций. Сущность изобретения заключается в том, что выполняют прием, регистрацию и оценку параметров сигналов акустической эмиссии в момент нагружения конструкции, оцифровку акустических сигналов, их предварительную обработку, фильтрацию помех, при этом сначала устанавливают критические значения нагрузки Pкр и коэффициента регрессии kкр, характеризующего изменение числа сигналов акустической эмиссии к изменению нагрузки для бездефектной конструкции, затем конструкцию нагружают до значения нагрузки, превышающей рабочую на (5…10) %, регистрируют при этом число сигналов и нагрузку линейного участка стационарной акустической эмиссии, регистрируют при этом коэффициент регрессии k0, после чего конструкцию нагружают циклической нагрузкой, амплитудное значение которой повышают постепенно на (2…5) %, и при достижении превышения на (15…20) % рабочей нагрузки нагружение прекращают, если в процессе контроля k0<kкр, то конструкцию считают бездефектной, а при значении k0>kкр конструкцию бракуют.

Использование: для диагностики наличия трещин в ходовых частях тележки подвижного состава. Сущность изобретения заключается в том, что осуществляют прием, регистрацию и обработку сигналов от преобразователей акустической эмиссии в процессе движения подвижного состава, который прогоняют по железнодорожному пути, при этом на заданном участке железнодорожного пути создают искусственные неровности в вертикальной плоскости, на которые устанавливают преобразователи акустической эмиссии, по параметрам сигналов с которых судят о наличии трещин в ходовых частях тележки подвижного состава.

Использование: для контроля зоны термического влияния сварных соединений. Сущность изобретения заключается в том, что сварное соединение подвергают термическому воздействию, регистрируют сигналы акустической эмиссии и по их параметрам судят о качестве сварного соединения, при этом сигналы акустической эмиссии инициируют локальным термическим воздействием поочередно в точках контроля, расположенных на линии, перпендикулярной сварному шву, строят зависимость параметров данных сигналов для каждой контрольной точки от ее расстояния до сварного шва и по указанной зависимости оценивают размер зоны термического влияния как расстояние между наиболее удаленными от сварного шва контрольными точками, в которых значение суммарной энергии акустических сигналов ниже, чем в основном (не подвергнутом термическому влиянию при сварке) металле сварного соединения.

Изобретение относится к горному делу и предназначено для определения изменения напряженного состояния горного массива. Технический результат направлен на повышение длительности определения изменений напряженного состояния горного массива в окрестностях выработок в ходе непрерывных мониторинговых акустико-эмиссионных измерений перемещения вглубь массива зоны опорного давления.

Использование: для акустико-эмиссионного контроля качества сварных стыков рельсов. Сущность изобретения заключается в том, что производят сварку стыка, обрубку грата, регистрируют сигналы акустической эмиссии при остывании сварного шва, измеряют скорость счета сигналов акустической эмиссии, разбивают время контроля на интервалы, по превышению скорости счета сигналов акустической эмиссии порогового значения хотя бы в одном из интервалов судят о качестве сварного шва, при этом дополнительно определяют медиану энергии сигналов акустической эмиссии, задают пороговые величины по средним значениям скорости счета и медианы энергии локализованных сигналов акустической эмиссии в двух равных интервалах времени при остывании сварного шва и при превышении скорости счета и медианы энергии сигналов их пороговых значений на любом из интервалов сварной стык бракуют.

Использование: для идентификации источников сигналов акустической эмиссии (АЭ). Сущность изобретения заключается в том, что измеряют максимальную амплитуду импульса, число выбросов и длительность импульсов сигналов, после чего на основании проведенных измерений осуществляют распознавание источников сигналов акустической эмиссии. Технический результат: повышение достоверности при распознавании источников сигналов акустической эмиссии. 7 ил.

Изобретение относится к обработке материалов резанием и может быть использовано в машиностроении для ускоренной автоматизированной оценки обрабатываемости как традиционно применяемых сталей и сплавов в изменяющихся условиях резания, так и новых марок сплавов, наплавленных и композиционных материалов и т.д. Сущность: осуществляют регистрацию параметров сигналов акустической эмиссии - числа импульсов моды амплитудного распределения, соответствующих пластическому деформированию при точении. Для регистрируемого датчиком сигнала акустической эмиссии рассчитывают среднее квадратическое значение сигнала в рассматриваемом интервале времени. С помощью преобразования Фурье получают амплитудно-частотное представление сигнала акустической эмиссии, определяют значение медианной частоты. По их произведению судят об обрабатываемости материала. Технический результат: сокращение времени и трудоемкости определения обрабатываемости материалов, определение не относительного, а абсолютного значения обрабатываемости. 3 ил., 2 табл.

Наверх