Устройство для определения аэродинамических характеристик модели ракеты авиационного базирования

Изобретение относится к измерительной технике, а именно, к устройствам для измерения аэродинамических сил и моментов, действующих на модели изделий авиационной и ракетной техники при проведении испытаний в аэродинамических трубах. Устройство содержит модель ракеты со съемной носовой частью, установленную на внутримодельных шестикомпонентных тензовесах с помощью конической посадки, соединенных с внутренней державкой, прикрепленной к модели носителя, установленной в аэродинамической трубе, оснащенной тензостанцией и пультом управления в препараторской. Державка для модели ракеты выполнена в виде цилиндра, размещенного внутри корпуса модели, с продольными пазами, в которых установлена оребренная посадочная втулка, соединенная и с тензовесами и с обечайкой корпуса модели с использованием ребер. При этом в передней части цилиндра в пазу закреплен вкладыш, а на хвостовой части - подвижное кольцо, причем и вкладыш, и кольцо снабжены сменными узлами крепления цилиндра к кронштейнам, установленным на модели носителя. Технический результат заключается в повышении достоверности измерений. 2 ил.

 

Предлагаемое изобретение относится к измерительной технике, а именно к устройствам для замера в аэродинамической трубе аэродинамических нагрузок, действующих на модель ракеты, прикрепленную к модели самолета-носителя. Это устройство может быть использовано для расчетов по обеспечению безударного, т.е. безопасного, отделения ракеты от самолета-носителя.

Известно устройство для определения сил и моментов, действующих на модель в аэродинамической трубе. Это устройство крепится на кормовой державке и содержит модель со съемной головной частью, закрепленную на внутримодельных тензовесах путем посадки ее на коническую часть тензовесов с фиксацией гайкой, соединенных с державкой, установленной в аэродинамической трубе, оснащенной тензостанцией и пультом управления, расположенным в препараторской (Н.Ф. Краснов и др. "Прикладная аэродинамика". Москва, Высшая школа, 1974 г., с. 273-282).

Но в этом устройстве, во-первых, не учитывается влияние самолета-носителя на аэродинамические характеристики модели, а, во-вторых, крепление модели на хвостовой державке порождает упругие колебания системы "модель-державка", внося неопределенность в измеряемые величины.

Наиболее близким к предлагаемому изобретению по технической сущности является устройство для определения сил и моментов, действующих на модель ракеты при испытаниях в аэродинамической трубе, в которой закреплены на державках с закрепленными на них тензовесами модели ракеты и носителя ракет, причем модели ракет могут изменять положение относительно носителя (ЦАГИ. Основные этапы научной деятельности 1968-1993 г., Москва. Наука. Физматлит., 1996. Рис. 188, стр. 300. Модель самолета-носителя с отделяемыми грузами в АДТ Т-109), см. фигуру 2.

Недостатком этого устройства, во первых, является наличие в нем хвостовой державки, на которой закреплена модель ракеты вместе с тензовесами, что оказывает заметное влияние на обтекание воздушным потоком кормовой части модели ракеты и, следовательно, на измеряемые аэродинамические характеристики модели ракеты в целом.

Вторым существенным недостатком известного устройства является то, что во время испытаний модели ракеты, механически связанной с помощью хвостовой державки с корпусом модели носителя, возникают упругие колебания системы "модель+тензовесы+державка" с изменением зазора между моделями ракеты и носителя, что также влияет на характер обтекания модели ракеты, снижая точность и достоверность определения ее аэродинамических характеристик.

С целью устранения вышеобозначенных недостатков известного устройства предлагается новое техническое решение устройства для определения аэродинамических характеристик модели ракеты авиационного базирования. Суть предлагаемого изобретения состоит в размещении державки, на которой крепится модель ракеты, внутри корпуса модели в отличие от хвостовой державки, используемой в известном устройстве.

Размещение державки внутри корпуса модели с ее жестким креплением к модели носителя с помощью двух стержней, расположенных по краям державки, исключает как влияние державки на обтекание модели потоком воздуха, так и возможность упругих колебаний державки, поскольку эта державка является балкой на двух опорах и не подвержена консольным колебаниям.

Сущность предлагаемого изобретения поясняется чертежом, где на фигуре 1 изображен общий вид предлагаемого устройства.

Устройство для определения аэродинамических характеристик модели в аэродинамической трубе содержит модель 1 со съемной головной частью 2 и с оперениями 3, 4 и 5 на хвостовой части 6 корпуса 7, закрепленную на тензовесах 8 путем посадки ее на коническую часть 9 и зафиксированную гайкой 10, соединенных державкой 11, установленной на модели носителя 12, расположенной в аэродинамической трубе 13, оснащенной тензостанцией 14 и пультом управления 15, расположенных в препараторской 16. Внутри корпуса 7 модели 1 расположен трубчатый цилиндр 17, выполненный с продольными пазами 18, внутри них установлена с ребрами 19 втулка 20, соединенная с тензовесами 8, а на ребрах 19 установлена обечайка 21, на которой закреплены головная 2 и хвостовая 6 части корпуса 7. В передней части 22 цилиндра 17 в пазах 18 установлен вкладыш 23, а в хвостовой части державки цилиндра 17 расположено подвижное кольцо 25.

Вкладыш 23 и подвижное кольцо 25 соединены сменными по длине и толщине балками 26, закрепленными на носителе 12 фиксаторами 27. На хвостовой части 6 корпуса 7 расположен шпангоут 28 со сменной заглушкой 30.

Установка внутри корпуса 7 модели 1 цилиндра 17, выполненного с продольными пазами 18, в которых установлена с ребрами 19 втулка 20, соединенная с тензовесами 8, а на ребрах 19 размещена обечайка 21, на которой закреплена головная 2 и хвостовая 6 части корпуса 7, позволяет соблюсти полное геометрическое подобие модели 1 с натурной ракетой, что обеспечивает точность и достоверность замера аэродинамических нагрузок, действующих на модель 1 в условиях механической связи моделей ракеты 1 и носителя 12.

Установка головной части 2 и хвостовой части 6 с помощью обечайки 21 упрощает конструкцию модели 1, повышает надежность работы тензовесов 8, что снижает стоимость экспериментальных работ.

Работа устройства заключается в следующем. Собирается модель ракеты 1. Внутри цилиндра 17 закрепляются тензовесы 8. В пазах 18 цилиндра 17 устанавливается на ребрах 19 втулка 20 и закрепляется на тензовесах 8 гайкой 10. На цилиндре 17 устанавливаются вкладыш 23 в пазу 18 и подвижное кольцо 25. Затем на ребрах 19 втулки 20 закрепляется обечайка 21, на которой устанавливается головная часть 2 и хвостовая часть 6 с оперениями 3, 4, 5 и шпангоутом 29 с заглушкой 30. Проверяется работа тензовесов 8 с помощью тензостанции 14 и пульта управления 15, расположенных в препараторской 16 трубы 13. Затем на вкладыше 23 и подвижном кольце 25 устанавливаются сменные балки 26. Они закрепляются на кронштейнах 27, к которым пристыковывается модель носителя 12. Устройство устанавливается с помощью фиксаторов 27 в аэродинамической трубе 13. Производится контрольная проверка работы всех систем устройства. Затем по команде с пульта управления 15 запускается аэродинамическая труба 13. При различных скоростях продувки модели 1 с носителем 12 определяются аэродинамические характеристики модели 1 с помощью тензостанции 14.

Использование предлагаемого изобретения существенно улучшает достоверность экспериментальных данных по воздействию потока на ракету, отделяющуюся от самолета-носителя, и позволяет обеспечить безопасность пуска ракет при меньшем объеме натурных испытаний, что сокращает стоимость работ по разработке ракетных комплексов авиационного базирования.

Устройство для определения аэродинамических характеристик модели ракеты авиационного базирования, закрепленной на модели самолета-носителя, при испытаниях в аэродинамической трубе, содержащее модель ракеты со съемной носовой частью, установленную на внутримодельных шестикомпонентных тензовесах с помощью конической посадки, соединенных с внутренней державкой, прикрепленной к модели носителя, установленной в аэродинамической трубе, оснащенной тензостанцией и пультом управления в препараторской, отличающееся тем, что державка для модели ракеты выполнена в виде цилиндра, размещенного внутри корпуса модели, с продольными пазами, в которых установлена оребренная посадочная втулка, соединенная и с тензовесами и с обечайкой корпуса модели с использованием ребер, при этом в передней части цилиндра в пазу закреплен вкладыш, а на хвостовой части - подвижное кольцо, причем и вкладыш, и кольцо снабжены сменными узлами крепления цилиндра к кронштейнам, установленным на модели носителя.



 

Похожие патенты:

Изобретение относится к способу обнаружения попадания воды или града в газотурбинный двигатель, причем упомянутый двигатель имеет, по меньшей мере, компрессор, камеру сгорания и турбину.

Изобретение относится к области электроракетных двигателей и стендов для их испытаний. В способе испытания электроракетных двигателей в вакуумной камере, основанном на том, что истекающее рабочее тело затормаживают на защитной мишени, согласно изобретению, энергию истекающего рабочего тела в виде ионизирующего излучения высокотемпературной плазмы преобразуют в электрическую энергию, которую выводят за пределы вакуумной камеры для полезного использования.

Изобретение может быть использовано для определения технического состояния электронной системы управления и элементов двигателей с распределенным впрыском топлива в процессе их изготовления, технического обслуживания и ремонта.

Изобретение относится к области эксплуатации машин и может быть использовано при диагностировании двигателей внутреннего сгорания. Способ безразборной диагностики степени износа подшипников двигателей внутреннего сгорания заключается в измерении давления в масленой магистрали при работе двигателя, отличается тем, что давление масла измеряют в масленой магистрали на участке канала, расположенным между коренным и шатунным подшипниками по оси коленчатого вала при работе двигателя без нагрузки, и по величине измеренного давления судят о допустимой степени износа шатунного подшипника.

Изобретение относится к способу обнаружения точек истирания и/или контакта на машинах с вращающимися частями. Вращающиеся части образуют электрическую коаксиальную систему относительно неподвижных частей такой машины, а в этой системе импульсы электрического напряжения распространяются с характеристической скоростью из-за малого расстояния между вращающейся и неподвижной частями.

Изобретение относится к диагностированию технического состояния механизмов и машин, а именно технического состояния ротора. В способе диагностирования технического состояния ротора машины выводят машину на контролируемый режим, измеряют на этом режиме исходную частоту вращения ротора и останавливают машину.

Изобретение относится к области испытаний двигателей внутреннего сгорания. Способ контроля углов газораспределения двигателя внутреннего сгорания полезен при эксплуатации, при предремонтной и послеремонтной проверке двигателей.

Изобретение относится к области транспорта и может быть использовано в двигателях внутреннего сгорания. Техническим результатом является повышение надежности диагностирования функциональности клапана рециркуляции отработавших газов двигателя внутреннего сгорания.

Группа изобретений относится к машиностроению, в частности к насосным станциям гидравлических стендов для испытаний гидроустройств. Насосная станция включает в себя бак, насос, на выходе которого установлен переливной клапан, и теплообменник, установленный в сливной гидролинии переливного клапана.

Изобретение используется для поузловой доводки авиационных двигателей при стендовых испытаниях, а именно доводки рабочих колес турбин и колес компрессоров. При реализации способа определения частоты вынужденных колебаний рабочего колеса (РК) определяют количество лопаток РК и количество лопаток направляющего аппарата (НА) или соплового аппарата (СА) ступени турбомашины.

Изобретение направлено на получение данных или осуществление получения данных или распределения среды многоточечно, точно и быстро с хорошим пространственным разрешением и минимальными габаритными размерами. Для этого в изобретении предусматривается скрученное размещение трубопроводов в зоне получений/распределений на многих высотах одним устройством. В частности, для получения измерения вращения в полете устройство является зондом давления, в котором корпус зонда имеет первую часть или отрезок получения данных о давлении, образующий цилиндр, по меньшей мере, в 6 мм в диаметре. Зонд имеет внутренние трубопроводы (С1-С9) по параллельным спиралям и каналы (К1-К9), образованные в корпусе из металлического сплава между трубопроводами (С1-С9) и входные отверстия (01-03, 04-06, 07-09), расположенные на трех различных высотах (Н1-Н3) корпуса зонда. 2 н. и 8 з.п. ф-лы, 3 ил.

Описан способ проверки правильности определения вращающего момента двигателя, включающий: определение вращающего момента двигателя по количеству топлива, впрыскиваемого в двигатель, причем вращающий момент двигателя получают из таблицы впрыскивания топлива; вычисление первой величины веса транспортного средства по его ускорению и полученному вращающему моменту двигателя; определение вращающего момента вспомогательного тормозного устройства с использованием таблицы вспомогательного тормозного устройства; вычисление второй величины веса транспортного средства по полученному тормозному моменту вспомогательного тормозного устройства и сравнение первой и второй величин веса транспортного средства. Достоинство изобретения заключается в том, что можно определить отклонение действительной величины вращающего момента двигателя от номинальной величины вращающего момента двигателя транспортного средства без необходимости измерения вращающего момента двигателя с помощью отдельного датчика вращающего момента. 14 з.п. ф-лы, 1 ил.

Изобретение может быть использовано в двигателях внутреннего сгорания. Предложен способ диагностики топливной форсунки, в котором для уравновешивания крутящих моментов, производимых цилиндром двигателя, производят регулирование количества впрыскиваемого топлива или начало/конец синхронизации впрыска топлива в указанный цилиндр. В предложенном способе определяют уменьшение эффективности регулировки впрыска топлива или начала/конца синхронизации впрыска топлива при уравновешивании произведенных цилиндром крутящих моментов, когда минимальное количество топлива, впрыскиваемое в цилиндр или начало/конец синхронизации впрыска топлива, необходимые для уравновешивания крутящего момента цилиндра, находятся за пределами предопределенного диапазона. Предложенный способ диагностики топливной форсунки различает типы уменьшения эффективности работы форсунки. 3 н. и 17 з.п. ф-лы, 5 ил.

Изобретения относятся к области машиностроения, а именно к испытаниям корпусов роторов лопаточных машин на непробиваемость. Способ заключается в том, что на одной из лопаток, установленных в роторе, расположенном внутри неподвижного корпуса, осуществляется ослабление ее поперечного сечения, при достижении ротором заданной частоты вращения и прогреве корпуса и деталей ротора до необходимой температуры проводят обрыв этой лопатки с последующим взаимодействием оборвавшейся части с корпусом. Обрыв лопатки осуществляется при помощи груза, размещенного в канале диска ротора под обрываемой лопаткой и в заданный момент времени нагружающего эту лопатку дополнительной силой, обеспечивающей ее обрыв. Устройство включает ротор с лопатками, расположенный внутри корпуса, привод для раскрутки ротора, систему управления частотой вращения, при этом обрываемая лопатка выполнена с ослабленным (за счет уменьшения площади поперечного сечения) сечением. В канале диска ротора под обрываемой лопаткой размещен груз, зафиксированный таким образом, чтобы в заданный момент времени под воздействием исполнительного механизма обеспечить свободное радиальное перемещение груза под действием центробежных сил до взаимодействия с обрываемой лопаткой над ослабленным ее сечением. Технический результат заключается в гарантированном обрыве лопатки в заданных условиях, обеспечивающих идентичность движения оборвавшейся части лопатки траектории лопатки, оборвавшейся в условиях реальной эксплуатации. 2 н. и 3 з.п. ф-лы, 1 ил.

Изобретение относится к оценке работоспособности технологического оборудования при эксплуатации в условиях, вызывающих снижение пластичности и растрескивание металла конструктивных элементов, и может быть использовано при его диагностировании для обоснования возможности, сроков, условий дальнейшей эксплуатации и предупреждения хрупких разрушений. Технический результат от использования изобретения заключается в обосновании возможности дальнейшей эксплуатации технологического оборудования и предупреждении высокоопасных хрупких разрушений. Для этого оценку работоспособности технологического оборудования ведут по параметрам и критериям пластичности металла, для чего определяют максимальные деформации в вершине концентратора еmax и разрушающие деформации eL, при этом если соблюдается условие emax<eL, то состояние оборудования оценивается как работоспособное, если условие не соблюдается, то в вершине исходного концентратора при действии номинальных напряжений σH от внешних нагрузок возможно растрескивание, т.е. образование исходной трещины размером L0, тогда, в случае если выполняется условие KI(L0)≤[KI], где KI - допустимый коэффициент интенсивности напряжений, состояние оборудования оценивается как работоспособное. 3 ил., 1 табл.

Изобретение относится к испытательной технике и испытаниям на усталостную прочность при кручении. Стенд содержит сервогидравлическое нагружающее устройство (СНУ), элемент коленчатого вала (1), один конец которого жестко крепится через фланец отбора мощности к вертикальной неподвижной стойке (7). Напрессованный с натягом на свободный конец вала каток (2) имеет возможность свободно кататься по опорной плите (5), которая жестко крепится к столу СНУ. Сопряженная с катком (2) поверхность опорной плиты (5) повторяет форму опорной поверхности катка (2). К катку (2) крепится рычаг (4), на который через сферический упор (6), присоединенный к СНУ, передается эксцентричная нагрузка от поршня СНУ, под действием которой жестко связанный с рычагом (4) каток (5) может совершать качательное движение вокруг оси, совпадающей с продольной осью коленчатого вала (1) и передавать крутящий момент элементу коленчатого вала (1). Технический результат заключается в обеспечении задания произвольного закона нагружения. 1 ил.
Способ диагностирования образования и развития трещины в диске работающего авиационного газотурбинного двигателя, который реализуется регистрацией сигнала с датчика линейного перемещения, установленного на корпусе двигателя и фиксирующего кратковременное колебание корпуса из-за импульсного высвобождения энергии при образовании и ступенчатом развитии трещины при выходе двигателя на максимальные обороты в рабочем цикле. Изобретение позволяет определять появление и развитие трещины в диске, а также степень поврежденности диска без разборки двигателя и предотвращать разрушение диска. 1 з.п. ф-лы.

Изобретение относится к области транспорта и может быть использовано для бортовой диагностики катушек зажигания двигателей внутреннего сгорания (ДВС) с принудительным воспламенением от искрового разряда, формируемого микропроцессорной системой зажигания в условиях сложной электромагнитной обстановки. Технический результат - повышение достоверности определения работоспособности катушек зажигания в условиях сложной электромагнитной обстановки, обеспечение своевременного принятия мер по обеспечению экологических требований, предъявляемых к транспортному средству (ТС), например прекращение топливоподачи в соответствующий цилиндр ДВС ТС и отключение тока накопления в неисправной катушке зажигания в случае определения нарушения их работоспособности. В способе диагностики катушек зажигания N-цилиндрового ДВС их работоспособность определяют по результату сравнения измеренной величины амплитуды тока, протекающего в ее первичной обмотке, с данными превентивно заданных пороговых значений и статистическими данными измерений в течение нескольких циклов работы ДВС величины амплитуд токов, протекающих в первичных обмотках других катушек ДВС. 6 ил.

Изобретение относится к измерительной технике, в частности к определению технического состояния путем измерения параметров, отражающих давление в цилиндрах поршневых двигателей внутреннего сгорания (ДВС) в эксплуатационных условиях. Предложенное техническое решение позволяет упростить и значительно снизить трудоемкость экспертизы технического состояния двигателя. Предлагаемый способ и экспертная система для определения технического состояния двигателя и его составных элементов могут использоваться как для исследования рабочего процесса двигателя внутреннего сгорания, так и для проведения экспертизы технического состояния ДВС и его составных элементов при предварительном обучении экспертной системы. Способ и экспертная система позволяют оперативно и точно получить объективное экспертное заключение о техническом состоянии двигателя и его составных элементов. Применение настраиваемой модели в способе и устройстве позволяет повысить точность методов идентификации состояния двигателя, центробежного регулятора скорости, топливного насоса и турбокомпрессора в сравнении с обычным измерением и анализом характеристик и более достоверно обнаружить места неисправностей и определить выход параметров указанных составных элементов за номинальные значения. Экспертная система позволяет путем создания баз данных и знаний неограниченного объема использовать накопленный интеллектуальный потенциал разработчиков, исследователей, диагностов, эксплуатационников для проведения объективной экспертизы ДВС и его составных элементов. 2 н. и 8 з.п. ф-лы, 41 ил.

Способ определения выброса несгоревшего топлива из цилиндра двигателя внутреннего сгорания позволяет осуществлять контроль дымности отработавших газов (ОГ) двигателя и дополняет его возможностью выявления цилиндров с неисправностями, вызывающими повышенную дымность. Контроль дымности осуществляют по параметрам процесса сгорания топлива в цилиндре двигателя, получаемым при обработке индикаторной диаграммы. Результаты контроля представляют в миллиграммах несгоревшего топлива, приходящихся на кубометр ОГ (мг/м3) и на единицу выработанной энергии (мг/кВт·ч). При автоматизированных процессах обработки индикаторных диаграмм способ вырабатывает сведения о дымности ОГ цилиндров без каких-либо дополнительных трудозатрат. 6 з.п. ф-лы, 4 ил.
Наверх