Комбинированная кумулятивная облицовка для формирования высокоскоростных компактных элементов

Изобретение относится к области ракетно-космической и оборонной техники и может быть использовано в различных кумулятивных устройствах (КУ), предназначенных для формирования высокоскоростных компактных элементов (ВКЭ) при моделировании воздействия метеоритных частиц или космического мусора искусственного происхождения на корпус космических объектов и при экспериментальном исследовании материалов в условиях высокоскоростного ударного нагружения. Комбинированная кумулятивная облицовка (КО) для формирования высокоскоростных компактных элементов содержит струеобразующую часть в форме сферического сегмента и сопряженную с ней отсекающую часть в форме цилиндра с внешним радиусом, равным внешнему радиусу поперечного сечения струеобразующей части в плоскости сопряжения. Высота сферического сегмента выбирается в диапазоне (1,2…1,8) RC, где RC - внешний радиус сферического сегмента. Изобретение позволяет усовершенствовать конструкцию комбинированной КО, как одного из элементов простейшего КУ для формирования ВКЭ, обеспечивающей формирование ВКЭ с необходимыми массово-скоростными характеристиками. 4 ил.

 

Область техники

Изобретение относится к области ракетно-космической и оборонной техники и может быть использовано в различных кумулятивных устройствах (КУ), предназначенных для формирования высокоскоростных компактных элементов (ВКЭ) при моделировании воздействия метеоритных частиц или космического мусора искусственного происхождения на корпус космических объектов и при экспериментальном исследовании материалов в условиях высокоскоростного ударного нагружения.

Уровень техники

Для определения реакции сложных конструкций на удар частиц с космическими скоростями требуется разработка устройств, позволяющих в наземных условиях осуществить разгон компактных металлических элементов массой от одного до нескольких десятков граммов (m=1…20 г) до скоростей порядка V=6…9 км/с и более [1, 2]. При этом устройства должны быть достаточно просты в конструктивном исполнении и адаптированы к условиям моделирования коллективного воздействия ВКЭ.

Для решения данной задачи применяются различные взрывные метающие устройства, в том числе КУ, формирующие ВКЭ [1, 2]. Основным элементом подобных КУ, помимо заряда взрывчатого вещества (ВВ) и детонирующего устройства, является кумулятивная облицовка (КО), устанавливаемая в профилированной выемке заряда ВВ и предназначенная для формирования струйного течения материала с соответствующим распределением массы и скорости его отдельных частиц при движении в пространстве. При этом известным способом формирования ВКЭ при использовании КУ является организация в нужный момент времени «отсечки» высокоскоростной части струйного течения материала, из которой в дальнейшем и формируется собственно безградиентный ВКЭ необходимой массы и скорости. Такая отсечка может быть реализована различными способами, например, с помощью метания пластин сбоку на струю или детонации бокового заряда [2], однако в этих случаях схемы организации отсечки достаточно громоздки, а механизм их реализации усложнен. В этой связи достаточно простым и не требующим использования дополнительных устройств способом является применение для данных целей комбинированных КО, состоящих из струеобразующей и отсекающей частей, сопрягающихся между собой.

В работах [1, 2] приводится ссылка на КУ, разработанное Потаповым П.И., в котором используется облицовка комбинированной формы полусфера-цилиндр (ПЦ-облицовка). В этом случае полусфера, являющаяся частным случаем сферического сегмента (при условии равенства высоты сегмента его внешнему радиусу), выполняет роль струеобразующей части комбинированной КО, формирующей собственно струйное течение материала с соответствующим распределением массы и скорости вдоль струи, а цилиндр, сопрягающийся с ней, выполняет роль отсекающей части, позволяющей отсечь часть струйного течения материала и выделить собственно ВКЭ определенной массы и скорости. Применение подобных комбинированных КО в составе КУ позволило получить ВКЭ в диапазоне изменения масс m=3,5…40 г и скоростей V=4,5…4,7 км/с при использовании цилиндрических зарядов ВВ на основе тротила-гексогена и стальных КО.

Полученные скорости метания ВКЭ более чем в 2 раза ниже требуемых. Повышение скорости формируемых ВКЭ может достигаться, например, за счет совершенствования конструкции ПЦ-облицовки, повышения мощности заряда ВВ, изменения способа инициирования заряда ВВ, введения в конструкцию КУ дополнительных элементов.

Заявляемой предметной областью предлагаемого изобретения является достижение необходимых уровней скоростей и масс ВКЭ за счет совершенствования конструкции комбинированной КО, как одного из элементов КУ.

Анализ патентно-информационных источников позволил выявить ряд аналогов предлагаемого технического решения в части использования комбинированной ПЦ-облицовки в составе КУ.

Так, в известном техническом решении [3] предлагается устройство метания маховской детонационной волной, состоящее из ВВ, стальной комбинированной ПЦ-облицовки, металлического корпуса, в котором заключен заряд ВВ, детонационной разводки на торце или боковой поверхности заряда. Утверждается, что при столкновении падающих детонационных волн образуется маховская волна, давление в которой существенно выше, чем за фронтом падающей стационарной волны. Это явление и используется для увеличения скорости метания компактного элемента.

При наличии общих признаков данного технического решения с предлагаемым в части использования комбинированной ПЦ-облицовки в составе КУ, оно позволяет получить скорости метания стальных ВКЭ массой m=12 г в диапазоне V=7,5…8,0 км/с. Это существенно больше приводимых в работах [1, 2] значений для простейших КУ с комбинированной ПЦ-облицовкой, однако результат получен не за счет изменения конструкции КО, а за счет увеличения массы заряда ВВ по отношению к массе КО и усложнения конструкции в целом.

Другим возможным аналогом предлагаемого технического решения в части конструкции комбинированной КО может быть изобретение [4]. В нем предлагается устройство, состоящее из заряда ВВ цилиндрической формы с осевой кумулятивной выемкой в форме полусферы-цилиндра с металлической облицовкой и детонационного устройства. При этом в полости кумулятивной выемки заряда соосно с ней установлен вкладыш с осевой кумулятивной выемкой в форме полусферы-цилиндра и с фланцем со ступенчатой торцевой поверхностью, обращенной к заряду. Вкладыш присоединен к торцевой поверхности облицовки торцевой поверхностью ступени фланца с меньшим диаметром наружной боковой поверхности, а ступень фланца с большим диаметром наружной боковой поверхности, равным или большим диаметром наружной боковой поверхности заряда, расположена с заданным зазором относительно ближе расположенного торца заряда.

При наличии общих признаков данного технического решения с предлагаемым в части использования комбинированной ПЦ-облицовки в составе КУ, оно позволяет получить скорости метания стальных ВКЭ массой в единицы граммов в диапазоне V=7,3…7,5 км/с. Это больше приводимых в работах [1, 2] значений скоростей для простейших КУ с комбинированной ПЦ-облицовкой, однако результат получен не за счет изменения конструкции КО, а за счет введения дополнительных элементов в конструкцию КУ, существенно ее усложняющих.

Наиболее близким техническим решением, принятым за прототип, является техническое решение комбинированной КО в составе КУ [5], в котором струеобразующая часть КО выполнена в форме полусферы (частного случая сферического сегмента) постоянной толщины, а отсекающая часть КО - в форме цилиндра, при этом обе части облицовки сопрягаются и имеют один и тот же внешний радиус, а цилиндрическая часть имеет толщину, примерно на 20…25% большую, чем толщина полусферической части (Фиг. 1).

В данной конструкции формирование ВКЭ осуществляется путем отсечки части струйного течения, образованного из полусферической части КО, с помощью схлопывания цилиндрической части КО на оси конструкции. При этом на формирование струйного течения необходимой массы и скорости существенно влияет форма и толщина струеобразующей части комбинированной КО, а эффективность отсечки зависит от высоты и толщины цилиндрической части комбинированной КО. На основе подобной комбинированной КО было экспериментально отработано КУ, которое в дальнейшем будем называть базовым вариантом ПЦ-облицовки, обеспечивающее при соответствующих геометрических параметрах RC, δC, hЦ, δЦ комбинированной КО и использовании заряда ВВ на основе тротила-гексогена цилиндрической формы диаметром 90 мм и высотой 144 мм формирование стального ВКЭ массой m=17±4 г со скоростью V=6,0 км/с.

Общими признаками с предлагаемой КО является наличие струеобразующей части КО, выполненной в форме сферического сегмента, и сопрягающейся с ней отсекающей части КО в форме цилиндра, внешний радиус которого равен внешнему радиусу поперечного сечения струеобразующей части в плоскости сопряжения.

Реализация данного технического решения приводит к устойчивому формированию ВКЭ необходимой массы, однако скорость его метания оказывается меньшей требуемого порога, заявленного для решения поставленной задачи.

Раскрытие изобретения

Решаемой задачей настоящего изобретения является усовершенствование конструкции комбинированной КО, как одного из элементов простейшего КУ для формирования ВКЭ, обеспечивающей формирование ВКЭ с необходимыми массово-скоростными характеристиками, превышающими характеристики, достигнутые в прототипе и обеспечивающие решение заявленной задачи.

Техническим результатом является повышение скорости и массы ВКЭ до значений, позволяющих решить поставленную задачу.

Технический результат достигается тем, что в известном техническом решении комбинированной КО для формирования ВКЭ, состоящей из струеобразующей части КО, выполненной в форме сферического сегмента и сопрягающейся с ней отсекающей части КО, выполненной в форме цилиндра, струеобразующая часть КО выполнена в форме сферического сегмента, высота которого превышает его радиус. В дальнейшем такие комбинированные облицовки, в отличии от ПЦ-облицовок, будем называть СЦ-облицовками (облицовки комбинированной формы сфера-цилиндр).

На Фиг. 2 показано техническое решение предлагаемой комбинированной КО, где в качестве струеобразующей части комбинированной КО вместо сферического сегмента, высота которого равна его внешнему радиусу (hC=RC), как представлено в прототипе, предлагается использовать сферический сегмент, имеющий высоту hC>RC (усеченная сфера), сопрягающийся с цилиндрической частью комбинированной облицовки, причем RЦ=hЦ, (как в прототипе) и RЦ<RC (в отличие от прототипа).

Решение об увеличении высоты сферического сегмента hC и, соответственно, уменьшении радиуса RЦ цилиндрической части комбинированной КО относительно радиуса RC сферического сегмента является ключевым в решении проблемы своевременной отсечки головной части струйного течения. Уменьшая радиус цилиндрической части и, соответственно, время ее схлопывания, можно «настроить» процесс отсечки так, чтобы в результате от струйного течения отделялся его головной участок необходимой длины. В результате новая форма облицовки имеет поднутрение в месте соединения струеобразующей и отсекающей частей. Придание струеобразующей части комбинированной КО формы с наличием поднутрения также выгодно с точки зрения повышения массово-скоростных характеристик подлежащего отсечке струйного течения. Физическая причина увеличения скорости формируемого струйного течения заключается в том, что в данном случае создаются условия для обжатия облицовки, более близкие к сферически симметричной кумуляции. Кроме того, снижается градиент осевой скорости на головном участке формирующегося струйного течения, что приводит к возрастанию массы материала, участвующего в процессе сферического обжатия при увеличении высоты hC нагружаемого взрывом сферического сегмента сверх его радиуса RC. При этом высота hC сферического сегмента выбирается из условия, чтобы радиус его основания совпадал с радиусом RЦ цилиндрической части комбинированной облицовки.

Перечень фигур

Фиг. 1. Схема комбинированной ПЦ-облицовки со струеобразующей частью в виде сферического сегмента, высота которого равна его внешнему радиусу (прототип).

Фиг. 2. Схема комбинированной СЦ-облицовки со струеобразующей частью в виде сферического сегмента, высота которого превышает его внешний радиус.

Фиг. 3. Конфигурация течения и распределение скорости на оси симметрии при взрывном обжатии комбинированных облицовок со струеобразующей частью в виде сферического сегмента: а - hC=1,0 RC; б - hC=1,4 RC; в - hC=1,6 RC; г - hC=1,8 RC.

Фиг. 4. Массово-скоростные распределения для струйных течений, формируемых комбинированными облицовками со струеобразующей частью в виде сферического сегмента: 1 - hC=1,0 RC; 2 - hC=1,8 RC.

Осуществление изобретения

С целью определения преимуществ предлагаемого технического решения были проведены соответствующие численные расчеты по методике, которая была предварительно протестирована на результатах экспериментальных исследований [1, 5]. При этом за базовый для сравнения вариант был выбран прототип с диаметром цилиндрического заряда ВВ 90 мм, высотой 144 мм и параметрами КО: RC=26 мм, δC=2,5 мм, hЦ=RC=26 мм, δЦ=3,2 мм (Фиг. 1). Параметры ВВ составляли: плотность 1700 кг/м3, скорость детонации 8000 м/с; материал КО - сталь.

Результаты проведенных исследований частично представлены на Фиг. 3 и Фиг. 4.

На Фиг. 3 приведены конфигурации течения материала и распределения скорости на оси симметрии на момент времени, когда уже произошла отсечка части струйного течения материала и выделения ВКЭ, на что указывает постоянный участок (полочка) осевой скорости. На картинах течения материала можно выделить три ярко выраженных участка: справа показан лидирующий утолщенный участок струйного течения, формирование которого происходит в результате схлопывания цилиндрической части облицовки и который после прекращения инерционного деформирования материала «превращается» в ВКЭ, движущийся как абсолютно твердое тело; вслед за ВКЭ движется сплошная струя материала, которая удлиняется с сокращением своего поперечного размера и является «феноменом» численного расчета, в модель которого не вводится критерий разрушения материала (по данным экспериментальной рентгенографии такой струи не наблюдается, вместо нее движется поток мелких отдельных частиц, постепенно рассеивающихся в радиальном направлении); наконец, слева показана основная массивная часть струйного течения материала, которая резко «тормозится» и не оказывает влияния на действие ВКЭ. В проведенных расчетах наружный радиус облицовок в форме усеченного сферического сегмента составлял RC=26 мм (как в прототипе), а их высота изменялась от 1,0 RC (соответствовала базовому варианту прототипа - полусфера) до 1,8 RC (Фиг. 2).

Параметр RЦ в данной конструкции облицовки связан с параметрами RC и hC соответствующей геометрической зависимостью. Как видно из представленных на фиг. 3 распределений скорости на оси симметрии в момент, когда появляется «полочка», свидетельствующая о формировании безградиентного ВКЭ, наблюдается устойчивый прирост скорости при переходе к сферическому сегменту с условием hC>RC. Средний прирост скорости в указанном диапазоне изменения высоты сегмента hC от 1,0 RC до 1,8 RC составил не менее 25% по отношению к прототипу и достиг значений 8,5…9,0 км/с.

На Фиг. 4 показаны массово-скоростные распределения струйного течения материала для базового варианта-прототипа (кривая 1) и предлагаемого технического решения (кривая 2). По оси абсцисс определяется скорость безградиентного участка, выделяемая близкой к вертикали частью кривой, а по оси ординат - соответствующее этому участку значение массы (на уровне излома вертикальной части кривой). Видно, что для прототипа эти значения хорошо коррелируются с данными эксперимента [1, 5] - Vz=6 км/с, m=17…20 г. Для предлагаемого технического решения эти значения составляют, соответственно, Vz=8,5…9,0 км/с, m=5…7 г.

Использованные источники информации

1. Высокоскоростное метание компактных элементов /А.Г. Балеевский, Ю.Г. Киселев, В.А. Могилев и др. // Сборник докладов научной конференции ВРЦ РАРАН «Современные методы проектирования и отработки ракетно-артиллерийского вооружения». - Саров: ВНИИЭФ, 2000. - С. 244-248.

2. Физика взрыва / Под ред. Л.П. Орленко. - Изд. 3-е, перераб - В 2 т., Т. 2. - М.: Физматлит, 2002. - С. 37-40.

3. Патент РФ №2309367, кл. F42B 1/02. Способ и устройство формирования компактного элемента / А.С. Князев, Д.В. Маляров. - Публ. 27.10.2007.

4. Патент РФ №2383849, кл. F42B 1/028. Кумулятивное устройство / А.С. Князев, Д.В. Маляров. - Публ. 10.03.2010.

5. Жданов И.В., Князев А.С., Маляров Д.В. Получение высокоскоростных компактных элементов требуемых масс при пропорциональном изменении размеров кумулятивных устройств // Труды Томского государственного университета. - Т. 276. - Сер. физико-математическая. - Томск: Изд-во Томского ун-та, 2010. - С. 193-195.

Комбинированная кумулятивная облицовка для формирования высокоскоростных компактных элементов, содержащая струеобразующую часть в форме сферического сегмента и сопряженную с ней отсекающую часть в форме цилиндра с внешним радиусом, равным внешнему радиусу поперечного сечения струеобразующей части в плоскости сопряжения, отличающаяся тем, что высота сферического сегмента выбирается в диапазоне (1,2…1,8) RC, где RC - внешний радиус сферического сегмента.



 

Похожие патенты:

Изобретение относится к технологии конверсионных производств и может быть использовано для изготовления кумулятивных зарядов для дробления негабаритов горных пород, пробития металлических преград.

Изобретение относится к механике и может быть использовано для придания ускорения телу. Газодинамически ускоряют тело, ускоряют тело взрывной волной, перемещаемой в пространстве со скоростью в зависимости от скорости детонации, радиуса и шага намотки спирали, обеспечивают устойчивость процесса ускорения тела условием автофазировки, синхронизируют газодинамическое ускорение и ускорение взрывной волной в зависимости от удаления тела от области взрыва.

Изобретение относится к технологии конверсионных производств и может быть использовано для изготовления кумулятивных зарядов для дробления негабаритов горных пород.

Изобретение относится к технике взрыва площадных зарядов из листовых взрывчатых веществ (ВВ) и может быть использовано в практике динамических испытаний преград (материалов и конструкций), а также в ряде импульсных технологических операций (штамповка и сварка взрывом).

Изобретение относится к вооружению и может быть использовано в кумулятивных боеприпасах. Устройство управления формой фронта детонационной волны содержит осесимметричные промежуточный заряд взрывчатого вещества с детонатором и основной заряд взрывчатого вещества с кумулятивной выемкой, инертную линзу в форме полого цилиндра с дном.

Изобретение относится к области экспериментальной физики, в частности к способу формирования металлического компактного элемента. Способ формирования металлического компактного элемента заключается в инициировании осесимметричного основного заряда взрывчатого вещества, разгоне металлической облицовки кумулятивной выемки под действием продуктов взрыва основного заряда, выполнении каждого металлического вкладыша в форме, аналогичной форме металлической облицовки, покрытии вкладыша со стороны облицовки слоем дополнительного заряда взрывчатого вещества, производстве ударного инициирования разогнанной металлической облицовкой примыкающего к ней дополнительного заряда взрывчатого вещества, размещенного на первом по направлению метания металлическом вкладыше.

Изобретение относится к боеприпасам, в частности к комбинированной кумулятивной облицовке для формирования высокоскоростных компактных элементов. Комбинированная кумулятивная облицовка для формирования высокоскоростных компактных элементов содержит струеобразующую часть в форме полусферы и сопряженную с ней отсекающую часть в форме цилиндра.

Изобретение относится к области военной техники, более конкретно к устройствам для разрезки стальных стержней, трубопроводов, электрических жгутов и т.п. с помощью удлиненных кумулятивных зарядов (УКЗ), и может быть использовано в ракетно-космической технике.

Изобретение раскрывает устройство кумулятивного заряда скважинного перфоратора, создающего при вскрытии продуктивного пласта расширяющийся кумулятивный канал.

Изобретение относится к области высокоскоростного соударения твердых тел и может быть применено в промышленности и военной технике, использующей заряды взрывчатых веществ для высокоскоростного метания компактных элементов.
Изобретение относится к боеприпасам, в частности к кумулятивным зарядам. Кумулятивный заряд состоит из шашки взрывчатого вещества с конусной выемкой и, возможно, с внутренней облицовкой. Заряд содержит облицовку по наружной боковой конусной или цилиндрической поверхности шашки взрывчатого вещества. Также заряд содержит полностью или частично облицовку по задней поверхности шашки взрывчатого вещества. Причем если задняя облицовка выполнена по всей задней поверхности, то она полностью или частично может быть прикреплена к внешней, а может располагаться свободно. Если задняя облицовка выполнена по части задней поверхности, то она расположена свободно. Достигается повышение скорости кумулятивной струи. 2 з.п. ф-лы.

Изобретение относится к области стрелкового вооружения и может быть использовано в стрелковом огнестрельном оружии сверх малого калибра. Способ создания метательной силы для убойно-разрушающего элемента стрелкового огнестрельного оружия заключается в том, что заранее формируют порцию термоядерного топлива, дозируют мощность энергии экзотермической реакции прогнозируемого термоядерного синтеза выбором объема порции термоядерного топлива внутри неразрушающейся гильзы миниатюрного размера, размещают неразрушающую миниатюрную гильзу с заранее сформированной порцией термоядерного топлива в затворную часть ствола стрелкового огнестрельного оружия сверх малого калибра, инициируют реакцию термоядерного синтеза в неразрушающейся миниатюрной гильзе электрическим разрядом и высвобождают продукты реакции термоядерного синтеза из неразрушающейся миниатюрной гильзы с возможностью выталкивания убойно-разрушающего элемента из миниатюрной гильзы и раскручивания его относительно продольной оси при выходе из ствола стрелкового огнестрельного оружия сверх малого калибра. Достигается повышение боевой эффективности оружия. 1 ил.

Изобретение относится к кумулятивным боеприпасам. Кумулятивный заряд состоит из шашки взрывчатого вещества с конусной выемкой и, возможно, с внутренней облицовкой выемки, при этом в качестве взрывчатого вещества содержит вещество, выделяющее при взрыве из газов водород. Состав взрывчатого вещества включает боргидрид бериллия, гидрид бериллия и в качестве окислителя - нитрат аммония, динитрамид аммония, нитрат бора, нитрат бериллия или пятиокись азота. Техническим результатом изобретения является повышение скорости кумулятивной струи до 4 раз и соответственно повышение бронепробиваемости. 5 з.п. ф-лы.

Изобретение относится к подрывным зарядам для разрушения крепких пород. Подрывной заряд содержит электродетонатор, дополнительный детонатор и размещенный по длине заряд взрывчатого вещества с осевым каналом, выполненный с возможностью взрывного разложения упомянутого взрывчатого вещества в режиме пересжатой детонации от электродетонатора и дополнительного детонатора. Осевой канал в заряде взрывчатого вещества выполнен из четного количества зеркально расположенных относительно друг друга кумулятивных выемок с образованием взаимоперекрещивающихся осесимметричных эллипсных форм, высота которых в 1,1-2 раза больше ширины и составляет два фокусных расстояния зеркально расположенных кумулятивных выемок. Дополнительный детонатор размещен у торца заряда взрывчатого вещества, имеет форму, повторяющую форму торца заряда взрывчатого вещества, и выполнен с возможностью точечного инициирования в его центре. В осевом канале заряда взрывчатого вещества с противоположного от дополнительного детонатора конца заряда взрывчатого вещества размещена вставка из взрывчатого вещества, имеющая форму, повторяющую форму сечения осевого канала заряда взрывчатого вещества с выступающей частью, обеспечивающей возможность его соединения с аналогичным подрывным зарядом. Обеспечивается высокая степень взрывного дробления. 2 ил., 1 табл.

Изобретение относится к взрывным устройствам для вскрытия продуктивных пластов в нефтяных скважинах и может использоваться в кумулятивных боевых частях. Кумулятивный заряд содержит корпус с размещенной в нем шашкой взрывчатого вещества, имеющей кумулятивную выемку, покрытую облицовкой, состоящей из двух слоев, выполненных из различных материалов, внешний слой прилегает к кумулятивной выемке, а внутренний струеобразующий слой выполнен из меди, причем внешний и внутренний слои облицовки размещены относительно друг друга с зазором, составляющим не более двух толщин стенки внешнего слоя облицовки, а внешний слой облицовки выполнен из материала плотностью 2-3 г/см3, например хлористого натрия NaCl. Техническим результатом изобретения является увеличение пробивной способности и стабильности работы кумулятивного заряда при отсутствии пестообразования. 1 з.п. ф-лы, 2 ил.

Группа изобретений относится к боеприпасам, в частности к метательным телам. Метательное тело состоит из трубы с внутренней поверхностью. Внутренняя поверхность содержит конфузор и диффузор и, как вариант, центральное тело, а также пыж. Между конфузором и диффузором расположен цилиндрический участок. В другом варианте исполнения, пилоны центрального тела расположены по касательной к центральному телу в направлении нарезов ствола, или в промежуточном направлении между касательной и радиусом. В другом варианте исполнения, центральное тело имеет участок, плавно переходящий сзади из круглого в граненый. Пыж выполнен с углублением, соответствующим по форме граненой части. Пыж имеет ведущий поясок для его закрутки в нарезах ствола оружия. Достигается снижение аэродинамического сопротивления. 3 н. и 4 з.п. ф-лы, 3 ил.

Изобретение относится к взрывным метающим устройствам, которые могут быть использованы при испытаниях военной техники. Способ задержки прорыва продуктов взрыва по краям метаемой пластины-ударника во взрывном метающем устройстве включает заглубление краев пластины-ударника в пазы, выполненные в примыкающих к ней элементах взрывного метающего устройства. Края пластины-ударника и ответные пазы выполняют с клиновидным профилем, при этом грань пластины-ударника, обращенную к заряду взрывчатого вещества, выполняют с большей площадью, чем площадь ее противоположной грани. Обеспечивается отсутствие разрушения краев метаемой пластины-ударника, уменьшение градиента скорости, возникающего вследствие деформации периферийной зоны пластины-ударника, и обеспечение плотного контакта периферийной зоны пластины-ударника с примыкающими элементами взрывного метающего устройства. 1 ил.

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении облицовок кумулятивных зарядов для калибра 100 мм с переменной толщиной стенки. Способ изготовления медной облицовки кумулятивного заряда, включающий на первом этапе из цилиндрической медной заготовки формируют предварительную дисковую заготовку, при этом используют цилиндрическую заготовку, предварительно отожженную при температуре 400-420°C в течение 40-60 мин. Предварительную дисковую заготовку подвергают рекристаллизационному отжигу в селитровой ванне при температуре 450-470°C в течение 35-45 мин с последующим охлаждением в воде до температуры окружающей среды 15-35°C. На втором этапе осуществляют окончательную осадку дисковой заготовки с микроструктурой металла находящейся в деформированном состоянии. После механической обработки получают фасонную заготовку с внутренней поверхностью переменной толщины, уменьшающейся к центру заготовки, при этом профиль и геометрические размеры фасонной заготовки определяют графоаналитическим методом с учетом припуска 1,04-1,05 от полученных графоаналитическим методом размеров. Раскатку фасонной заготовки на конусной оправке производят с интенсивным охлаждением СОЖ, подаваемой со скоростью не менее 25 л/мин, до получения полого конуса с толщиной стенки, уменьшающейся к вершине полого конуса заготовки и углом конуса 40°-70°. Рекристаллизационный отжиг заготовки ведут в селитровой ванне при температуре 450-470°C в течение 20-25 мин с последующим охлаждением в воде до температуры окружающей среды. Отпуск осуществляют при температуре 240-250°C в течение 14-16 мин. Изобретение позволяет увеличить бронепробиваемость за счет получения воронки с однородной микроструктурой вдоль образующей. 2 ил.

Изобретение относится к области средств взрывания и может быть использовано в нефтедобывающей промышленности при ведении прострелочно-взрывных работ в скважинах для инициирования зарядов кумулятивных перфораторов. Детонирующий шнур содержит заключенную в многослойную внешнюю оболочку взрывчатую сердцевину, выполненную из набора цилиндрических таблеток из термостойкого взрывчатого вещества (ВВ), между которыми размещены таблетки-разделители, спрессованные из неорганических окислителей. Таблетки-разделители могут быть выполнены из смеси нитрата аммония с алюминиевой пудрой в массовом соотношении 80:20, где нитрат аммония состоит из смеси порошка стандартного гранулометрического состава с нитратом аммония в нанодисперсном состоянии в количестве по массе до 25%. В случае сопоставимых по величине плотностей прессовки с таблетками основного заряда из термостойкого ВВ высота (масса) таблетки-разделителя составляет не более 0,25 от соответствующего показателя таблетки основного заряда. Введение в конструкцию шнура таблеток-разделителей позволяет снизить расход термостойкого мощного бризантного ВВ и одновременно повысить надежность срабатывания шнура в случае замокания сердцевины. 2 з.п. ф-лы, 1 ил., 2 табл.

Изобретение относится к разрывным зарядам для боеприпасов. Заряд включает выполненную с глухим осевым цилиндрическим каналом шашку индивидуального и/или смесевого бризантного взрывчатого вещества, линзу, заглубленную во взрывчатое вещество шашки и закрывающую вход в канал с одной стороны, и размещенный со стороны линзы вплотную к шашке генератор плоской ударной волны со средством инициирования детонации. Генератор плоской ударной волны и линза размещены на одной оси с каналом. Линза выполнена из конструкционного материала с акустической жесткостью, большей акустической жесткости взрывчатого вещества шашки, в форме диска с диаметром, превышающим диаметр канала. Толщина слоя взрывчатого вещества в шашке над линзой больше критической толщины его детонации. Обеспечивается повышение в 1,5÷1,75 раза скорости детонации штатных взрывчатых веществ, а также повышение могущества боеприпасов без замены взрывчатых веществ на более мощные. 1 ил.

Изобретение относится к области ракетно-космической и оборонной техники и может быть использовано в различных кумулятивных устройствах, предназначенных для формирования высокоскоростных компактных элементов при моделировании воздействия метеоритных частиц или космического мусора искусственного происхождения на корпус космических объектов и при экспериментальном исследовании материалов в условиях высокоскоростного ударного нагружения. Комбинированная кумулятивная облицовка для формирования высокоскоростных компактных элементов содержит струеобразующую часть в форме сферического сегмента и сопряженную с ней отсекающую часть в форме цилиндра с внешним радиусом, равным внешнему радиусу поперечного сечения струеобразующей части в плоскости сопряжения. Высота сферического сегмента выбирается в диапазоне RC, где RC - внешний радиус сферического сегмента. Изобретение позволяет усовершенствовать конструкцию комбинированной КО, как одного из элементов простейшего КУ для формирования ВКЭ, обеспечивающей формирование ВКЭ с необходимыми массово-скоростными характеристиками. 4 ил.

Наверх