Способ риформинга углеводородного потока



Способ риформинга углеводородного потока
Способ риформинга углеводородного потока
Способ риформинга углеводородного потока

 


Владельцы патента RU 2564528:

ЮОП ЛЛК (US)

Изобретение относится к способу риформинга углеводородного потока, включающему его разделение на легкий углеводородный поток и более тяжелый поток с относительно высокой концентрацией нафтенов. Тяжелый поток подвергают риформингу для превращения нафтенов в ароматические соединения, а образовавшийся поток продуктов дополнительно подвергают риформингу вместе с легким углеводородным потоком для повышения выходов ароматических соединений. Катализатор пропускают через реакторы последовательно. Технический результат - повышение выходов ароматических соединений 8 з.п. ф-лы, 2 ил., 1 табл.

 

Заявление приоритета

По данной заявке испрашивается приоритет на основании заявки на патент США №13/327200, которая была подана 15 декабря 2011 г.

Область техники, к которой относится изобретение

Настоящее изобретение относится к способу повышения объема выпуска ароматических соединений. В частности, к способу улучшения и повышения объема выпуска ароматических соединений, таких как бензол, толуол и ксилолы, из исходного потока нафты.

Уровень техники

Риформинг нефтяного сырья представляет собой важный процесс получения полезных продуктов. Одним из значимых процессов является отделение и улучшение качества углеводородов моторного топлива, как, например, получение исходного потока нафты и повышение октанового показателя нафты при производстве бензина. В то же время исходные углеводородные потоки из источника сырой нефти охватывают получение полезных химических предшественников для применения в производстве пластических масс, моющих средств и других продуктов.

Улучшение качества бензина представляет собой важный процесс, и варианты увеличения конверсии исходных потоков нафты для повышения октанового числа были представлены в патентах США 3729409, 3753891, 3767568, 4839024, 4882040 и 5242576. Данные процессы включают в себя широкое разнообразие способов повышения октанового числа и конкретно увеличения содержания ароматических соединений в бензине.

В дополнение к этому важным процессом является получение ароматических соединений. Ароматические соединения, такие как бензол, используют в производстве пластических масс и при получении моющих средств. Повышение выходов ароматических соединений из углеводородных потоков приводит к увеличению рентабельности, поскольку менее ценные углеводороды превращаются в более ценные ароматические соединения.

Способы заключают в себе расщепление подач исходного сырья и функционирование нескольких реакторов риформинга с использованием различных катализаторов, таких как монометаллический катализатор или некислотный катализатор для углеводородов с более низкими температурами кипения и биметаллические катализаторы для углеводородов с более высокими температурами кипения. Другие усовершенствования включают в себя новые катализаторы, приведенные в патентах США 4677094, 6809061 и 7799729. Однако на способы и катализаторы, представленные в указанных патентах, имеются ограничения, и они могут повлечь за собой значительные увеличения расходов.

Повышенное требование вызывает давление для улучшения способов повышения объема выпуска ароматических соединений.

Сущность изобретения

Настоящее изобретение включает в себя регулирование технологического потока и потока катализатора для повышения выходов ароматических соединений из исходного потока нафты. Исходный поток нафты расщепляют на легкий поток, содержащий С7 и более легкие углеводороды, и тяжелый поток, содержащий C8 и более тяжелые углеводороды, а также нафтены. Тяжелый поток пропускают через первую систему реакторов для превращения нафтенов в ароматические соединения и формируют первый выходной поток. Легкий поток и первый выходной поток пропускают во вторую систему реакторов для превращения С6 и С7-парафинов в ароматические соединения. Данный способ включает в себя пропускание катализатора риформинга через первую систему реакторов для формирования первого выходного потока катализатора. Первый выходной поток катализатора пропускают во вторую систему реакторов, и он перетекает через реакторы во второй системе реакторов. Вторую систему реакторов поддерживают по существу в изотермическом состоянии для максимального повышения степени превращения в бензол и толуол.

Другие цели, преимущества и варианты применения настоящего изобретения станут очевидны специалистам в данной области техники из следующих ниже чертежей и подробного описания изобретения.

Краткое описание чертежей

На фигуре 1 представлена технологическая схема в случае параллельного потока с расщепленной подачей и повторным объединением для вторичного риформинга; и

на фигуре 2 показана технологическая схема в случае параллельного потока с гидроочисткой исходной нафты и рециклом.

Подробное описание изобретения

Представлен способ решения проблемы, связанной с необходимостью повышения выходов бензола, толуола и ксилолов из исходного углеводородного потока. Исходный углеводородный поток обычно представляет собой исходный поток нафты во всем диапазоне кипения, и исходный поток нафты подвергают риформингу для образования С610-ароматических соединений. Процесс риформинга заключает в себе наличие каталитического реактора для селективного превращения нафтенов и парафинов в ароматические соединения. В общем случае, в процессе каталитического риформинга образуются нежелательные побочные продукты, которые включают в себя метан, этан и, в меньшей степени, пропаны и бутаны. Они являются малоценными продуктами, и способы, которые обеспечивают уменьшение образования указанных побочных продуктов и увеличение количества ароматических соединений, улучшают экономику процесса риформинга.

Каталитический риформинг углеводородов протекает по многочисленным маршрутам химических реакций. Скорости реакций риформинга изменяются в зависимости от температуры, и соотношение между скоростью (k) реакции и температурой (T) отражает уравнение Аррениуса, при этом каждая реакция характеризуется энергией активации (Ea). Данное уравнение имеет следующий вид:

k=A*exp(-Ea/RT),

где A представляет собой коэффициент скорости отдельной реакции.

Реакции с отличающимися энергиями активации различным образом подвергаются влиянию температуры реакции и ее изменениям. В случае каталитического риформинга существуют многочисленные параллельные маршруты реакций или маршруты конкурирующих реакций. В случае различающихся энергий активации можно управлять скоростями превращения в желаемые продукты с помощью контролирования температур реакций. Однако поскольку имеется большое число параллельных реакций, на практике регулирование ограничивается рамками классов, или типов химических соединений, подвергаемых риформингу, и контроль сводится к способности адекватно выделять классы соединений. В случае нафты процесс каталитического риформинга является в целом эндотермическим. При использовании адиабатической реакционной системы имеет место существенное понижение температуры, и это оказывает неблагоприятное влияние на скорости превращения. С помощью выделения наиболее эндотермичных соединений и осуществления риформинга более эндотермичных соединений легче контролировать температуры реакций и можно повышать выходы. Это также приводит к достижению положительного результата снижения селективности по нежелательным побочным продуктам.

Улучшение катализаторов находилось в центре внимания усовершенствования процесса риформинга, однако модифицирование процесса с использованием неочевидных перераспределений в схеме может давать неожиданные результаты. Настоящее изобретение применительно к риформингу исходного углеводородного потока представлено на фигуре 1. Способ включает в себя пропускание исходного потока 8 в систему 10 фракционирования для образования верхнего потока 12 и нижнего потока 14. Нижний поток 14 пропускают в первую систему 20 реакторов риформинга, и ее эксплуатируют при первом наборе условий реакции для формирования выходного потока 22 первой системы реакторов. Выходной поток 22 первого реактора имеет повышенное содержание ароматических соединений.

Выходной поток 22 первого реактора и верхний поток 12 пропускают во вторую систему 30 реакторов риформинга. Во второй системе 30 реакторов риформинга образуется второй выходной поток 32, обогащенный ароматическими соединениями. Второй выходной поток 32 пропускают в колонну 40 разделения риформата для образования верхнего потока 42 риформата, имеющего в своем составе С7 и более легкие ароматические соединения, и нижнего потока 44 риформата, заключающего в себе C8 и более тяжелые ароматические соединения. Верхний поток 42 риформата пропускают в узел 50 извлечения ароматических соединений для формирования потока 52 продуктов ароматических соединений и потока 54 рафината, содержащего неароматические углеводороды. Поток 54 рафината можно пропускать обратно во вторую систему 30 реакторов для дополнительного превращения углеводородов в ароматические соединения.

В предпочтительном варианте осуществления изобретения верхний поток 12 содержит н-гексан и более легкие компоненты. Нижний поток 14 заключает в себе циклогексан и более тяжелые компоненты. Нафтены, содержащиеся в нижнем потоке 14, перерабатывают в первой системе 20 реакторов риформинга для переработки компонентов с наиболее высокой эндотермичностью. Это приводит к пониженному энергопотреблению для поддержания температур на входе во вторую систему 30 реакторов. Первая система 20 реакторов риформинга характеризуется входной температурой ниже 540°C для превращения нафтенов в ароматические соединения. Вторая система 30 реакторов риформинга предпочтительно характеризуется входными температурами, равными 540°C или близкими к ней, или выше. Каждый реактор в системах реакторов имеет нагревательное устройство для доведения температуры сырья реактора до желаемых температур реакции.

Данный способ включает в себя эксплуатацию второй системы 30 реакторов в рабочем режиме, в котором сводят к минимуму изменения температуры внутри системы 30 реакторов. Процесс риформинга является эндотермичным, и протекание реакций смещает вниз температуру в реакторах относительно входной температуры. Вторая система 30 реакторов может заключать в себе множество реакторов с межреакторными нагревателями. На фигуре 1 множество реакторов представлено устройствами 30а, 30b, 30 с и 30d, при этом нагреватели показаны в виде устройств 35а, 35b, 35 с и 35d.

Катализатор, применяемый в данном способе, пропускают через различные реакторы 20, 30. Катализатор 62 предпочтительно пропускают через первую систему 20 реакторов для формирования выходного потока 64 катализатора первой системы реакторов. Первый выходной поток катализатора затем пропускают во вторую систему 30 реакторов, где катализатор подвергают эксплуатации при более высокой рабочей температуре. Катализатор проходит через каждый реактор риформинга во второй системе 30 реакторов и возвращается в регенератор в виде второго выходного потока 66 катализатора.

Во второй вариант осуществления изобретения, как показано на фигуре 2, включено пропускание исходного углеводородного потока 108 в узел ПО гидроочистки для формирования очищенного углеводородного сырья 112. При использовании предпочтительного углеводородного сырья узел ПО гидроочистки представляет собой узел гидроочистки нафты. Очищенное сырье 112 пропускают в систему 120 фракционирования для формирования легкого верхнего потока 122, содержащего н-гексан и более легкие углеводороды. В системе 120 фракционирования также образуется нижний поток 124, заключающий в себе циклогексан и более тяжелые компоненты. Нижний поток 124 пропускают в первую систему 130 реакторов для формирования первого выходного потока 132 с повышенным содержанием ароматических соединений. Нижний поток 124 нагревают до входной температуры реакции каталитического риформинга в системе 130 реакторов. Верхний поток 122 и первый выходной поток 132 пропускают во вторую систему 140 реакторов. Вторая система 140 реакторов включает в себя множество реакторных блоков 140а, b, с, d и нагревателей 150а, b, с, d сырья реакторов, где исходный поток каждого реактора нагревается до желаемой входной температуры. Вторую систему 140 реакторов подбирают по размерам и конструируют для сведения к минимуму перепадов температуры внутри реакторов вследствие эндотермического характера реакций риформинга.

Во второй системе 140 реакторов образуется второй выходной поток 142 и его пропускают в колонну 160 разделения риформата. В колонне 160 разделения риформата образуется верхний поток 162 риформата, имеющий в своем составе С7 и более легкие ароматические соединения, и нижний поток 164 риформата, заключающий в себе С8 и более тяжелые углеводородные соединения. Верхний поток 162 риформата пропускают в узел 170 извлечения ароматических соединений для формирования потока 172 продуктов ароматических соединений, содержащего бензол и толуол. В узле 170 извлечения ароматических соединений также образуется поток 174 рафината, заключающий в себе неароматические углеводороды. Часть потока 174 рафината можно возвращать в систему реакторов для превращения данных углеводородов в ароматические соединения. Поток 174 рафината пропускают в узел ПО гидроочистки для переработки и удаления остаточной серы, отбираемой из узла 170 извлечения ароматических соединений.

Поток 182 катализатора из регенератора пропускают в первую систему 130 реакторов для формирования выходного потока 184 катализатора первого реактора. Выходной поток 184 катализатора первого реактора поступает во вторую систему 140 реакторов, где катализатор проходит через множество реакторов и образует выходной поток 186 катализатора второй системы реакторов. Выходной поток 186 катализатора второго реактора возвращают в регенератор.

Узел 170 извлечения ароматических соединений может заключать в себе осуществление различных способов выделения ароматических соединений из углеводородного потока. Одним из стандартных промышленных способов является процесс Sulfolane™, который представляет собой процесс экстрактивной дистилляции с использованием сульфолана для содействия экстракции ароматических соединений высокой степени чистоты. Процесс Sulfolane™ хорошо известен специалистам в данной области техники.

Первую систему 130 реакторов эксплуатируют для осуществления превращения нафтенов в ароматические соединения и эксплуатируют при более низкой температуре, чем вторую систему 140 реакторов. Первая система 130 реакторов претерпевает более значительные перепады температур вследствие более высокой относительной концентрации эндотермичных соединений, таких как нафтены, превращаемых в ароматические соединения до прохождения первого выходного потока 132 во вторую систему 140 реакторов. Первая система 130 реакторов заключает в себе входную температуру ниже 540°C, а вторая система реакторов включает в себя нагреватели для повышения входной температуры исходных потоков реакторов, по меньшей мере, до 540°C.

Применяемый катализатор является катализатором риформинга, а способ представляет собой способ с движущимся слоем катализатора, где катализатор подвергают циркуляции через реакторы, а затем регенерируют. По мере прохождения катализатора через реакторы он частично дезактивируется, а выходы и селективности в способе можно поддерживать путем повышения температуры реакции. Следовательно, способ включает в себя пропускание катализатора из регенератора в первую систему реакторов и формирование первого выходного потока катализатора. Первый выходной поток катализатора пропускают во вторую систему реакторов и формируют второй выходной поток катализатора. Второй выходной поток катализатора пропускают в регенератор для возвращения катализатора в регенерированное состояние.

Если вторая система реакторов заключает в себе множество реакторов, катализатор можно пропускать последовательно через реакторы, соединенные в ряд. Катализатор входит в первый реактор ряда и последовательно проходит через каждый реактор, при этом катализатор подогревают до входных температур реакции по выходе из реактора и перед поступлением в следующий реактор. Катализатор, выходящий из конечного реактора ряда, пропускают в регенератор.

В изотермической системе реакторов, или второй системе реакторов, используют катализатор риформинга и эксплуатируют ее при температуре от 520°C до 600°C, при этом предпочтительная рабочая температура составляет от 540°C до 560°C, условия реакции регулируют для поддержания протекания изотермических реакций при температуре 540°C или вблизи нее. Множество реакторов с межреакторными нагревателями обеспечивает возможность установления входных температур реакции в узком диапазоне, а многочисленные реакторы меньшего размера позволяют ограничивать время пребывания и, следовательно, ограничивать варьирование температуры во всей системе 140 реакторов. Данный способ риформинга также включает в себя объемную скорость от 0,6 ч-1 до 10 ч-1. Предпочтительно объемная скорость составляет от 0,6 ч-1 до 8 ч-1, а более предпочтительно объемная скорость составляет от 0,6 ч-1 до 5 ч-1.

Катализаторы риформинга, как правило, имеют в своем составе металл на носителе. В общем случае носитель может быть получен методом масляных капель или подвергнут экструзии, хотя можно использовать и другие способы. Носитель может заключать в себе пористый материал, такой как неорганический оксид или молекулярное сито, и связующее при массовом соотношении от 1:99 до 99:1. Массовое соотношение предпочтительно составляет от 1:9 до 9:1. Материалы носителя могут включать в себя оксид алюминия, оксид магния, диоксид титана, диоксид циркония, оксид хрома, оксид цинка, оксид тория, оксид бора, керамику, фарфор, боксит, диоксид кремния, алюмосиликат, карбид кремния, глины, кристаллические цеолитные алюмосиликаты и их смеси, но не ограничиваются ими. Пористые материалы и связующие известны в данной области техники и не представлены подробно в настоящем документе. Металлы предпочтительно представляют собой один или несколько благородных металлов VIII группы и охватывают платину, иридий, родий и палладий. Обычно катализатор содержит количество металла от 0,01% до 2% масс. в расчете на общую массу катализатора. Катализатор также может заключать в себе промотор, элемент из группы IIIA или группы IVA. Указанные металлы включают в себя галлий, германий, индий, олово, таллий и свинец.

В первой системе реакторов риформинга применяют тот же катализатор, но эксплуатируют ее при более низкой температуре и допускают более значительные колебания температуры внутри реактора.

Альтернативная схема распределения предназначена для того, чтобы пропускать катализатор параллельно в каждый реактор во второй системе реакторов. Это обеспечивает наличие более свежего катализатора, поскольку технологический поток проходит через каждый реактор в последовательной схеме размещения для повышения выходов ароматических соединений. После прохождения через реакторы катализатор затем пропускают в регенератор.

Если первая система реакторов включает в себя множество реакторов, катализатор из регенератора можно пропускать в первый реактор первой системы реакторов, при этом катализатор перетекает через последующие реакторы в последовательной схеме размещения. Катализатор не нагревают перед поступлением в каждый реактор. Необязательно, катализатор можно подогревать до входных температур реакторов.

Альтернативная схема распределения предназначена для того, чтобы поток катализатора из регенератора расщеплять и пропускать по параллельной схеме во множество реакторов первой системы реакторов, при этом в каждом реакторе формируется первый выходной поток катализатора. Катализатор первых выходных потоков катализатора объединяют и направляют во вторые реакторы второй системы реакторов.

Таблица 1. Пример положительного эффекта повышения выходов при использовании серии экспериментов с разделением сырья

Процесс распределяли на две реакционные зоны. В первой реакционной зоне осуществляли риформинг более высокоэндотермичных соединений, таких как нафтены, где температура падала в большей степени. Вторую реакционную зону контролировали с целью моделирования изотермической системы, при этом перепады температуры в продолжение протекания реакций во второй реакционной зоне уменьшались вследствие сокращения количества высокоэндотермичных соединений. Результаты, полученные на основе вариантов моделирования реакций, демонстрируют увеличение количеств желаемого бензола и толуола при уменьшении количеств легких углеводородов в С14-диапазоне.

Данный способ демонстрирует разделение сырья на высокоэндотермичные соединения и непревращенные парафиновые соединения. Высокоэндотермичные соединения пропускали в неизотермическую систему реакторов, или первую систему реакторов, а менее эндотермичные соединения пропускали по существу в изотермическую систему реакторов, или вторую систему реакторов. Способ включал в себя пропускание выходного потока первой системы реакторов, содержащего непревращенные парафины, в изотермическую систему реакторов, и рециркуляцию непревращенных парафинов в реакторы риформинга.

Следовательно, повышения выходов можно достигать при помощи инновационных технологических схем, в которых предусмотрен технологический контроль реакций. Поскольку изобретение было описано при помощи того, что в настоящее время считается предпочтительными вариантами осуществления, следует понимать, что изобретение не ограничено раскрытыми вариантами осуществления, а подразумевается, что оно охватывает разнообразные модификации и эквивалентные конфигурации, включенные в пределы объема прилагаемой формулы изобретения.

1. Способ риформинга исходного углеводородного потока, включающий:
пропускание исходного потока в систему фракционирования для образования первого верхнего потока и первого нижнего потока;
пропускание первого нижнего потока в первую систему реакторов риформинга, эксплуатируемую при первом наборе условий риформинга, который включает температуру ниже 540°C, для формирования первого выходного потока реактора с повышенным содержанием ароматических соединений;
пропускание первого верхнего потока и первого выходного потока реактора во вторую систему реакторов риформинга, эксплуатируемую при втором наборе условий риформинга, который включает температуру, равную 540°C или выше, формируя таким образом второй выходной поток;
пропускание первого потока регенерированного катализатора в первую систему реакторов риформинга и формирование первого выходного потока катализатора установки риформинга;
пропускание первого потока катализатора установки риформинга во вторую систему реакторов установки риформинга и формирование второго выходного потока катализатора установки риформинга;
пропускание второго выходного потока в колонну разделения риформата для образования второго верхнего потока, содержащего С7 и более легкие ароматические соединения, а также второго нижнего потока, содержащего C8 и более тяжелые ароматические соединения; и
пропускание второго верхнего потока в узел извлечения ароматических соединений, формируя таким образом поток продуктов ароматических соединений, содержащий бензол и толуол, а также поток рафината, содержащий неароматические углеводороды.

2. Способ по п. 1, дополнительно включающий:
пропускание исходного углеводородного потока в узел гидроочистки для образования очищенного исходного углеводородного потока; и
пропускание очищенного исходного углеводородного потока в систему фракционирования.

3. Способ по п. 2, дополнительно включающий пропускание части потока рафината в узел гидроочистки.

4. Способ по любому из пп. 1-3, в котором вторая система реакторов риформинга содержит множество реакторов и межреакторных нагревателей.

5. Способ по любому из пп. 1-3, дополнительно включающий:
пропускание регенерированного катализатора в первый реактор и формирование первого выходного потока катализатора; и
пропускание первого выходного потока катализатора во вторую систему реакторов.

6. Способ по любому из пп. 1-3, в котором верхний поток содержит н-гексан и более легкие углеводороды.

7. Способ по любому из пп. 1-3, в котором нижний поток содержит циклогексан и более тяжелые компоненты.

8. Способ по любому из пп. 1-3, в котором второй поток катализатора представляет собой первый выходной поток катализатора установки риформинга.

9. Способ по п. 4, в котором второй поток катализатора пропускают в виде последовательного потока через множество реакторов с межреакторными нагревателями для подогрева катализатора.



 

Похожие патенты:

Изобретение относится к способу каталитического риформинга бензинов с регенерацией. Регенерация указанного катализатора включает в себя этап восстановления катализатора в атмосфере водорода согласно трем следующим вариантам: подают газовые отходы этапа восстановления катализатора частично на вход рекуперативного теплообменника, расположенного перед первым реактором серии, а частично - непосредственно в головную часть реактора; полностью направляют в головную часть первого реактора; полностью направляют на вход рекуперативного теплообменника, и в котором газовые отходы из компрессора рециркуляции, расположенного между разделительным резервуаром и блоком реакторов, подают полностью в головную часть предпоследнего реактора или подают частично в головную часть предпоследнего реактора и частично в головную часть последнего реактора.

Изобретение относится к способу получения ароматических соединений из исходного углеводородного потока, в котором: пропускают исходный углеводородный поток в узел разделения, формируя таким образом легкий технологический поток, содержащий C7-углеводороды и имеющий пониженную концентрацию эндотермичных углеводородных компонентов, и тяжелый технологический поток, содержащий C8+-углеводороды, а также C6 и C7-нафтены и имеющий повышенную концентрацию эндотермичных компонентов; пропускают легкий технологический поток в первый реактор риформинга, при этом первый реактор риформинга имеет первую рабочую температуру более 540°C; пропускают тяжелый технологический поток во второй реактор риформинга, формируя таким образом выходной поток второго реактора риформинга, при этом второй реактор риформинга имеет вторую рабочую температуру, причем первая рабочая температура выше второй рабочей температуры; пропускают выходной поток второго реактора риформинга в первый реактор риформинга, формируя таким образом выходной поток первого реактора риформинга; пропускают выходной поток первого реактора риформинга в узел отделения ароматических соединений, формируя таким образом поток ароматических продуктов и поток рафината.

Изобретение относится к способу получения ароматических соединений из углеводородного сырья. Способ включает: подачу регенерированного катализатора в первую установку риформинга; подачу углеводородного сырья в первую установку риформинга, работающую при повышенной температуре, для создания первого выходящего потока и выходящего потока катализатора; при этом катализатор содержат благородный металл VIII группы на носителе и имеет пониженное содержание хлорида, повышенная температура является температурой выше 540°C, установка риформинга содержит множество реакторов с нагревателями между реакторами, и хвостовой реактор работает при более высокой температуре в течение укороченного времени контакта между выходящим потоком из множества реакторов и катализатором; подачу первого выходящего потока в первую установку фракционирования, создавая тем самым верхний погон, содержащий легкие газы, и нижний погон, содержащий продукт риформинга; подачу продукта риформинга в установку экстракции ароматических соединений для получения потока очищенного ароматического продукта.

Изобретение относится к способу получения ароматических соединений из лигроина в качестве сырья. Способ включает: подачу потока сырья в установку фракционирования и получение вследствие этого первого потока, содержащего легкие углеводороды, и второго потока, содержащего тяжелые углеводороды; подачу первого потока в первую установку риформинга, работающую при первом наборе условий реакции, и получение вследствие этого первого потока продукта, при этом первая установка риформинга имеет вход для катализатора и выход для катализатора; подачу второго потока во вторую установку риформинга, работающую при втором наборе условий реакции, и получение вследствие этого второго потока продукта, при этом вторая установка риформинга имеет вход для катализатора и выход для катализатора, в котором первый набор условий реакции включает первую температуру реакции, а второй набор условий реакции включает вторую температуру реакции, и при этом первая температура реакции больше, чем вторая температура реакции, и в котором второе давление меньше чем 580 кПа; подачу второго потока продукта в первую установку риформинга и получение при этом первого потока продукта; подачу катализатора из регенератора во вторую установку риформинга; подачу катализатора из второй установки риформинга в первую установку риформинга; и подачу первого потока продукта в установку разделения ароматических соединений, при этом указанный катализатор содержит благородный металл VIII группы на носителе.

Изобретение относится к способу увеличения объема производства ароматических соединений из исходного потока нафты, в котором: пропускают исходный поток в реактор риформинга, получая таким образом поток риформата; пропускают поток риформата в первый узел фракционирования, формируя таким образом легкий верхний поток и нижний поток; пропускают нижний поток в колонну разделения риформата, получая таким образом верхний поток риформата, содержащий С6-С7-ароматические соединения, и нижний поток риформата, имеющий в своем составе С8+-ароматические соединения; пропускают верхний поток риформата в узел экстракции ароматических соединений, формируя таким образом поток очищенных ароматических соединений, содержащий С6 и С7-ароматические соединения, а также поток рафината; и пропускают поток рафината в реактор риформинга.

Изобретение относится к способу увеличения производства ароматических углеводородов из сырьевого потока нафты. Способ включает: подачу сырьевого потока в первый аппарат риформинга, который эксплуатируется при первом наборе условий для проведения риформинга, где условия для проведения риформинга включают первую температуру, и таким образом получают первый поток, вытекающий из аппарата риформинга; подачу первого потока, вытекающего из аппарата риформинга, в ректификационную колонну, таким образом получают поток легких газов, и остаток перегонки в колонне, который содержит ароматические углеводороды; подачу остатка перегонки из ректификационной колонны в колонну, разделяющую риформат, таким образом получают верхний поток, который содержит ароматические углеводороды С6-С7, и нижний поток, который содержит ароматические углеводороды С8 и более тяжелые соединения углеводородов; подачу верхнего потока в установку разделения ароматических углеводородов, таким образом получают поток ароматических продуктов и поток рафината; подачу потока рафината во второй аппарат риформинга, который эксплуатируется при втором наборе условий для проведения рифирминга, где условия проведения риформинга включают вторую температуру, и таким образом получают второй поток, вытекающий из аппарата риформинга; и подачу второго потока, вытекающего из аппарата риформинга, в ректификационную колонну.

Изобретение относится к огневому нагревателю для осуществления конверсии углеводородов, содержащему радиантную секцию, впускной коллектор, выпускной коллектор, по меньшей мере, одну трубу нагревателя, имеющую впуск и выпуск, при этом впуск сообщается по текучей среде с впускным коллектором, по меньшей мере, одну ограничительную диафрагму, расположенную на пути протекания текучей среды из впускного коллектора к впуску трубы нагревателя, и, по меньшей мере, одну горелку.
Изобретение относится к нефтепереработке, в частности к способам получения высокооктанового бензина, и может быть использовано в нефтеперерабатывающей, нефтехимической и газовой промышленности.
Изобретение относится к области каталитического риформинга и может быть использовано на предприятиях нефтеперерабатывающей, нефтехимической и газовой промышленности в процессе риформинга бензиновых фракций с применением различных каталитических композиций.

Изобретение относится к нефтепереработке, в частности к способам получения высокооктанового компонента моторного топлива с использованием процессов изомеризации и риформинга, и может быть использовано в нефтеперерабатывающей, нефтехимической и газовой промышленности.

Изобретение относится к способу производства ароматических соединений из потока углеводородного сырья. Способ включает: подачу потока углеводородного сырья в колонну фракционирования для получения верхнего потока, содержащего углеводороды С7 и более легкие углеводороды, и потока кубового остатка, содержащего углеводороды С8 и более тяжелые углеводороды; подачу верхнего потока в реакторную систему гидрогенизации/дегидрогенизации с получением первого потока, содержащего ароматические соединения С6 и С7 с низким содержанием олефинов, при этом реакторная система гидрогенизации/дегидрогенизации функционирует при температуре в интервале от 420°C до 460°C; подачу потока кубового остатка в аппарат для проведения риформинга для получения риформата кубового остатка, содержащего ароматические соединения; подачу указанного первого потока и потока риформата кубового остатка в по существу изотермическую реакторную систему с получением в результате потока ароматических соединений, при этом изотермическая реакторная система функционирует при температуре более 540°C; и подачу указанного потока ароматических соединений в колонну разделения риформата для получения верхнего потока риформата, содержащего ароматические соединения С7 и более легкие ароматические соединения, и парафины С7 или более легкие парафины, и потока кубового остатка, содержащего углеводороды С8 и более тяжелые углеводороды.

Изобретение относится к способу каталитического риформинга бензинов с регенерацией. Регенерация указанного катализатора включает в себя этап восстановления катализатора в атмосфере водорода согласно трем следующим вариантам: подают газовые отходы этапа восстановления катализатора частично на вход рекуперативного теплообменника, расположенного перед первым реактором серии, а частично - непосредственно в головную часть реактора; полностью направляют в головную часть первого реактора; полностью направляют на вход рекуперативного теплообменника, и в котором газовые отходы из компрессора рециркуляции, расположенного между разделительным резервуаром и блоком реакторов, подают полностью в головную часть предпоследнего реактора или подают частично в головную часть предпоследнего реактора и частично в головную часть последнего реактора.

Изобретение относится к способу получения концентрата ароматических углеводородов из жидких углеводородных фракций, при котором подают в смеситель исходные компоненты, нагревают смешанные компоненты, подают их в реактор, в котором производят конверсию нагретых компонентов в присутствии цеолитсодержащего катализатора в ароматические углеводороды, разделяют полученный продукт на жидкую и газообразную фазы, по меньшей мере частично подают полученную газообразную фазу в смеситель, жидкую фазу подают в ректификационную колонну, из которой отбирают концентрат ароматических углеводородов.

Изобретение относится к способу получения ароматических соединений из исходного углеводородного потока, в котором: пропускают исходный углеводородный поток в узел разделения, формируя таким образом легкий технологический поток, содержащий C7-углеводороды и имеющий пониженную концентрацию эндотермичных углеводородных компонентов, и тяжелый технологический поток, содержащий C8+-углеводороды, а также C6 и C7-нафтены и имеющий повышенную концентрацию эндотермичных компонентов; пропускают легкий технологический поток в первый реактор риформинга, при этом первый реактор риформинга имеет первую рабочую температуру более 540°C; пропускают тяжелый технологический поток во второй реактор риформинга, формируя таким образом выходной поток второго реактора риформинга, при этом второй реактор риформинга имеет вторую рабочую температуру, причем первая рабочая температура выше второй рабочей температуры; пропускают выходной поток второго реактора риформинга в первый реактор риформинга, формируя таким образом выходной поток первого реактора риформинга; пропускают выходной поток первого реактора риформинга в узел отделения ароматических соединений, формируя таким образом поток ароматических продуктов и поток рафината.

Изобретение относится к способу получения ароматических соединений из углеводородного сырья. Способ включает: подачу регенерированного катализатора в первую установку риформинга; подачу углеводородного сырья в первую установку риформинга, работающую при повышенной температуре, для создания первого выходящего потока и выходящего потока катализатора; при этом катализатор содержат благородный металл VIII группы на носителе и имеет пониженное содержание хлорида, повышенная температура является температурой выше 540°C, установка риформинга содержит множество реакторов с нагревателями между реакторами, и хвостовой реактор работает при более высокой температуре в течение укороченного времени контакта между выходящим потоком из множества реакторов и катализатором; подачу первого выходящего потока в первую установку фракционирования, создавая тем самым верхний погон, содержащий легкие газы, и нижний погон, содержащий продукт риформинга; подачу продукта риформинга в установку экстракции ароматических соединений для получения потока очищенного ароматического продукта.

Изобретение относится к способу производства водородсодержащего продукта и одного или нескольких продуктов в виде жидкой воды с использованием каталитического парового реформинга углеводородов.

Изобретение относится к способу получения ароматических соединений из лигроина в качестве сырья. Способ включает: подачу потока сырья в установку фракционирования и получение вследствие этого первого потока, содержащего легкие углеводороды, и второго потока, содержащего тяжелые углеводороды; подачу первого потока в первую установку риформинга, работающую при первом наборе условий реакции, и получение вследствие этого первого потока продукта, при этом первая установка риформинга имеет вход для катализатора и выход для катализатора; подачу второго потока во вторую установку риформинга, работающую при втором наборе условий реакции, и получение вследствие этого второго потока продукта, при этом вторая установка риформинга имеет вход для катализатора и выход для катализатора, в котором первый набор условий реакции включает первую температуру реакции, а второй набор условий реакции включает вторую температуру реакции, и при этом первая температура реакции больше, чем вторая температура реакции, и в котором второе давление меньше чем 580 кПа; подачу второго потока продукта в первую установку риформинга и получение при этом первого потока продукта; подачу катализатора из регенератора во вторую установку риформинга; подачу катализатора из второй установки риформинга в первую установку риформинга; и подачу первого потока продукта в установку разделения ароматических соединений, при этом указанный катализатор содержит благородный металл VIII группы на носителе.

Изобретение относится к способу получения ароматических соединений из углеводородного сырьевого потока. Способ включает стадии, на которых: направляют углеводородный сырьевой поток в установку разделения и таким образом получают легкий технологический поток, имеющий пониженную концентрацию эндотермических углеводородных компонентов, и тяжелый технологический поток, имеющий более высокую концентрацию эндотермических компонентов.
Наверх