Способ и устройство для тестирования жидкости



Способ и устройство для тестирования жидкости
Способ и устройство для тестирования жидкости
Способ и устройство для тестирования жидкости

 

G01N29/024 - Исследование или анализ материалов с помощью ультразвуковых, звуковых или инфразвуковых волн; визуализация внутреннего строения объектов путем пропускания через них ультразвуковых или звуковых волн через предметы (G01N 3/00-G01N 27/00 имеют преимущество; измерение или индикация ультразвуковых, звуковых или инфразвуковых волн вообще G01H; системы с использованием эффектов отражения или переизлучения акустических волн, например акустическое изображение G01S 15/00; получение записей с помощью способов и устройств, аналогичных используемым в фотографии, но с использованием ультразвуковых, звуковых или инфразвуковых волн G03B 42/06)

Владельцы патента RU 2564687:

СКАНИА СВ АБ (SE)

Изобретение относится к измерительной технике и может быть использовано для тестирования жидкости, используемой как восстановитель, в связи с очисткой выхлопных газов из двигателя внутреннего сгорания. Устройство содержит датчик (6) температуры и модуль (8) измерения скорости звука. Датчик температуры выполнен с возможностью определения первой температуры T1 для жидкости и подачи на ее основе сигнала (12) температуры в вычислительный модуль (10). Модуль (8) измерения скорости звука выполнен с возможностью определения первой скорости v1 звука для жидкости при температуре T1 и подачи на ее основе сигнала (14) скорости звука в вычислительный модуль (10). Датчик (6) температуры дополнительно выполнен с возможностью определения второй температуры T2 для жидкости. Вычислительный модуль (10) выполнен с возможностью вычисления абсолютного значения разности ΔT температур между T1 и T2 и сравнения ΔT с заданным пороговым значением TTH. Если ΔT превышает TTH , то определяют вторую скорость звука v2 для жидкости при температуре T2. Вычислительный модуль (10) выполнен с возможностью сравнения v1 и v2 с соответствующими первым и вторым эталонными значениями vrefl и vref2 скорости для эталонной жидкости при соответствующих температурах T1 и T2. На основе результата сравнения генерируют индикаторный сигнал. Технический результат - повышение точности и достоверности получаемых данных. 2 н. и 8 з.п. ф-лы, 3 ил.

 

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится к способу для тестирования жидкости, используемой как восстановитель, в связи с очисткой выхлопных газов, и к устройству измерения для воплощения способа в соответствии с начальной частью независимых пунктов формулы изобретения.

УРОВЕНЬ ТЕХНИКИ

В двигателе внутреннего сгорания сгорает смесь воздуха и топлива для генерирования крутящего момента. В процессе сгорания вырабатываются выхлопные газы, которые выпускают из двигателя в атмосферу. Выхлопные газы содержат окислы азота (NOx), двуокись углерода (CO2), окись углерода (CO) и частицы. NOx представляет собой объединенный термин, обозначающий выхлопные газы, которые состоят, в основном, из окисла азота (NO) и двуокиси азота (NO2). Система последующей обработки выхлопных газов обрабатывает выхлопные газы для снижения их перед выпуском в атмосферу. В примере системы последующей обработки выхлопных газов дозирующая система впрыскивает восстановитель в выхлопные газы перед катализатором избирательного каталитического восстановления (катализатор SCR). Смесь выхлопных газов и восстановителя вступает в реакцию в катализаторе SCR и, таким образом, уменьшает количество NOx, выбрасываемого в атмосферу.

Пример восстановителя представляет собой жидкую мочевину, коммерчески доступную в виде AdBlue®. Эта жидкость представляет собой нетоксичный водный раствор мочевины и используется для химического восстановления выхлопов, состоящих из окислов азота, в частности, на тяжелых транспортных средствах с дизельным двигателем. AdBlue® имеет точку замерзания -11°C и максимальную температуру приблизительно 60-70°C.

Восстановитель реагирует с NOx в катализаторе SCR, для восстановления NOx.

Более конкретно, восстановитель разделяется и образует аммиак (NH3), который затем реагирует с NOx для образования воды (H2O) и газообразного азота (N2).

Для достижения описанного восстановления NOx, NH3 должен содержаться в катализаторе SCR. Для того чтобы катализатор SCR эффективно работал, такой запас должен иметь соответствующий уровень. Более подробно, при восстановлении NOx, эффективность преобразования зависит от уровня содержания. Поддержание высокой эффективности преобразования в разных рабочих состояниях зависит от поддержания запаса NH3. Уровень NH3, однако, должен последовательно снижаться при повышении температуры катализатора SCR, для предупреждения выбросов NH3 (то есть избыточного NH3, выпускаемого из катализатора SCR), что может снизить эффективность преобразования катализатора.

Вкратце, для того чтобы удовлетворять строгим требованиям защиты окружающей среды, изготовители транспортных средств все чаще используют системы катализатора SCR для устранения окислов азота (NOx) из выхлопных газов. Это выполняется путем ввода раствора аммиака в катализатор SCR, чтобы способствовать преобразованию частиц NOx в газообразный азот и воду. Для выполнения стратегии очистки выхлопных газов необходимо обеспечить преобразование достаточного количества NOx, пытаясь одновременно не подавать слишком много восстановителя, как для защиты окружающей среды, так и с точки зрения эксплуатационных расходов.

В странах ЕС приняты, например, требования в отношении уровней выброса выхлопных газов и типов используемого восстановителя. Будущие требования, помимо прочего, возможно, будут включать в себя определение качества используемого восстановителя.

Способ определения качества восстановителя состоит в измерении скорости звука в комбинации с измерением температуры.

Скорость звука в жидкостях может быть определена по формуле

Vжидкости=√(K(p)/p(T))

в которой K(p) представляет собой коэффициент сжатия жидкости, который зависит от давления p, и p(T) представляет собой плотность жидкости.

Поскольку плотность жидкостей зависит от температуры, эту зависимость необходимо компенсировать путем измерения температуры жидкости. Таким же образом, коэффициент сжатия жидкости зависит от давления, но только в очень малой степени (относительно атмосферного давления).

На фиг. 1 показан график, схематично иллюстрирующий взаимосвязь между скоростью звука (м/с) и температурой для следующих жидкостей:

A: Гликоль

B: Мочевина AdBlue

C: Разведенный AdBlue

D: Вода

Из графика видно, что разные жидкости имеют разные скорости звука при разных температурах, но существуют жидкости, которые имеют одинаковую скорость звука при той же температуре, например гликоль и морская вода, которые имеют при температуре приблизительно 35°C такую же скорость звука, как и AdBlue. Для различения между этими жидкостями предполагается дополнительно использовать, в соответствии с известным устройством, датчик электропроводности и определение электропроводности жидкостей. То, что электропроводность AdBlue отличается от гликоля, позволяет различать эти жидкости. Однако добавление дополнительного датчика увеличивает сложность и, следовательно, приводит к дополнительным затратам и к повышению риска ошибки. Кроме того, электропроводность AdBlue разных производителей может существенно отличаться, что также приводит к повышению риска ошибки.

Измерение характеристик раствора мочевины с помощью акустического датчика описано в множестве патентных описаний, кратко представленных ниже.

US-2008/0280371 относится к акустическому датчику, выполненному с возможностью измерения концентрации мочевины. То, что изменение молекулярного веса мочевины влияет на скорость звука, можно использовать для определения концентрации. Акустический датчик может быть скомбинирован с датчиком, чувствительным к NH3, используемым для гарантирования, что данное вещество представляет собой мочевину.

DE-102006013263 относится к способу для определения концентрации растворов мочевины в жидкости на основе скорости звука в жидкости, которая определяется с помощью ультразвуковых датчиков.

Представленные описания относятся к устройству для определения качества мочевины, но не предназначены для сравнения с другими жидкостями.

Цель настоящего изобретения состоит в том, чтобы предложить способ и устройство, которые могут обеспечить уверенность в том, что восстановитель был одобрен и может выполнять свою функцию без увеличения сложности измерений и поэтому без увеличения затрат и риска ошибки.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Представленные выше цели достигаются с помощью изобретения, определенного в независимых пунктах формулы изобретения. Предпочтительные варианты осуществления определены в зависимых пунктах формулы изобретения.

В соответствии с изобретением, оценку скорости звука выполняют в течение определенного времени, что означает, что измерения качества могут быть выполнены более точно, и что при этом возможно с большей уверенностью определять, какой тип жидкости находится в баке, предназначенном для восстановителя. Это может быть выполнено без каких-либо измерений электропроводности вообще.

Настоящее изобретение основано на том, что скорости звука отличаются при разных температурах. Разные условия работы транспортного средства приводят к тому, что температура жидкости, содержащейся в баке, предназначенном для восстановителя, изменяется с течением времени, например Tночи, Tзимы, Tв движении, Tостановки, Tв состоянии покоя.

Определение скорости звука для жидкости, содержащейся в баке, предназначенном для восстановителя, по меньшей мере, при двух разных температурах, и сравнение этих измеренных значений скорости с эталонными значениями скорости эталонной жидкости, то есть одобренной жидкости, позволяет получить информацию о степени соответствия между жидкостью и эталонной жидкостью, и если жидкость в баке соответствует в достаточной степени, то есть в пределах заданного диапазона, делают вывод, что эта жидкость представляет собой одобренную жидкость.

В некоторых случаях жидкость в баке, предназначенном для восстановителя, не достигает температуры, требуемой для выполнения требуемых измерений качества/отличия. Настоящее изобретение тогда позволяет использовать нагревательную систему, предусмотренную для подогрева жидкости в шлангах и в баке, для повышения температуры. Шланги с электрическим подогревом и клапаны для воды, которые помогают циркуляции воды в системе охлаждения двигателя вода в баке, содержащем жидкость, управляются модулем управления на борту транспортного средства, который также связывается с вычислительным модулем в измерительном устройстве.

Данное изобретение, помимо прочего, обеспечивает преимущество, позволяющее различать две или больше разных жидкостей без использования датчика проводимости.

Дополнительный предпочтительный вариант осуществления позволяет использовать датчик атмосферного давления для вычисления степени сжатия жидкости и, таким образом, дополнительного повышения точности измерений.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На фиг. 1 схематично представлен график, иллюстрирующий взаимосвязь между скоростью звука и температурой разных жидкостей.

На фиг. 2 схематично показана блок-схема, иллюстрирующая настоящее изобретение.

На фиг. 3 представлена блок-схема последовательности операций, иллюстрирующая способ в соответствии с настоящим изобретением.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Изобретение будет описано ниже со ссылкой на блок-схему, показанную на фиг. 2. Изобретение содержит измерительное устройство 2, выполненное с возможностью тестирования жидкости 4, используемой как восстановитель, в связи с очисткой выхлопных газов для выхлопных газов двигателя внутреннего сгорания (не представлен). Двигатель внутреннего сгорания, предпочтительно, находится на борту транспортного средства, например грузовика или автобуса, но также возможны другие варианты применения, например, на водном транспортном средстве или в машиностроении.

Восстановитель представляет собой, например, раствор мочевины, например, типа AdBlue.

Измерительное устройство 2 содержит датчик 6 температуры, выполненный с возможностью измерения температуры жидкости 4, и модуль 8 измерения скорости звука, выполненный с возможностью измерений скорости звука в жидкости. Датчик уровня (не представлен) также часто предусмотрен для того, чтобы измерять уровень жидкости 4 в баке, предназначенном для восстановителя.

Модуль 8 измерения скорости звука может представлять собой обычное акустическое измерительное устройство, содержащее передатчик, который излучает акустическую волну в жидкость 4, и приемник, который детектирует отраженную звуковую волну. Другие устройства акустических измерений также могут использоваться в пределах настоящего изобретения.

Размер бака, предназначенного для восстановителя, известен, что облегчает расчет скорости звука путем измерения времени между излучением волны и детектированием отраженной звуковой волны, и вычисления скорости, путем деления расстояния на измеренное время.

Измерительное устройство 2 дополнительно содержит вычислительный модуль 10.

Датчик 6 температуры выполнен с возможностью определения первой температуры T1 для жидкости 4 и подачи на ее основе сигнала 12 температуры в вычислительный модуль 10. Модуль 8 измерения скорости звука также выполнен с возможностью определения первой скорости v1 для жидкости 4 при температуре T1 и подачи на ее основе сигнала 14 скорости звука в вычислительный модуль 10.

Датчик 6 температуры выполнен с возможностью определения второй температуры T2 для жидкости 4 и подачи на ее основе сигнала 12 температуры в вычислительный модуль.

Вычислительный модуль 10 выполнен с возможностью вычисления абсолютного значения разности ∆T температур между T1 и T2, то есть ΔT=|T1-T2|, и сравнения ∆T с заданным пороговым значением TTH. Если ΔT превышает TTH, то сигнал 16 управления подают в модуль 8 измерения скорости звука для определения второй скорости v2 звука для жидкости 4 при температуре T2 и подачи на ее основе сигнала 14 скорости звука в вычислительный модуль 10.

В соответствии с вариантом осуществления, TTH представляет собой 2°C, но может быть выбрано любое подходящее значение, большее чем 1°C.

Другими словами, измерение второй скорости v2 звука должно происходить, когда разность температур превышает пороговое значение TTH.

Измерение температуры может, например, выполняться непрерывно через заданный интервал измерений, например, порядка от одной или нескольких секунд, или минут, и измерение скорости выполняется только, когда разность температур достаточно велика.

Вычислительный модуль 10 тогда выполнен с возможностью сравнения v1 и v2 в отношении первого и второго эталонных значений скорости vref1 и vref2 для эталонной жидкости при соответствующих температурах T1 и T2 и генерирования на основе результата сравнения индикаторного сигнала 18. Эталонная жидкость представляет собой, например, раствор мочевины, который удовлетворяет всем требованиям качества.

Индикаторный сигнал 18 предназначен для обозначения того, что жидкость 4 одобрена, если измеряемые значения v1 и v2 находятся в пределах диапазона для одобренной скорости для эталонных значений, и в этом случае индикаторный сигнал содержит, например, информацию “OK”, и когда жидкость 4 не была одобрена, если значения v1 и v2 не находятся в пределах диапазонов указанной одобренной скорости, и в этом случае индикаторный сигнал содержит, например, информацию “не OK”.

Одобренные диапазоны скорости могут, например, быть выбраны, как максимальное процентное отклонение от эталонных значений скорости. Такое отклонение может составлять порядка от одного до нескольких процентов, например, максимум 5%.

Как описано выше, жидкость 4 в баке, предназначенном для восстановителя, будет иметь разные температуры, в зависимости от разных рабочих ситуаций, в которых может находиться транспортное средство. Помимо прочего, однако, может быть желательно выполнять измерения, даже когда температура жидкости 4 изменилась из-за рабочей ситуации транспортного средства.

Устройство тогда содержит, в соответствии с вариантом осуществления, нагревательное устройство 20, выполненное с возможностью нагрева жидкости 4 управляемым образом после определения v1. Например, нагревательное устройство 20 может быть выполнено в виде нагревательной системы, предназначенной для подогрева восстановителя в шлангах и в контейнере. Нагревательным устройством можно управлять с помощью сигнала 22 управления, генерируемого вычислительным модулем 10.

Конечно, в пределах объема настоящего изобретения можно определять по меньшей мере одно дополнительное значение температуры и, в этом случае сравнивать дополнительное значение или значения, определенные таким образом, с предыдущими определенными значениями, формировать разности температур и, если они превышают конкретные пороговые значения, определять значения скорости при соответствующей температуре или температурах, которые сравнивают с соответствующими эталонными значениями скорости для эталонной жидкости. Это дополнительно увеличило бы надежность измерений.

Способ будет подробно описан ниже со ссылкой на фиг. 3, на которой представлена блок-схема последовательности операций, иллюстрирующая способ в соответствии с изобретением.

Изобретение также относится к способу тестирования жидкости, используемой как восстановитель, в связи с очисткой выхлопных газов двигателя внутреннего сгорания.

СПОСОБ СОДЕРЖИТ СЛЕДУЮЩИЕ ЭТАПЫ:

a) определяют первую температуру T1 для жидкости;

b) определяют скорость v1 звука для жидкости при первой температуре T1;

c) определяют вторую температуру T2 для жидкости;

d) рассчитывают абсолютное значение разности ∆T температур между T1 и T2, то есть ΔT=|T1-T2|;

e) сравнивают ΔT с заданным пороговым значением TTH, которое, предпочтительно, составляет 2°C, но также может иметь любое соответствующее значение, большее чем 1°C.

Если ΔT превышает TTH, выполняют следующие этапы:

f) определяют вторую скорость v2 звука для жидкости при температуре T2;

g) сравнивают v1 и v2 с соответствующими первым и вторым эталонным значениям vref1 и vref2 скорости для эталонной жидкости при соответствующих температурах T1 и T2; и

h) генерируют индикаторный сигнал на основе результатов сравнения. Индикаторный сигнал предназначен для обозначения того, что жидкость одобрена, если измеренные значения v1 и v2 находятся в пределах одобренных диапазонов скорости для эталонных значений, но не была одобрена, если v1 и v2 не находятся в пределах упомянутых одобренных диапазонов скорости.

Одобренная эталонная жидкость представляет собой, например, жидкую мочевину, которая удовлетворяет всем требованиям к уровню качества.

Как описано выше, в определенном контексте может быть целесообразным вместо этого активно нагревать жидкость управляемым образом, что может быть выполнено между этапами b) и c).

Также возможно выполнять дополнительные измерения температуры путем определения по меньшей мере одного дополнительного значения температуры и сравнения этого дополнительного значения или значений, определенных таким образом, с предыдущими определенными значениями, формирования разности температур и, если они превышают конкретные пороговые значения, определять значения скорости при соответствующей температуре или температурах, которые сравнивают с эталонными значениями скорости для эталонной жидкости. В результате, дополнительно повышается надежность результата измерения.

Настоящее изобретение не ограничено предпочтительными вариантами осуществления, описанными выше. Можно использовать различные альтернативы, вариации и эквиваленты. Представленные выше варианты осуществления поэтому не следует рассматривать, как ограничивающие объем защиты изобретения, который определен в приложенной формуле изобретения.

1. Способ тестирования жидкости, используемой в качестве восстановителя в связи с очисткой выхлопных газов из двигателя внутреннего сгорания, отличающийся тем, что способ содержит этапы, на которых:
a) определяют первую температуру Т1 для жидкости;
b) определяют скорость v1 звука для жидкости при первой температуре Т1;
c) определяют вторую температуру Т2 для жидкости;
d) рассчитывают абсолютное значение разности ΔТ температур между Т1 и Т2, то есть ΔТ=|Т1-Т2|;
e) сравнивают ΔТ с заданным пороговым значением ТТН, и если ΔT превышает ТТН;
f) определяют вторую скорость v2 звука для жидкости при температуре Т2;
g) сравнивают v1 и v2 с соответствующими первым и вторым эталонными значениями скорости vref1 и vref2 для эталонной жидкости при соответствующих температурах Т1 и Т2; и
h) генерируют индикаторный сигнал на основе результатов сравнения, причем индикаторный сигнал предназначен для обозначения того, что жидкость одобрена, если измеренные значения v1 и v2 находятся в пределах одобренных диапазонов скорости для эталонных значений, но не одобрена, если v1 и v2 не находятся в пределах упомянутых одобренных диапазонов скорости.

2. Способ по п. 1, в котором ТТН равна 1°С.

3. Способ по п. 1 или 2, содержащий этап, на котором нагревают жидкость управляемым образом после этапов а) и b).

4. Способ по любому одному из пп. 1 или 2, содержащий этапы, на которых определяют по меньшей мере одно дополнительное значение температуры и сравнивают упомянутое дополнительное значение или значения, определенные, таким образом, с предыдущими определенными значениями, образуют разности температур и, если они превышают конкретные пороговые значения, определяют значения скорости при соответствующей температуре или температурах, которые сравнивают с эталонными значениями скорости для эталонной жидкости.

5. Способ по любому одному из пп. 1 или 2, в котором эталонная жидкость представляет собой жидкую мочевину.

6. Измерительное устройство (2), выполненное с возможностью тестирования жидкости (4), используемой как восстановитель, в связи с очисткой выхлопных газов для выхлопных газов из двигателя внутреннего сгорания, причем устройство содержит датчик (6) температуры, выполненный с возможностью измерения температуры жидкости (4), и модуль (8) измерения скорости звука, выполненный с возможностью измерения скорости звука в жидкости, отличающееся тем, что измерительное устройство содержит вычислительный модуль (10), и что датчик температуры выполнен с возможностью определения первой температуры Т1 для жидкости и подачи на ее основе сигнала (12) температуры в вычислительный модуль;
модуль (8) измерения скорости звука выполнен с возможностью определения первой скорости v1 звука для жидкости при первой температуре Т1 и подачи на ее основе сигнала (14) скорости звука в вычислительный модуль (10);
датчик (6) температуры выполнен с возможностью определения второй температуры Т2 для жидкости и подачи на ее основе сигнала (12) температуры в вычислительный модуль,
вычислительный модуль выполнен с возможностью вычисления абсолютного значения разности ΔТ температур между Т1 и Т2, то есть ΔТ=|Т1-Т2|, и сравнения ΔТ с заданным пороговым значением ТТН;
и если ΔТ превышает ТТН, подачи сигнала (16) управления в модуль (8) измерения скорости звука для определения второй скорости v2 звука для жидкости при второй температуре Т2 и подачи на основе нее сигнала (14) скорости звука в вычислительный модуль (10), который выполнен с возможностью сравнения Т1 и Т2 с соответствующими первым и вторым эталонными значениями vref1 и vref2 скорости для эталонной жидкости при соответствующих температурах Т1 и Т2 и генерирования на основе результатов сравнения индикаторного сигнала (18) для обозначения того, что жидкость одобрена, если измеренные значения v1 и v2 находятся в пределах одобренных диапазонов скорости для эталонных значений, но не одобрена, если v1 и v2 не находятся в пределах упомянутых одобренных диапазонов скорости.

7. Измерительное устройство по п. 6, в котором ТТН равна 1°С.

8. Измерительное устройство по п. 6 или 7, содержащее нагревательное устройство (20), выполненное с возможностью нагрева жидкости управляемым образом после определения v1.

9. Измерительное устройство по любому одному из пп. 6 или 7, выполненное с возможностью определения по меньшей мере одного дополнительного значения температуры и сравнения упомянутого дополнительного значения или значений, определенных таким образом, с предыдущими определенными значениями, образования разности температуры и, если они превышают конкретные пороговые значения, определения значений скорости при соответствующей температуре или температурах, которые сравниваются с соответствующими эталонными значениями скорости для эталонной жидкости.

10. Измерительное устройство по любому одному из пп. 6 или 7, в котором эталонная жидкость представляет собой жидкую мочевину.



 

Похожие патенты:

Использование: для измерения акустического сопротивления материалов. Сущность изобретения заключается в том, что устройство для измерения акустического сопротивления твердых материалов, содержащее первый и второй ультразвуковые преобразователи, предназначенные для контактирования через эталонную среду с исследуемым материалом и контрольной средой соответственно, ультразвуковой генератор, первый и второй выходы которого соответственно подключены к первому и второму ультразвуковым преобразователям, делитель и блок функционального преобразования, при этом второй вход делителя подключен ко второму ультразвуковому преобразователю, а выход делителя связан с блоком функционального преобразования, при этом первый вход делителя подключен к первому ультразвуковому преобразователю, между выходом делителя и входом блока функционального преобразования введена цепочка последовательно соединенных блоков: вычисления обратной величины и экспоненциального преобразования, а блок функционального преобразования реализует заданную функциональную зависимость или в устройство введена цепочка последовательно соединенных блоков: вычисления обратной величины, аналогового инвертирования и экспоненциального преобразования, причем блок функционального преобразования в этом случае реализует другую заданную функциональную зависимость.

Использование: для измерения акустического сопротивления однородных сред. Сущность изобретения заключается в том, что устройство для измерения акустического сопротивления однородных сред содержит первый и второй ультразвуковые преобразователи, предназначенные для контактирования через эталонную среду с исследуемой и контрольной средами соответственно, ультразвуковой генератор, первый и второй выходы которого соответственно подключены к первому и второму ультразвуковым преобразователям, суммирующий каскад, входы которого подключены к первому и второму ультразвуковым преобразователям, делитель и блок функционального преобразования, связанный с выходом делителя, при этом в состав устройства введены дифференциальный усилитель и блок возведения в степень, причем первый вход дифференциального усилителя подключен ко второму ультразвуковому преобразователю, а второй вход этого усилителя подключен к первому ультразвуковому преобразователю, первый вход делителя подключен к выходу дифференциального усилителя, а второй его вход подключен к выходу суммирующего каскада, выход делителя подключен к входу блока возведения в степень, а выход последнего подключен к входу блока функционального преобразования, причем блок функционального преобразования реализует заданную функциональную зависимость.

Изобретение относится к акустическим измерениям и может быть использовано для измерения скорости звука в естественных водоемах. Предложен способ акустического мониторинга изменчивости параметров морских акваторий, заключающийся в формировании в морской среде акустической трассы распространения звука и обработке принятого приемным элементом трассы акустического сигнала, которой включает измерение скорости распространения звука, температуры и давления в образцовой зоне водоема на фиксированных горизонтах, свободной от загрязнений техногенного характера, при этом полученные значения измеренной скорости распространения звука являются эталонными значениями для данного водоема и заносятся в память вычислительного устройства средства акустического мониторинга, при формировании в морской среде акустической трассы распространения звука и обработке принятого приемным элементом трассы акустического сигнала, измерения скорости распространения звука выполняют при температуре и давлении, соответствующих температуре и давлению полученных эталонных значений скорости распространения звука на фиксированных горизонтах акватории исследуемого водоема.

Использование: для акустического согласования пьезоэлемента иммерсионного ультразвукового пьезоэлектрического преобразователя с контролируемой средой. Сущность изобретения заключается в том, что выполняют формирование между пьезоэлементом и контролируемой средой протектора и размещение с другой стороны пьезоэлемента демпфера, при этом толщину пьезоэлемента и толщину протектора определяют исходя из резонансной частоты пьезоэлемента fпэ=(1,10÷1,12)f+(0,1÷0,2), где f - эффективная частота эхо-импульса, а материалы протектора и демпфера выбирают с акустическими сопротивлениями из диапазонов, удовлетворяющих определенным соотношениям.

Использование: для ультразвуковой дефектоскопии. Сущность изобретения заключается в том, что разбивают пьезоэлементы антенной решеткой на несколько подрешеток, присваивают каждому излучающему элементу подрешетки свой зондирующий сигнал из набора псевдоортогональных сигналов, выполняют одновременное излучение в объект контроля всеми элементами подрешетки и принимают из него ультразвуковые сигналы с помощью любой подрешетки с последующим декодированием принятых эхо-сигналов для формирования набора эхо-сигналов, который можно было бы получить при излучении и приеме всеми парами элементов антенной решетки, при этом для каждой из пар подрешеток и для каждого положения антенной решетки используется свой набор псевдоортогональных сигналов, например кодов Касами или линейно-частотно-модулированных сигналов, а декодирование для формирования набора эхо-сигналов для восстановления изображения отражателей методом C-SAFT производится методом максимальной энтропии.

Изобретение относится к перинатологии и предназначено для снижения перинатальной заболеваемости при поздних преждевременных родах. Сущность способа: в сроках 34-36 недель беременности при угрозе преждевременных родов проводят ультразвуковую фетометрию.

Изобретение относится к технике горного дела, добыче полезных ископаемых, в частности к устройствам для изучения физико-механических свойств горных пород, и может быть использовано в геологии, горной, газовой и нефтяной промышленности для расчета предельной величины давления гидроразрыва пласта.
Изобретение относится к метрологии, в частности к устройствам для измерения звукопоглощающих свойств жидкостей. Устройство содержит тональный аудиометр, к которому подключен костный телефон-вибратор с ремешком для его фиксации в заданном положении.

Использование: для определения коэффициента акустоупругой связи. Сущность изобретения заключается в том, что образец нагружают до заданного значения напряжения в материале и измеряют время распространения акустической волны в направлении, перпендикулярном направлению нагружения, при этом растягивают или сжимают образец до напряжения σ, меньшего предела пропорциональности материала, измеряют время t1 распространения акустической волны между двумя параллельными поверхностями образца, разгружают образец, соответственно сжимают или растягивают образец до напряжения σ, измеряют время t2 распространения акустической волны между указанными поверхностями образца и определяют коэффициент акустоупругой связи по заданному математическому выражению.

Использование: для относительной калибровки преобразователей акустической эмиссии. Сущность изобретения заключается в том, что размещают на калибровочном блоке калибруемый преобразователь акустической эмиссии, возбуждают в калибровочном блоке импульсы смещения, регистрируют полученные сигналы и выполняют их сравнение, при этом возбуждение импульсов смещения осуществляют с помощью источника акустической эмиссии трения, полученные при этом сигналы акустической эмиссии трения регистрируют, затем по ним определяют их автокорреляцию, производя, таким образом, относительную калибровку калибруемого преобразователя акустической эмиссии.

Изобретение относится к области измерительной техники и может быть использовано при проведении термометрических измерений. Заявлены термоэлектрическая система, способ гашения колебаний термоэлектрической системы и компрессор, содержащий указанную термоэлектрическую систему.

Изобретение относится к области измерительной техники и может быть использовано для обнаружения контакта между устройством обнаружения контакта и объектом. Настоящее изобретение относится к устройству обнаружения контакта для обнаружения контакта между устройством обнаружения контакта и объектом, к способу работы устройства обнаружения контакта для обнаружения контакта между устройством обнаружения контакта и объектом и диагностическому устройству.

Изобретение относится к измерительной технике и может быть использовано при дистанционном мониторинге состояния строительных конструкций. Заявлена система мониторинга формообразования монолитного объекта, содержащая цепочку датчиков, размещаемую в формообразующей конструкции перед процессом твердения, и линию связи, расположенную вдоль оси цепочки между ее первым и вторым концами.

Изобретение относится к области термометрии и может быть использовано для измерений температуры тела. Датчик температуры изготавливается из нескольких слоев, где первый слой имеет центральный нагревательный элемент, встроенный в него.

Изобретение относится к области термометрии и может быть использовано для измерения внутренней температуры тела объекта. Датчик (100) измерения температуры нулевого теплового потока содержит слой (107), датчик (105) первого температурного градиента, модулятор (103) первого теплового потока и контроллер (102) модулятора теплового потока.

Изобретение относится к устройствам для зондирования гидросферы. Заявлен термозонд для измерения вертикального распределения температуры воды, состоящий из корпуса, представляющего собой жесткую конструкцию, снабженного стабилизатором и размещенного в кассете, снабженной механизмом расчленения с корпусом термозонда.

Изобретение относится к области медицины, а именно к устройствам для выявления температурных аномалий внутренних тканей биологического объекта, и может быть использовано для неинвазивного раннего выявления риска рака.

Изобретение относится к физике высокотемпературной плазмы и может найти применение в управляемом термоядерном синтезе. Сущность изобретения заключается в том, что способ измерения электронной температуры термоядерной плазмы, включающий операции, заключающиеся в том, что поток рентгеновских квантов из установки пропускают через средства детектирования, включающие фильтрующие элементы, причем в качестве средств детектирования используют две низковольтные ионизационные камеры (НИК), на входе одной из которых помещают алюминиевый фильтрующий элемент, который выполняют толщиной 10-20 мкм, сигналы с НИК подают на один общий анод, при этом на катоды одной из НИК подают постоянное смещение величиной +15 B, а на другую - переменное напряжение - меандр амплитудой ±15 B и полученные сигналы используют для определения показателей прозрачности фильтра для излучения данного спектрального состава для соотнесения с определяемой температурой термоядерной плазмы.

Изобретение относится к винодельческой промышленности и может быть использовано, в частности, при производстве шампанских вин. Регулирование распределения температуры в цилиндрическом резервуаре с виноматериалом, имеющем снаружи "рубашку" с циркулирующим в ней хладоносителем по замкнутому контуру, включающем вентиль, управляемый электроприводом, компрессор и соединяющие их и "рубашку" трубопроводы, осуществляют путем измерения в центре резервуара температуры виноматериала.

Изобретение относится к винодельческой промышленности и может быть использовано, в частности, при производстве шампанских вин. Регулирование распределения температуры в цилиндрическом резервуаре с виноматериалом, имеющем снаружи "рубашку" с циркулирующим в ней хладоносителем по замкнутому контуру, включающем вентиль, управляемый электроприводом, компрессор и соединяющие их и "рубашку" трубопроводы, осуществляют путем задания требуемой температуры хладоносителя в «рубашке» резервуара, для чего измеряют в центре резервуара температуру виноматериала.

Изобретение относится к способу, относящемуся к системе SCR. Способ относится к системе SCR, при котором восстанавливающий агент подают в поток выхлопных газов перед катализатором (260) SCR.
Наверх