Способ размерной электрохимической обработки деталей из титана и титановых сплавов



Способ размерной электрохимической обработки деталей из титана и титановых сплавов
Способ размерной электрохимической обработки деталей из титана и титановых сплавов
Способ размерной электрохимической обработки деталей из титана и титановых сплавов

 


Владельцы патента RU 2564773:

Открытое акционерное общество "Научно-производственное объединение "Сатурн" (RU)

Изобретение относится к области электрохимической обработки металлов и сплавов импульсным током и может быть использовано для получения сложнофасонных поверхностей деталей авиационных газотурбинных двигателей. Способ включает обработку детали из титана или титанового сплава в электролите вибрирующими электродами с применением анодных регулируемых прямоугольных импульсов от источника напряжения с постоянной амплитудой. При обработке устанавливают черновой, чистовой и финишный режимы, отводят электроды на соответствующий установленному режиму межэлектродный зазор. Подачу импульсов напряжения синхронизируют с моментом отвода электродов от детали и при обработке детали поддерживают заданное среднее значение рабочего тока регулированием длительности упомянутых прямоугольных импульсов напряжения, которую устанавливают в прямой пропорциональной зависимости от величины межэлектродного зазора. Техническим результатом является создание способа размерной электрохимической обработки, обеспечивающего повышение производительности изготовления сложнофасонных поверхностей деталей из титана и титановых сплавов за счет упрощения технологии и снижения трудоемкости изготовления. 2 ил., 1 табл.

 

Изобретение относится к области электрохимической обработки (ЭХО) металлов и сплавов импульсным током и может быть использовано для получения сложнофасонных поверхностей деталей авиационных газотурбинных двигателей с высокой производительностью при размерной двухсторонней электрохимической обработке деталей из легкопассивирующихся материалов, например титана и титановых сплавов.

Известен способ импульсно-циклической электрохимической размерной обработки металлов с дискретной системой слежения за величиной межэлектродного зазора (патент РФ №2330746 С2, B23H 3/00, заявлено 18.05.2006, опубл. 10.08.2008).

Недостатком данного способа является то, что к концу цикла обработки увеличивается рабочий зазор, при этом рабочий ток и производительность обработки детали снижаются.

Наиболее близким к заявленному является способ обработки титана и титановых сплавов в электролитах с применением анодных регулируемых прямоугольных импульсов от источника напряжения с постоянной амплитудой (патент РФ №2220031 C1, В23Н 3/00, B23H 3/02, заявлено 05.02.2003, опубл. 27.12.2003).

Недостатком данного способа является то, что он применим только для чистовой обработки деталей на малых межэлектродных зазорах пакетами микросекундных импульсов, что значительно уменьшает производительность.

Техническим результатом, достигаемым в заявленном изобретении, является создание способа размерной электрохимической обработки, обеспечивающего повышение производительности изготовления сложнофасонных поверхностей деталей из титана и титановых сплавов за счет упрощения технологии и снижения трудоемкости изготовления.

Поставленный технический результат достигается тем, что в предлагаемом способе размерной электрохимической обработки деталей из титана и титановых сплавов обработку детали производят в электролите вибрирующими электродами с применением анодных регулируемых прямоугольных импульсов от источника напряжения с постоянной амплитудой.

Новым в способе является то, что устанавливают черновой, чистовой и финишный режимы обработки детали, отводят электроды на соответствующий установленному режиму межэлектродный зазор, при этом подачу импульсов напряжения синхронизируют с моментом отвода электродов от детали и при обработке детали поддерживают заданное среднее значение рабочего тока регулированием длительности упомянутых прямоугольных импульсов напряжения, которую устанавливают в прямой пропорциональной зависимости от величины межэлектродного зазора.

Поддержание среднего значения рабочего тока за счет автоматической регулировки длительности прямоугольных импульсов в зависимости от величины МЭЗ позволяет вести обработку титана при скорости травления металла 0,6-1,2 мм/мин.

Нет необходимости уменьшения амплитуды импульсов напряжения при обработке на малых зазорах и подачи активирующих передних импульсов (так как титан при напряжении менее 18 В не обрабатывается). Предлагаемый способ значительно упрощает технологию ЭХО, а следовательно, снижается и трудоемкость изготовления деталей.

На прилагаемых чертежах изображено:

фиг. 1 - изменение длительности импульсов напряжения в зависимости от величины межэлектродного зазора (МЭЗ);

фиг. 2 - изменение длительности импульсов напряжения и импульсов технологического тока в зависимости от величины МЭЗ, где

S1 - зазор черновой обработки,

S2 - зазор чистовой обработки,

Smin - зазор финишной обработки.

Предлагаемый способ реализуется следующим образом.

На рабочих позициях станка устанавливаются и закрепляются электроды-инструменты и заготовка. Устанавливаются режимы обработки (черновой, чистовой, финишный), в которые вводят для каждого режима свои значения:

- рабочее напряжение (U, В);

- среднее значение технологического тока (Icp, А);

- величина рабочего МЭЗ;

- время цикла обработки (Тц, с);

- координата перехода на режим;

- величина зазора промывки;

- время промывки (Тпр, с).

Закрывается рабочая зона станка, включается станок, подается электролит в межэлектродный зазор (МЭЗ).

Оба электрода начинают независимое движение до своей координаты начала синхронного движения, затем продолжают движение к детали синхронно до касания. После касания электроды отводятся назад на величину заданного рабочего МЭЗ и, вибрируя, удерживаются на зазоре, соответствующем выбранному режиму обработки (фиг. 1). После отвода электродов на рабочий зазор, оба электрода начинают совершать симметричные колебания относительно противоположных поверхностей детали (фиг. 1). В момент отвода электродов от детали подаются импульсы технологического напряжения заданной амплитуды (фиг. 1). Причем длительность импульсов напряжения в начале каждого участка черновой, чистовой и финишной обработки начинает плавно увеличиваться от минимальной длительности до того значения длительности напряжения, когда среднее значение тока обработки достигнет заданного.

Измерение среднего тока и регулировка длительности импульсов напряжения производятся автоматически системой управления станка (СУ).

Во время цикла обработки (Тц) межэлектродный зазор (МЭЗ) по мере обработки детали увеличивается за счет съема металла, увеличивается его сопротивление, а средний ток начинает падать, но СУ начинает увеличивать длительность импульсов напряжения, стремясь сохранить среднее значение тока обработки (фиг. 1).

При работе на зазоре S1, СУ станка устанавливает такую длительность импульсов напряжения, которая поддерживает неизменным среднее значение технологического тока. При переходе на меньший зазор S2 импульсный технологический ток увеличивается и СУ, стремясь поддержать среднее значение технологического тока, уменьшает длительность импульса напряжения (фиг. 2).

При работе на зазоре Smin СУ, чтобы поддержать среднее значение технологического тока, еще больше укорачивает импульс напряжения, импульс технологического тока при этом возрастает, увеличивается плотность импульсного тока, что улучшает шероховатости обработанной поверхности (фиг. 2).

На рабочем МЭЗ включается рабочий ток и производится травление детали в течение заданного времени. Рабочий ток - импульсный с постоянной амплитудой импульса, но с переменной длительностью импульса, который регулируется с условием поддержания заданного среднего значения тока. По мере травления детали зазор увеличивается и для поддержания постоянным среднего значения тока длительность импульсов увеличивается (фиг. 1, 2).

Обработка осуществляется вибрирующими электродами, при этом подача импульсов напряжения синхронизирована с моментом отвода электродов (фиг. 1). По окончании времени обработки электроды разводятся до величины зазора промывки и удерживаются на этом зазоре заданное время промывки. Цикл ощупывания детали до касания, отвод электродов, травление и промывка повторяется несколько раз до тех пор, пока электроды не дойдут до координаты конца обработки (фиг. 1).

Отличие обработки на разных режимах заключается в том, что зазор при чистовой обработке меньше, чем при черновой обработке, и, соответственно, длительность импульсов тока, при сохранении его среднего значения (фиг. 2), будет меньше, чем при черновой обработке. Далее следует финишная обработка со своими параметрами по такому же алгоритму, с еще меньшей длительностью импульсов тока. При достижении координаты конца обработки отключаются золотники (разводятся электроды), отключается рабочий ток, отключаются электролит, вода, воздух.

Пример конкретной реализации способа

В таблице 1 приведены технологические режимы обработки.

Предлагаемый способ электрохимической обработки реализован на станке ЭХЛ-200. Электроды-инструменты выполнены из материала Х18Н9Т, а обрабатываемая заготовка - из TA6V. Площадь обработки - 60 см2 Прокачка электролита - центральная под давлением 4 кг/см2. Электролит на основе двухкомпонентных водных растворов нейтральных солей: NaCl - 9%, KNO3 - 9,9%. Используемый источник питания - ВИРЭ-5000М.

Предлагаемый способ размерной электрохимической обработки деталей из титана и титановых сплавов позволяет повысить производительность в 1,3 раза по сравнению с обработкой в импульсном режиме с постоянной длительностью импульсов, обеспечить точность в пределах 5 мкм и качество обрабатываемой поверхности Ra=0,5-0,6 мкм по торцевой и боковым поверхностям при формировании сложнофасонных поверхностей.

Таким образом, предлагаемый способ размерной электрохимической обработки деталей из титана и титановых сплавов позволяет значительно увеличить производительность изготовления сложнофасонных поверхностей деталей за счет упрощения технологии и снижения трудоемкости изготовления.

Способ размерной электрохимической обработки деталей из титана и титановых сплавов, включающий обработку детали в электролите вибрирующими электродами с применением анодных регулируемых прямоугольных импульсов от источника напряжения с постоянной амплитудой, отличающийся тем, что устанавливают черновой, чистовой и финишный режимы обработки детали, отводят электроды на соответствующий установленному режиму межэлектродный зазор, при этом подачу импульсов напряжения синхронизируют с моментом отвода электродов от детали и при обработке детали поддерживают заданное среднее значение рабочего тока регулированием длительности упомянутых прямоугольных импульсов напряжения, которую устанавливают в прямой пропорциональной зависимости от величины межэлектродного зазора.



 

Похожие патенты:

Изобретение относится к области машиностроения и может быть использовано при восстановлении трущихся сопряжений двигателя внутреннего сгорания дизель-генераторной установки (ДВС ДГУ) локомотива.

Изобретение относится к электрохимической обработке осесимметричных деталей типа вал. Устройство содержит переднюю и заднюю опоры со сферическими центрами, установленные через диэлектрические прокладки в передней и задней опорах станка, суппорт, дополнительную станину с закрепленными на ней самоцентрирующими люнетами с приводами зажима, блок управления приводами зажима самоцентрирующих люнетов и источник питания, подключенный положительным полюсом к валу.

Изобретение относится к разделению листовых металлических материалов. Способ включает нанесение на плоскую сторону заготовки диэлектрического шаблона с контуром профиля разделения и установку на него металлического шаблона из запассивированного титанового сплава, со стороны которого с зазором для прокачки электролита устанавливают катод-инструмент и осуществляют подачу тока на анод-заготовку и катод-инструмент от источника тока, который через регулятор напряжения соединен с металлическим шаблоном.

Изобретение относится к устройству для электрохимической маркировке деталей, в частности для маркировки внутренней поверхности ствола оружия. Устройство содержит корпус цилиндрической формы из диэлектрического материала, размещенный внутри него катод-инструмент, снабженный цилиндрической камерой смешения электролита, по окружности которой выполнены радиальные сверления.

Изобретение относится к области размерной электрохимической обработки металлов и сплавов и может быть использовано для изготовления лопаток с двумя хвостовиками газотурбинного двигателя.

Изобретение относится к размерной электрохимической обработке деталей из высокопрочных сталей и сплавов и может быть использовано для изготовления деталей со сложным рельефом поверхности и сложным наружным контуром, например, управляющих рулей, лопастей, крыльев управляемых ракет, турбинных лопаток и т.п.

Изобретение относится к электрохимической обработке и может быть использовано при формировании глубоких отверстий малого диаметра в деталях. .

Изобретение относится к электрохимической резке тонкостенных электропроводных заготовок. .

Изобретение относится к электрохимической обработке твердых WC-Co сплавов и может быть использовано для выполнения различных копировально-прошивочных операций при изготовлении сложнофасонных поверхностей деталей машин и инструментов.

Изобретение относится к области импульсной электрохимической обработки сталей и сплавов и может быть использовано для выполнения различных прецизионных копировально-прошивочных операций при изготовлении сложнофасонных поверхностей деталей машин и инструментов из труднообрабатываемых материалов.

Изобретение относится к электрохимической размерной обработке и может быть использовано при получении углублений, формирующих турбулизаторы в узких пазах, например в охлаждающих системах тепловых двигателей. Изготавливают макет шаблона из эластичного гибкого листового диэлектрического материала с толщиной листа, равной полуразности между шириной паза в детали и шириной электрода в пазе. В макете шаблона выполняют сквозные окна для получения углублений в пазах детали с заданными размерами и положением. Затем макет шаблона нагружают в поперечном направлении возрастающими растягивающими силами при одновременном измерении толщины материала макета шаблона до снижения толщины макета шаблона на величину заданного межэлектродного зазора. Далее фиксируют величину растягивающей силы, замеряют при этой силе размеры и положение сквозных окон в макете шаблона и измеряют изменение размеров окон и величину их смещения относительно заданных величин. С учетом измерений из того же материала изготавливают шаблон для электрохимической размерной обработки, предназначенный для установки на электрод при получении углублений в узких пазах детали и обеспечивающий получение точных углублений с заданной геометрией и положением в пазах детали. 2 ил., 1 пр.

Изобретения относятся к электрохимической обработке и могут быть использованы для полирования, чистовой обработки заготовки или придания ей формы с помощью электрохимической обработки. Предложены гибкие электрохимические инструменты, содержащие катоды, которые выполнены с возможностью упругой деформации в двух или трех измерениях и которые могут адаптироваться к профилю заготовки при ее перемещении относительно инструмента. Данными гибкими электрохимическими инструментами можно выполнять трассировку, кроме того, некоторые из них предназначены для обработки особых конструкций, например, углов и ребер. Изобретения позволяют осуществить качественную гибкую электрохимическую обработку заготовок разной формы и обеспечивают снижение временных и экономических затрат на модификацию используемого гибкого инструмента. 9 н. и 16 з.п. ф-лы, 15 ил.

Изобретение относится к электрохимической обработке отверстий. Установка содержит камеру, внутри которой установлена стойка с держателем для крепления электрода в зажимном устройстве с возможностью линейного перемещения электрода по горизонтальной оси, корпус, стол для закрепления детали и источник питания. Стол выполнен в виде вертикально расположенной металлической плиты, имеющей горизонтально расположенные Т-образные пазы и выполненной с возможностью крепления к корпусу установки, а на Т-образные пазы с возможностью перемещения вдоль них установлено приспособление, к которому прикреплен ложемент, копирующий внутреннюю поверхность обрабатываемой детали. Зажимное устройство выполнено в виде патрона с цангой, установленного на держателе, на котором размещен механизм грубого перемещения держателя для крепления электрода по вертикальной оси, состоящий из винтовой пары и кулачка с толкателем. Изобретение обеспечивает несложную юстировку положения электрода относительно обрабатываемого отверстия и перенастройку установки с обработки одного отверстия на другое. 4 з.п. ф-лы, 6 ил.

Изобретение относится к оборудованию для электрохимической обработки винтового зубчатого профиля внутренней поверхности в отверстии трубчатой заготовки для изготовления статоров с равномерной толщиной обкладки из эластомера, применяемых в винтовых героторных гидравлических двигателях для бурения нефтяных скважин. Изобретение обеспечивает повышение точности центрирования электрода в отверстии трубчатой заготовки и точности электрохимической обработки, а также повышение надежности и ресурса установки, улучшение охлаждения приводной штанги и электрода, предотвращение возможности разрушения приводной штанги и обеспечивает защиту от коротких замыканий. 4 з.п. ф-лы, 15 ил.

Изобретение относится к области высокоточной электрохимической обработки. Способ включает обработку анода-заготовки двумя катодами-инструментами на малых рабочих межэлектродных зазорах с подачей пакетов импульсов технологического напряжения, при этом сначала обрабатывают одним катодом-инструментом, а затем, после поворота анода-заготовки на 180° - вторым катодом-инструментом. Предварительно анод-заготовку базируют по ее финишно обработанной замковой части в приспособлении-спутнике, имеющем элементы для его базирования, элементы для фиксации анода-заготовки и подвода к ней тока и элементы, обеспечивающие возможность его захвата и поворота на 180°, а катоды-инструменты устанавливают на двух электрохимических копировальных станках. Далее обработку поверхностей лопатки ведут в упомянутом приспособлении-спутнике, при этом приспособление-спутник совмещают с каждым катодом-инструментом, обеспечивая ламинарное течение электролита без возникновения кавитации на входе и выходе межэлектродного зазора. Изобретение позволяет обеспечить точное и стабильное формообразование всех поверхностей проточной части лопатки авиационного газотурбинного двигателя. 2 н. и 1 з.п. ф-лы, 5 ил.
Наверх