Многокристальное многоцветное фотоприемное устройство с расширенной спектральной характеристикой квантовой эффективности



Многокристальное многоцветное фотоприемное устройство с расширенной спектральной характеристикой квантовой эффективности
Многокристальное многоцветное фотоприемное устройство с расширенной спектральной характеристикой квантовой эффективности
Многокристальное многоцветное фотоприемное устройство с расширенной спектральной характеристикой квантовой эффективности
Многокристальное многоцветное фотоприемное устройство с расширенной спектральной характеристикой квантовой эффективности
Многокристальное многоцветное фотоприемное устройство с расширенной спектральной характеристикой квантовой эффективности
Многокристальное многоцветное фотоприемное устройство с расширенной спектральной характеристикой квантовой эффективности

 


Владельцы патента RU 2564813:

Акционерное общество "НПО "Орион" (АО "НПО "Орион") (RU)

Изобретение относится к фоточувствительным приборам, предназначенным для обнаружения и регистрации инфракрасного (ИК) излучения в нескольких спектральных поддиапазонах инфракрасной области спектра от 3,5 до 12,7 мкм. Многокристальное многоцветное фотоприемное устройство (ФПУ) с расширенной спектральной характеристикой квантовой эффективности содержит кристаллы матриц фоточувствительных элементов (МФЧЭ), детектирующих излучение в различных спектральных диапазонах ИК области спектра, гибридизированных с большими интегральными схемами (БИС) считывания сигнала, при этом с целью расширения спектральной характеристики квантовой эффективности, обеспечения компактности конструкции и повышения универсальности применения устройство содержит как минимум четыре кристалла МФЧЭ, гибридизированных индиевыми микроконтактами с одной или четырьмя БИС считывания сигнала, каждый фоточувствительный модуль, состоящий из кристалла МФЧЭ и БИС считывания или части БИС считывания, настроен на отдельный заданный диапазон ИК области спектра, фоточувствительные модули расположены блочно с минимальным зазором между кристаллами (10-20 мкм). 3 з.п. ф-лы, 5 ил.

 

Изобретение относится к фоточувствительным приборам, предназначенным для обнаружения и регистрации инфракрасного (ИК) излучения в различных спектральных диапазонах, а именно многокристальному многоцветному фотоприемному устройству (ФПУ), предназначенному для детектирования излучения в нескольких спектральных поддиапазонах инфракрасной области спектра от 3,5 до 12,7 мкм.

В настоящее время одним из основных направлений совершенствования оптико-электронной аппаратуры, в первую очередь тепловизионной и теплопеленгационной, является использование многоцветных фотоприемных устройств, чувствительных в нескольких диапазонах спектра.

Известно, что температура объекта наблюдения может быть определена по соотношению излучательных способностей объекта наблюдения в различных спектральных диапазонах с помощью детектирования излучения как минимум в двух спектральных диапазонах.

Важной особенностью аппаратуры на основе многокристальных многоцветных фотоприемных устройств является расширенная спектральная характеристика квантовой эффективности, что позволяет:

- детектировать большое количество событий и наблюдаемых объектов, которые инициируют фотосигналы различной амплитуды в различных спектральных диапазонах;

- сравнивать амплитуды сигналов от фотоприемных устройств, работающих в различных спектральных диапазонах при наблюдении за одними и теми же объектами излучения;

- анализировать местоположение и пространственные характеристики объектов излучения на основе снятия сигналов с элементов матриц фоточувствительных элементов (МФЧЭ), входящих в многокристальное ФПУ;

- анализировать временное распределение параметров наблюдаемых объектов на основе снятия сигналов с элементов различных МФЧЭ, входящих в многокристальное ФПУ;

- идентифицировать события на основе проведенного временного и пространственного анализа.

Такая аппаратура значительно повышает информативность и достоверность систем, вероятность обнаружения и распознавания объектов излучения в условиях искусственных и естественных помех.

Наиболее подходящим материалом для создания современной оптико-электронной аппаратуры с использованием многокристальных многоцветных ФПУ является материал кадмий-ртуть-теллур (CdHgTe, или КРТ). Выбор материала CdHgTe в качестве основного для ФПУ обусловлен тем, что приемники на его основе обеспечивают максимальную квантовую эффективность и чувствительность в ИК-диапазоне спектра.

В настоящее время конструкции многоцветных фотоприемных устройств широко описаны в патентной литературе.

Известна фотоприемная матрица цветного изображения для детектирования излучения в видимой области спектра в видеокамерах и фотоаппаратах, предназначенных для регистрации цветного изображения [RU 238967, H01L 27/146, опубл. 20.10.2009 г.]. Фотоприемная матрица цветного изображения содержит ячейки, имеющие фоточувствительные области, каждая из которых расположена на глубине полупроводниковой структуры, соответствующей генерации носителей заряда от световой компоненты заданного цвета, и обеспечивает детектирование излучения в трех спектральных диапазонах видимой области (красной (R), зеленой (G) и голубой (B)), расположенных по схеме Байера.

Известно многокристальное многоцветное фотоприемное устройство и способ идентификации событий с его помощью «Multi-array sensor and method of identifying events using the same» [EP 0973019, B12, G01J 5/60, опубл. 27.03.2002], принятое в качестве прототипа, содержащее одну или две матрицы фоточувствительных элементов, детектирующих излучение как минимум в двух спектральных диапазонах. В патенте приведены три основных типа конструкции многокристального многоцветного ФПУ, состоящего из матриц фоточувствительных элементов, состыкованных с помощью индиевых микроконтактов с кремниевыми большими интегральными схемами считывания сигнала (фиг. 1, 2, 3 (а, б, в, г), 4), или их комбинация:

- ФПУ, у которого кристаллы матриц чувствительных элементов, гибридизированные с помощью индиевых столбиков с одной интегральной схемой считывания и детектирующие излучение в различных спектральных диапазонах, расположены в одной плоскости; излучение на кристаллы МФЧЭ фокусируется с помощью раздельных оптических систем; при этом расстояние между отдельными кристаллами не лимитируется, поэтому при использовании раздельных оптических систем существенно возрастают габариты ФПУ;

- ФПУ, у которого кристаллы матриц чувствительных элементов, гибридизированные с помощью индиевых столбиков с разными интегральными схемами считывания и детектирующие излучение в различных спектральных диапазонах, расположены в различных плоскостях на значительном расстоянии друг от друга; излучение на кристаллы МФЧЭ фокусируется с помощью одной оптической системы, разделяющей поток излучения на два с помощью полупрозрачной пластины; это приводит к уменьшению как минимум в два раза интенсивности падающего на отдельные кристаллы МФЧЭ потока излучения и существенно возрастают габариты ФПУ;

- ФПУ, у которого имеется один кристалл МФЧЭ, гибридизированный с помощью индиевых столбиков с одной интегральной схемой считывания; нами не рассматривается, т.к. не является многокристальным.

Задачей предлагаемого изобретения является создание компактной универсального применения конструкции многокристального многоцветного фотоприемного устройства с расширенной спектральной характеристикой квантовой эффективности, состоящего из отдельных кристаллов матриц фоточувствительных элементов, гибридизированных с помощью индиевых микроконтактов с одной или несколькими большими интегральными схемами считывания фотосигнала.

Технический результат достигается тем, что многокристальное многоцветное фотоприемное устройство состоит как минимум из четырех матриц фоточувствительных элементов, детектирующих излучение в двух, трех или четырех спектральных диапазонах ИК области спектра, и одной или четырех БИС считывания, гибридизированных индиевыми микроконтактами с кристаллами МФЧЭ; при этом каждый фоточувствительный модуль, состоящий из кристаллов МФЧЭ и БИС считывания сигнала или части БИС считывания, настроен на отдельный заданный спектральный диапазон ИК области спектра, что позволяет ФПУ работать без уменьшения фотосигналов и потери информативности изображения, а фоточувствительные модули, работающие в разных спектральных диапазонах, располагаются с минимальным зазором между кристаллами (10-20 мкм).

Для данной конструкции ФПУ изображение наблюдаемых объектов фокусируется оптической системой одновременно на каждый из четырех кристаллов МФЧЭ, работающих параллельно в четырех (двух или трех) спектральных диапазонах.

Каждый фоточувствительный модуль, состоящий из кристалла МФЧЭ и БИС считывания сигнала, работает в своем заданном спектральной диапазоне ИК области спектра за счет использования специально выращенных гетероструктур полупроводникового материала КРТ с рабочими фоточувствительными слоями определенного состава, оптимизированными под заданные спектральные диапазоны ИК области спектра.

Изобретение поясняется чертежами, где на фиг. 1 представлена структура многокристального многоцветного ФПУ; на фиг. 2 - прецизионная сборка четырех кристаллов МФЧЭ, гибридизированных с четырьмя БИС считывания на общую коммутирующую подложку; фиг. 3 (а, б, в, г) - спектральные характеристики фоточувствительности МФЧЭ в ИК области спектра от 3,5 до 12,7 мкм; фиг. 4 - конструкция гетероэпитаксиальной структуры КРТ; фиг. 5 - фрагмент кристалла матрицы фоточувствительных элементов с индиевыми столбиками.

Многокристальное многоцветное фотоприемное устройство (фиг.1), состоит как минимум из четырех матриц фоточувствительных элементов (позиции 1-4), детектирующих излучение в двух, трех или четырех спектральных диапазонах ИК области спектра (от 3,5 до 12,7 мкм), одной или четырех больших интегральных схем считывания (позиции 5-8), гибридизированных индиевыми микроконтактами с кристаллами МФЧЭ, коммутирующей подложки (позиция 9), вакуумного корпуса (позиция 10).

Для получения изображения от наблюдаемых объектов необходимо сфокусировать изображение объектов в плоскость расположения матриц фоточувствительных элементов, при этом используется одна оптическая система (не показана), чтобы изображение фокусировалось на элементы всех матриц одновременно. Фоточувствительные модули, состоящие из кристаллов МФЧЭ и БИС, располагаются как можно ближе друг к другу с минимальным зазором между кристаллами (10-20 мкм). Для лучшей идентификации изображений массивы имеют одинаковое количество элементов, которое не лимитируется в рамках данного изобретения. Массивы могут быть прямоугольными или квадратными матрицами, от 64×64 и более элементов, что определяется требуемой разрешающей способностью. Матрицы МФЧЭ, представленные в качестве примера на фиг. 2, имеют размер 384×288 элементов и располагаются в едином корпусе, который устраняет доступ нежелательных внешних воздействий. Корпус содержит входное окно, которое одновременно может быть элементом оптической системы.

Многокристальное многоцветное ФПУ изготавливается, используя технологический процесс прецизионной сборки фоточувствительных модулей, состоящих из кристаллов МФЧЭ и БИС, на общую коммутирующую подложку с зазором между фоточувствительными модулями не более 10-20 мкм. При этом отсутствие одного или двух рядов элементов в МФЧЭ (в месте стыковки фоточувствительных модулей) при формирования ИК-изображения мало отразится на качестве самого изображения. На фиг. 2 представлен процесс прецизионной сборки фоточувствительных модулей в единое ФПУ формата 768×576 элементов, состоящее из четырех фоточувствительных модулей формата 384×288 элементов, который включает следующие основные операции:

- подготовку поверхностей фоточувствительных модулей, состоящих из МФЧЭ и БИС, и коммутирующей подложки к приклеиванию;

- нанесение вакуумного клея;

- точное позиционирование фоточувствительных модулей с прижимом при помощи микроманипуляторов и контролем зазоров между кристаллами при помощи микроскопа.

Каждый фоточувствительный модуль, состоящий из кристалла МФЧЭ и БИС, работает в своем заданном спектральном диапазоне ИК области спектра за счет использования специально выращенных гетероструктур полупроводникового материала КРТ с рабочими фоточувствительными слоями определенного состава, оптимизированными под заданные спектральные диапазоны. На фиг. 3 (а, б, в, г) представлены спектральные характеристики фоточувствительности кристаллов МФЧЭ, используемых для различных модификаций ФПУ.

Кристаллы МФЧЭ предназначены для детектирования излучения в ИК спектральном диапазоне от 3,5 до 12,7 мкм. Основные спектральные поддиапазоны, в которых работают отдельные фоточувствительные модули: 3,5-4,4 мкм; 5,0-7,0 мкм, 8,3-10,6 мкм; 10,4-12,7 мкм, при этом длинноволновая граница фоточувствительности обеспечивается составом фоточувствительного материала КРТ, а коротковолновая граница фоточувствительности обеспечивается фильтрующим покрытием на подложке МФЧЭ. Многокристальные многоцветные ФПУ могут состоять из различных комбинаций фоточувствительных модулей, чувствительных в представленных выше спектральных диапазонах ИК области спектра в зависимости от задачи, решаемой оптико-электронным прибором, в который входит данное многокристальное многоцветное ФПУ.

Матрица фоточувствительных элементов изготовляется на основе многослойной полупроводниковой гетероэпитаксиальной структуры из трехкомпонентного твердого раствора кадмий-ртуть-теллур CdxHg1-xTe.

Гетероэпитаксиальная структура кристалла матрицы фоточувствительных элементов представлена на фиг. 4 и содержит последовательно расположенные:

11 - подложку кадмий-цинк-теллур (CdZnTe);

12 - буферные слои ZnTe, CdTe;

13 - варизонный слой, состав которого x плавно изменяется от 1,0±0,05 до рабочего состава в направлении от подложки;

14 - рабочий поглощающий фоточувствительный слой CdxHg1-xTe заданного состава x p-типа проводимости, соответствующий одному из вышеприведенных спектральных диапазонов;

15 - фотодиодный слой CdxHg1-xTe n+-типа проводимости, формирующий фотодиоды;

16 - диэлектрическое покрытие, толщиной порядка 1 мкм;

Большая интегральная схема считывания обеспечивает параллельное считывание и обработку сигнала с кристалла МФЧЭ заданного спектрального диапазона многокристального многоцветного ФПУ в ИК области спектра от 3,5 до 12,7 мкм.

Контакты каждого из кристаллов матрицы фоточувствительных элементов состыкованы с контактами одной или четырьмя большими интегральными схемами считывания. Большие интегральные схемы считывания или единая схема БИС работают в параллельном режиме синхронного считывания информации с четырех кристаллов МФЧЭ. Для вывода сигналов выходные контактные площадки БИС соединены с контактными выводами специальной контактной подложки (растра), после чего выводятся на разъем ФПУ.

В процессе работы фотоприемного устройства поток излучения с энергией кванта hν≥Eg проходит через подложку из CdZnTw - 11, через буферный слой CdTe - 12. Затем поток излучения поглощается в рабочем фоточувствительном слое 13 заданного состава. Неравновесные носители заряда, генерированные излучением в рабочем фоточувствительном слое 13, диффундируют к области объемного заряда, образованной на границах полупроводников p- и n-типа, где втягиваются электрическим полем p-n-переходов и принимают участие в процессе возникновения электрического тока.

Разделение падающего на МФПУ пучка ИК-излучения осуществляется специальной оптической системой, работающей в ИК области спектра, со светоделителями. Последующее совмещение ИК-изображений от отдельных кристаллов фоточувствительных модулей на общий экран осуществляется специальным блоком электроники на основе сигнального процессора. Оптическая система может иметь диспергирующий элемент (призма), в этом случае МФПУ работает как гиперспектральное устройство.

Многокристальное многодиапазонное ФПУ обеспечивает регистрацию наблюдаемых объектов в четырех измерениях (двумерное пространство изображений, время, спектральный диапазон); позволяет определять температуры наблюдаемых объектов по соотношению излучательных способностей объекта в различных спектральных диапазонах; обеспечивает повышение точности временного и пространственного анализа за счет сравнения фотосигналов в различных спектральных диапазонах. Многокристальное многоцветное ФПУ обладает расширенной спектральной характеристикой квантовой эффективности за счет использования четырех кристаллов МФЧЭ, работающих в четырех (возможно двух или трех) спектральных диапазонах ИК-области спектра.

1. Многокристальное многоцветное фотоприемное устройство (ФПУ) с расширенной спектральной характеристикой квантовой эффективности, содержащее кристаллы матриц фоточувствительных элементов (МФЧЭ), детектирующих излучение в различных спектральных диапазонах ИК области спектра, гибридизированных с большими интегральными схемами (БИС) считывания сигнала, отличающееся тем, что с целью расширения спектральной характеристики квантовой эффективности, обеспечения компактности конструкции и повышения универсальности применения устройство содержит как минимум четыре кристалла МФЧЭ, гибридизированных индиевыми микроконтактами с одной или четырьмя БИС считывания сигнала, каждый фоточувствительный модуль, состоящий из кристалла МФЧЭ и БИС считывания или части БИС считывания, настроен на отдельный заданный диапазон ИК области спектра, фоточувствительные модули расположены блочно с минимальным зазором между кристаллами (10-20 мкм).

2. Многокристальное многоцветное ФПУ с расширенной спектральной характеристикой квантовой эффективности по п. 1, отличающееся тем, что каждый кристалл МФЧЭ работает в своем заданном спектральном диапазоне ИК области спектра за счет использования специально выращенных гетероструктур полупроводникового материала КРТ с рабочими фоточувствительными слоями определенного состава, оптимизированными под заданные спектральные диапазоны ИК области спектра.

3. Многокристальное многоцветное ФПУ с расширенной спектральной характеристикой квантовой эффективности по п. 1, отличающееся тем, что фоточувствительные модули, состоящие из кристаллов МФЧЭ и БИС, располагаются в общем корпусе с одним входным окном.

4. Многокристальное многоцветное ФПУ с расширенной спектральной характеристикой квантовой эффективности по п. 1, отличающееся тем, что параллельность считывания фотосигнала в различных спектральных диапазонах достигается за счет конструкции большой интегральной схемы считывания.



 

Похожие патенты:

Изобретение относится к мультиспектральному считывающему устройству для считывания инфракрасных, монохромных и цветных изображений. Мультиспектральное фоточувствительное устройство содержит базовый слой со множеством макроблоков из составных считывающих пикселов, по меньшей мере, один составной считывающий пиксел содержит, по меньшей мере, два базовых считывающих пиксела, размещенных в слоях вдоль направления испускания света, причем каждый слой имеет один базовый считывающий пиксел, и базовые считывающие пикселы распределены на верхней стороне или нижней стороне, либо на верхней стороне и нижней стороне базового слоя, и каждая сторона содержит самое большее два слоя, причем полосы спектра, считываемые посредством базовых считывающих пикселов в одних и тех же составных считывающих пикселах, соответственно, являются ортогональными друг другу.

Обеспечено твердотельное устройство захвата изображения, способное на подавление генерирования темнового тока и/или тока утечки. Твердотельное устройство захвата изображения имеет первую подложку, снабженную фотоэлектрическим преобразователем на ее первичной поверхности, первую структуру разводки, имеющую первый контактный участок, который содержит проводящий материал, вторую подложку, снабженную частью периферийной схемы на ее первичной поверхности, и вторую структуру разводки, имеющую второй контактный участок, который содержит проводящий материал.

Изобретение относится к мультиспектральному светочувствительному устройству и способу его изготовления. Мультиспектральное светочувствительное устройство содержит по меньшей мере один непрозрачный слой основы; причем каждый слой основы имеет по меньшей мере две стороны, причем по меньшей мере две из сторон снабжены группами светочувствительных пикселей, каждая группа светочувствительных пикселей используется для восприятия света любого спектра, излучаемого с фронтального направления расположенной стороны.

Изобретение относится к устройству отображения, оснащенному оптическим датчиком в области пикселей. Техническим результатом является повышение чувствительности и высокое отношение сигнал/шум в светочувствительном датчике.

Изобретение относится к устройствам формирования изображения. Твердотельное устройство формирования изображений включает в себя подложку, область датчика изображения и схему обработки сигналов, которые электрически соединены друг с другом, область с низкой теплопроводностью, расположенную между областью датчика изображения и схемой обработки сигналов, и сквозное отверстие, сформированное в подложке, при этом область с низкой теплопроводностью находится в сквозном отверстии и имеет более низкую теплопроводность, чем у подложки.

Изобретение относится к устройству отображения, снабженному оптическим датчиком в пиксельной области. Техническим результатом является повышение точности при захвате изображений посредством улучшения линейности характеристик чувствительности фотодиода.

Изобретение относится к устройствам захвата изображения. Твердотельное устройство захвата изображения включает в себя множество пикселей, причем каждый из множества пикселей содержит участок фотоэлектрического преобразования, сконфигурированный для генерации зарядов в соответствии с падающим светом, участок удержания заряда, сконфигурированный так, чтобы включать в себя первую полупроводниковую область первого типа проводимости, и участок передачи, сконфигурированный так, чтобы включать в себя электрод передающего затвора, который управляет потенциалом между участком удержания заряда и узлом считывания.

Изобретение относится к твердотельному устройству захвата изображения. В твердотельном устройстве захвата изображения участок фотоэлектрического преобразования, участок удержания зарядов, участок переноса и узел считывания формируются в кармане p-типа.

Изобретение относится к датчикам электромагнитного излучения и, в частности, к массивам твердотельных датчиков изображения, имеющим световые рецепторы с размерами меньше дифракционного предела, и к цветовым фильтрам, с которыми они используются.

Изобретение относится к твердотельному датчику изображения, способу его изготовления и аппарату для съемки. Твердотельный датчик изображения включает в себя первую полупроводниковую область первого типа проводимости, вторую полупроводниковую область второго типа проводимости, расположенную в контакте с нижней поверхностью первой полупроводниковой области и функционирующую в качестве области накопления зарядов, третью полупроводниковую область, включающую в себя боковые поверхности, окруженные второй полупроводниковой областью, четвертую полупроводниковую область второго типа проводимости, расположенную на удалении от второй полупроводниковой области, и затвор переноса, который образует канал для переноса зарядов, накапливаемых во второй полупроводниковой области, в четвертую полупроводниковую область.

Изобретение относится к изготовлению фокальных матричных приемников. Способ изготовления фокального матричного приемника, содержащего по меньшей мере один пиксель, включает следующие этапы: формирование первой пластины с находящимся на ее поверхности чувствительным материалом, покрытым первым жертвенным слоем, при этом чувствительный материал формирует на первой пластине один или более пикселей, выполнение опорных ножек для по меньшей мере одного пикселя внутри первого жертвенного слоя и формирование в поверхности первого жертвенного слоя первых проводящих участков, которые находятся в контакте с опорными ножками, формирование второй пластины, снабженной считывающей интегральной схемой (ROIC), при этом вторая пластина покрыта вторым жертвенным слоем, в котором сформированы вторые проводящие участки, находящиеся в контакте с ROIC, приведение жертвенных оксидных слоев первой и второй пластин в контакт друг с другом таким образом, чтобы первые и вторые контактные участки совместились между собой и вместе образовали проводящую перемычку, и сращивание указанных первой и второй пластин друг с другом так, что после удаления объемного жертвенного слоя с первой пластины чувствительный материал переносится с первой пластины на вторую, и удаление жертвенных оксидных слоев с открыванием по меньшей мере одного пикселя, причем опорные ножки находятся полностью между чувствительным материалом своего пикселя и второй пластиной. Изобретение обеспечивает создание фокального матричного приемника с максимизированной активной чувствительной поверхностью. 4 н. и 8 з.п. ф-лы, 11 ил.

Изобретение относится к изготовлению фокальных матричных приемников. Способ изготовления фокального матричного приемника, содержащего один или более пикселей, включает подготовку первой пластины с находящимся на ее поверхности чувствительным материалом, покрытым первым жертвенным слоем, подготовку второй пластины, снабженной считывающей интегральной схемой (ROIC) и контактной площадкой, покрытой вторым жертвенным слоем, в котором сформированы опорные ножки, находящиеся в контакте с контактными площадками и покрытые дополнительным жертвенным слоем, сращивание жертвенных слоев первой и второй пластин таким образом, что после удаления с первой пластины объемного жертвенного слоя чувствительный материал переносится с первой пластины на вторую пластину, формирование пикселя в чувствительном материале над каждой опорной ножкой или каждой группой опорных ножек и образование в каждом формируемом пикселе сквозной перемычки для обеспечения электрического соединения между верхней поверхностью пикселя и его опорной ножкой или опорными ножками и удаление жертвенных слоев с открыванием одного или более пикселей, причем единственный или каждый пиксель формируют таким образом, что его опорные ножки находятся полностью под чувствительным материалом пикселя. Изобретение обеспечивает создание фокального матричного приемника с максимизированной активной чувствительной поверхностью. 2 н. и 7 з.п. ф-лы, 11 ил.

Настоящее изобретение обеспечивает твердотельный датчик изображения, который является простым в изготовлении и имеет структуру, эффективную в отношении увеличения количественного показателя насыщенности зарядов, и камеру, включающую в себя такой датчик. Согласно изобретению предложен датчик изображения, включающий в себя первую полупроводниковую область первого типа проводимости, которая располагается в подложке, и вторую полупроводниковую область второго типа проводимости, которая располагается в первой полупроводниковой области для формирования области накопления заряда. Вторая полупроводниковая область включает в себя множество участков, расположенных в направлении вдоль поверхности подложки. Потенциальный барьер формируется между множеством участков. Вторая полупроводниковая область полностью обедняется посредством расширения области обеднения от первой полупроводниковой области до второй полупроводниковой области. Участок окончательного обеднения, который предназначен для окончательного обеднения второй полупроводниковой области, обедняется посредством расширения области обеднения от участка первой полупроводниковой области, расположенного в поперечном направлении участка окончательного обеднения. 5 н. и 11 з.п. ф-лы, 12 ил.

Использование: для формирования изображения. Сущность изобретения заключается в том, что устройство формирования изображений содержит полевой транзистор с p-n-переходом, обеспеченный на полупроводниковой подложке, при этом полевой транзистор с p-n-переходом включает в себя область канала первого типа проводимости, истоковую область первого типа проводимости, первую область затвора второго типа проводимости, вторую область затвора второго типа проводимости, третью область затвора второго типа проводимости и четвертую область затвора второго типа проводимости, первая область затвора и вторая область затвора расположены в направлении вдоль поверхности полупроводниковой подложки, третья область затвора и четвертая область затвора расположены в направлении вдоль поверхности полупроводниковой подложки, первая область затвора и третья область затвора расположены в направлении глубины полупроводниковой подложки, первая область затвора расположена между упомянутой поверхностью и третьей областью затвора, вторая область затвора и четвертая область затвора расположены в направлении глубины, вторая область затвора расположена между упомянутой поверхностью и четвертой областью затвора, область канала включает в себя первую область, которая расположена между первой областью затвора и третьей областью затвора, и вторую область, которая расположена между второй областью затвора и четвертой областью затвора, истоковая область расположена между первой областью затвора и второй областью затвора, и полупроводниковая область второго типа проводимости, имеющая концентрацию примеси, которая ниже, чем концентрация примеси третьей области затвора, и ниже, чем концентрация примеси четвертой области затвора, расположена между третьей областью затвора и четвертой областью затвора. Технический результат: обеспечение возможности улучшения характеристик полевого транзистора с p-n-переходом. 5 н. и 15 з.п. ф-лы, 9 ил.

Твердотельное устройство формирования изображения содержит первую полупроводниковую область первого типа проводимости, обеспеченную на подложке методом эпитаксиального выращивания, вторую полупроводниковую область первого типа проводимости, обеспеченную на первой полупроводниковой области, и третью полупроводниковую область второго типа проводимости, обеспеченную во второй полупроводниковой области так, чтобы образовать p-n-переход со второй полупроводниковой областью, причем первая полупроводниковая область сформирована так, что концентрация примеси уменьшается от стороны подложки к стороне третьей полупроводниковой области, и распределение концентрации примеси во второй полупроводниковой области формируется методом ионной имплантации. Изобретение обеспечивает повышение эффективности переноса зарядов, генерируемых посредством фотоэлектрического преобразования. 3 н. и 22 з.п. ф-лы, 6 ил.

Использование: для определения положения объекта с помощью источника модулированного оптического сигнала. Сущность изобретения заключается в том, что устройство содержит источник модулированного оптического сигнала, фотодетектор, оптически связанный с ним через устройство формирования сигнала, имеющий, по меньшей мере, первую и вторую базовые области, изолированные друг от друга и от подложки, по меньшей мере, первый набор встречно включенных дискретных диодов, сформированных в первой и второй базовых областях вдоль внутреннего края каждой базовой области у линии их раздела, по меньшей мере, первую делительную шину, сигнальную шину, по меньшей мере, первый и второй источники питания, а также преобразователь ток-напряжение, фильтр высоких частот, синхронный детектор, интегратор, генератор и регистрирующее устройство, положительный выход первого источника питания соединен с отрицательным выходом второго источника питания, образуя первый общий контакт, другими выходами первый и второй источники питания соединены с первой делительной шиной, вход преобразователя ток-напряжение соединен с сигнальной шиной, выход преобразователя ток-напряжение соединен с входом фильтра высоких частот, выход фильтра высоких частот соединен с первым входом синхронного детектора, выход синхронного детектора соединен с входом интегратора, выход интегратора соединен с общим контактом первого и второго источников питания и регистрирующим устройством, выход генератора соединен со вторым входом синхронного детектора и источником модулированного оптического сигнала, дополнительно введены третья базовая область, второй набор встречно включенных дискретных диодов, сформированных во второй и третьей базовых областях вдоль линии их раздела, вторая делительная шина, созданная вдоль внешнего края второй базовой области, третий и четвертый источники питания, сигнальная шина сформирована посередине третьей базовой области, положительный выход третьего источника соединен с отрицательным выходом четвертого источника, образуя второй общий контакт, другими выходами третий и четвертый источники питания соединены со второй делительной шиной, а выход интегратора соединен с первым и вторым общими контактами и регистрирующим устройством. Технический результат: обеспечение возможности повышения точности определения положения объекта. 2 ил.
Наверх