Анализатор гармоник

Изобретение относится к электроизмерительной технике и может быть использовано для измерения спектрального состава периодического сигнала. Анализатор гармоник содержит микропроцессор с цифровым выходом данных, первый и второй переключатели, первый и второй интегрирующие преобразователи. Первый и второй выходы управления микропроцессора соединены со входами управления первого и второго переключателей, соответственно. Первые входы переключателей соединены с инвертором, а вторые входы соединены со входом устройства, кроме того, вход инвертора соединен со входом устройства, а выходы первого и второго переключателей соединены со входами первого и второго интегрирующих преобразователей. Информационные выходы интегрирующих преобразователей соединены с первым и вторым информационными входами микропроцессора, третий и четвертый выходы управления которого соединены со входами управления первого и второго интегрирующих преобразователей, соответственно. Техническим результатом является сокращение требуемых вычислительной мощности и объема памяти микропроцессора. 1 ил.

 

Предлагаемое устройство относится к электроизмерительной технике и может быть использовано для измерения спектрального состава периодического сигнала.

Известен анализатор гармоник [Раушер К., Йанссен Ф., Минихольд Р. Основы спектрального анализа: Пер. с англ. С.М. Смольского/ Под редакцией Ю.А. Гребенко. - М.: Горячая линия. - Телеком, 2006, стр.22]. В его состав входят перестраиваемый полосовой фильтр, усилитель, детектор, дисплей, а также генератор пилообразного сигнала. Вход полосового фильтра является входом преобразователя, фильтр соединен с усилителем, который имеет связь с детектором, связанным с дисплеем, а генератор пилообразного сигнала соединен с перестраиваемым фильтром и дисплеем.

Однако указанный анализатор гармоник обладает низкой точностью измерения гармоник входного сигнала, так как результат измерения отображается на аналоговом дисплеи.

Кроме того, известен анализатор гармоник [Мейзда Ф. Электронные измерительные приборы и методы измерений: Пер. с англ. - М.: Мир, 1990, с.243], являющийся прототипом предлагаемого устройства. Он содержит фильтр низких частот (ФНЧ), аналого-цифровой преобразователь, а также микропроцессор (МП). Вход фильтра низких частот является входом преобразователя, а его выход соединен с аналоговым входом аналого-цифрового преобразователем, цифровой выход которого связан с микропроцессором, выход управления последнего соединен с входом управления аналого-цифрового преобразователя. Кроме того, микропроцессор имеет цифровой выход данных.

Однако данный анализатор гармоник имеет большой объем памяти, а также требует высокую вычислительную мощность, так как он реализует принцип цифрового преобразования Фурье, где требуется осуществлять умножение кодов с выхода АЦП на соответствующие коды синусоиды и косинусоиды, а также содержать в памяти коды синусоидального (косинусоидального) сигналов и промежуточные результаты произведения кодов и их сумм.

Задачей предлагаемой полезной модели является сокращение вычислительной мощности и объемов памяти.

Поставленная задача достигается тем, что в известный анализатор гармоник, содержащий микропроцессор с цифровым выходом данных, введены инвертор, первый и второй переключатели, первый и второй интегрирующие преобразователи, первый и второй выходы управления микропроцессора соединены со входами управления первого и второго переключателей, соответственно, первые входы которых соединены с инвертором, а вторые входы соединены со входом устройства, кроме того вход инвертора соединен со входом устройства, а выходы первого и второго переключателей соединены со входами первого и второго интегрирующих преобразователей, информационные выходы которых соединены с первым и вторым информационными входами микропроцессора, третий и четвертый выходы управления которого соединены со входами управления первого и второго интегрирующих преобразователей, соответственно.

На чертеже приведена функциональная схема предлагаемого анализатора гармоник.

Он содержит:

1 - микропроцессор (МП);

2 - первый переключатель (П);

3 - первый интегрирующий преобразователь (ИП);

4 - второй переключатель (П);

5 - второй интегрирующий преобразователь (ИП);

6 - инвертирующее устройство;

7 - цифровой выход данных.

Вход устройства соединяется с первыми входами переключателей 2 и 4 через инвертирующее устройство 6, кроме того вторые входы переключателей 2 и 4 также являются входом устройства. Входы управления переключателей 2 и 4 соединены с первым и вторым выходами управления микропроцессора 1, а выходы переключателей 2 и 4 соединены со входами интегрирующих преобразователей 3 и 5, соответственно. Информационные выходы интегрирующих преобразователей 3 и 5 соединены с первым и вторым информационными входами микропроцессора 1, соответственно, а входы управления 3 и 5 связаны с третьим и четвертым выходами управления микропроцессора 1. Кроме того, микропроцессор 1 имеет цифровой выход данных 7.

В качестве микропроцессора может быть использована микросхема серии STM32F103. Переключатели могут быть реализованы на основе микросхемы BU4S81G2, интегрирующий преобразователь - на микросхеме ТС500, а инвертирующие устройство - на микросхеме LM324.

Анализатор гармоник работает следующим образом. МП 1 вырабатывает на первом и втором выходах широтно-импульсных сигналов пропорциональные синусоидальной и косинусоидальной функции, соответственно. Эти сигналы поступают на входы управления переключателей 2 и 4, соответственно, где происходит их умножение на входной сигнал. Выходные сигналы переключателей 2 и 4 преобразуются в код с помощью интегрирующих преобразователей 3 и 5, соответственно. Управление работой интегрирующих преобразователей 3 и 5 осуществляет микропроцессор 1 через управляющие выходы 3 и 4, соответственно. Выходной код с интегрирующих преобразователей 3 и 5, пропорциональный синусоидальной и косинусоидальной составляющей, соответственно, входного сигнала определяемой гармоники (частоту гармоники задает микропроцессор 1) поступает на микропроцессор 1 через информационные выходы интегрирующих преобразователей 3 и 5 на информационные 1 и 2 входы микропроцессора 1, соответственно. Эти коды используются микропроцессором 1 для вычисления амплитуды и фазы гармоники сигнала и данная информация появляется на информационном выходе 7.

В прототипе в ходе определения гармонических составляющих вычисляется произведение кода функции на значение кода синусоидальной/косинусоидальной составляющей для каждой гармоники. Это требует применения большой вычислительной мощности и большого объема памяти в связи с необходимостью хранения как кода программы самого алгоритма умножения, так и промежуточных результатов, которые получаются в ходе таких вычислений. В предлагаемом устройстве фактически исключаются операции умножения кода на код с запоминанием результата умножения, вместо этого производится аналоговое умножение входного сигнала на широтно-импульсный сигнал соответствующей гармоники, с последующим преобразованием результата умножения в код с помощью интегрирующего преобразователя. Таким образом, в представленном устройстве за счет упрощения алгоритма вычисления гармоник, сокращаются требуемые вычислительная мощность и объем памяти.

Анализатор гармоник, содержащий микропроцессор с цифровым выходом данных, отличающийся тем, что в него введены инвертор, первый и второй переключатели, первый и второй интегрирующие преобразователи, при этом первый и второй выходы управления микропроцессора соединены со входами управления первого и второго переключателей, соответственно, первые входы которых соединены с инвертором, а вторые входы соединены со входом устройства, кроме того, вход инвертора соединен со входом устройства, а выходы первого и второго переключателей соединены со входами первого и второго интегрирующих преобразователей, информационные выходы которых соединены с первым и вторым информационными входами микропроцессора, третий и четвертый выходы управления которого соединены со входами управления первого и второго интегрирующих преобразователей, соответственно.



 

Похожие патенты:

Способ выделения слагаемой электрической величины относится к области электротехники, а именно к релейной защите и автоматике электрических систем. Технический результат заключается в повышении точности выделения слагаемой электрической величины на фоне других преобладающих составляющих.

Изобретение относится к обработке случайных сигналов при решении широкого круга научных и технических задач, когда измеряемой и анализируемой величиной является амплитуда или огибающая сигнала.

Изобретение относится к обработке случайных сигналов при решении широкого круга научных и технических задач, когда измеряемой и анализируемой величиной является амплитуда, или огибающая сигнала.

Изобретение относится к измерительной технике и предназначено для гармонического анализа периодических колебательных процессов, в частности электрических сигналов.

Изобретение относится к измерительной технике и может быть использовано в измерительных системах для измерения амплитуд и частот гармонических составляющих в исследуемых сигналах.

Изобретение относится к области радиоэлектроники, а именно - к способам определения спектральной плотности мощности электрических сигналов. Определяют дискретные значения автокорреляционной функции анализируемого сигнала и по ним определяют дискретные значения спектральной плотности мощности.

Изобретение относится к радиотехнике. Техническим результатом является расширение полосы анализа сигналов и возможность проведения анализа в режиме реального времени.

Изобретение относится к области дискретного спектрального анализа, к области систем обработки информации и измерительной техники, и может быть использовано для доплеровской фильтрации (выделения) лучевой структуры ионосферных сигналов.

Предлагаемое устройство относится к области радиоэлектроники и может быть использовано для определения несущей частоты, вида модуляции и манипуляции сигналов, принимаемых в заданном диапазоне частот.

Изобретение относится к области дистанционного беспробоотборного газоанализа, а именно к способам формирования баз спектральных данных для дистанционных газоанализаторов на основе Фурье-спектрорадиометров.

Изобретение относится к измерительной технике и предназначено для определения спектральной плотности мощности случайного процесса на низких частотах. Способ заключается в проведении множества измерений последовательных интервалов между нулями - нулевыми пересечениями исследуемого процесса с производными одного знака цифровыми методами (с высокой точностью) и запоминании результатов. Затем по результатам измерений этих интервалов (периодов исследуемых колебаний) определяют величины мгновенных частот исследуемого процесса (колебаний), значения которых также запоминают. После этого по полученному массиву значений этих мгновенных частот находят эмпирическую (относительную безразмерную) функцию плотности распределения этих мгновенных частот и умножают эту функцию плотности распределения на измеренную величину мощности исследуемого процесса. Таким образом получают искомую спектральную плотность мощности исследуемого процесса. Технический результат заключается в упрощении определения спектральной плотности мощности случайного процесса.

Способ относится к цифровой обработке сигналов, в частности к спектральному анализу сигналов в базисе Фурье, и может быть использовано в радиолокации, радиосвязи и измерительной технике. Сущность заявленного метода заключается в том, что выборку анализируемого сигнала дополняют нулями, производят преобразование Фурье, вещественные и мнимые части отсчетов спектра взаимно перемножаются на одноименные части соседнего отсчета, суммарный вектор умножается на минус один и обнуляются все отсчеты меньше нуля. Технический результат заключается в уменьшении уровня боковых лепестков без ухудшения разрешающей способности спектрального анализа, а также в увеличении отношения сигнал/шум. 7 ил., 1 табл.

Изобретение относится к области радиотехники и радиолокации и может быть использовано для оперативного контроля средней частоты по критерию центра тяжести энергетического спектра широкополосных доплеровских радиосигналов во временной области без спектральной обработки. Изобретение представляет собой дробно-дифференцирующий электрический фильтр порядка 1/2 по методу Прони, состоящий из М интегрирующих цепей, повторителей, инвертирующего усилителя и инвертирующего усилителя-сумматора. Причем входы интегрирующих цепей с соответствующими постоянными времени и инвертирующего усилителя с заданным коэффициентом усиления объединены и подключены к входу дробно-дифференцирующего фильтра, выходы интегрирующих цепей подключены к входам повторителей, а выходы повторителей и инвертирующего усилителя с заданным коэффициентом усиления подключены к входам инвертирующего усилителя-сумматора, выход которого подключен к выходу дробно-дифференцирующего фильтра. Технический результат заключается в повышении точности и скорости измерения средней частоты. 8 ил.

Способ анализа спектрально-временной эволюции излучения включает в себя получение сигнала оптического гетеродина, измерение интенсивности сигнала, получение аналитической формы сигнала при помощи гильбертова дополнения. Далее вычисляют автокорреляционную функцию методом быстрого преобразования Фурье, определяют периодичность основной структуры во входном излучении, регистрируют входной сигнала, синхронизируя с периодом основной структуры излучения. Производят выбор оптимального ядра преобразования коэновского класса для исследуемого сигнала и составляют двумерную спектрально-временную диаграмму. Способ основан на применении оптического гетеродинирования для смещения анализируемого излучения в радиочастотную область. Технический результат заявленного решения - повышение временного разрешения сигнала при исследовании лазерных систем. 4 ил.
Наверх