Способ определения объемной альфа-активности плутония в технологических средах ядерных энергетических установок

Изобретение относится к области аналитической радиохимии и может использоваться для контроля содержания плутония в технологических средах ядерных энергетических установок (ЯЭУ). Способ определения объемной альфа-активности плутония в технологических средах ядерных энергетических установок, включающий отбор пробы, фильтрацию пробы с расходом 0,1-4 л/ч через ацетатцеллюлозную мембрану с диаметром пор 0,1-1,3 мкм, импрегнированную гидратированным оксидом марганца, с последующим высушиванием потоком воздуха, создаваемым разрежением, и радиометрическим измерением альфа-активности, при этом анализируемую пробу предварительно обрабатывают азотной кислотой и упаривают досуха, а затем растворяют в 7,5 M растворе азотной кислоты с добавкой 2,5-3,0 г/л азотистокислого натрия и выдерживают при температуре 40-45°C до прекращения выделения окислов азота в виде бурого газа, охлажденный раствор фильтруют через сильноосновной анионит, например, типа AB-17 со скоростью (7-10)·10-3 л/ч, после чего плутоний элюируют со смолы раствором 14-15 г/л йодида аммония в 10 M соляной кислоте со скоростью в два раза ниже скорости фильтрации, нейтрализуют аммиаком до pH=6-10 и направляют на фильтрацию через мембрану. Технический результат - повышение точности определения объемной альфа-активности плутония в технологических средах ЯЭУ на 40%. 1 з.п. ф-лы.

 

Изобретение относится к области аналитической радиохимии и может использоваться для контроля содержания плутония в технологических средах ядерных энергетических установок (ЯЭУ).

Плутоний является одним из основных альфа-излучающих трансурановых элемен-тов (ТУЭ), образующихся при выгорании урана ядерного топлива. Так, в реакторах типа ВВЭР за трехлетнюю компанию из 1 т урана образуется около 11 кг ТУЭ, из которых до 10 кг составляет плутоний, до 0,6 кг нептуний, 0,2 кг америций и до 60 г кюрий [Чечеткин Ю.В., Грачев А.Ф. Обращение с радиоактивными отходами. - Самара: Самарский дом печати, 2000, с. 179-181]. Поэтому появление плутония в технологических средах ЯЭУ свидетельствует о нарушении герметичности тепловыделяющихся элементов (твэлов). Так, при загрузке реактора ЯЭУ считается допустимым наличие не более 0,1% негерметичности твэлов [Никифоров А.С, Куличенко В.В., Жихарев М.И. Обезвреживание жидких радиоактивных отходов. - М., 1985, с. 6-7]. В связи с этим контроль содержания ТУЭ, и в первую очередь плутония, в технологических средах обеспечивает безопасность эксплуатации ЯЭУ и, в особенности, безопасность хранения отработанных твэлов в бассейнах выдержки.

Наиболее распространенным подходом к определению отдельных альфа-излучающих ТУЭ, включая плутоний, в растворах является предварительное их выделение методами экстракции [Hooper E.W. The Application of Inorganic Ion Exchangers of Alpha-beaming Waste Streams // Inorganic Ion Exchangers and Adsorbents for Chemical Processing in the Nuclear Fuel Cycle. IAEA-Tecdoc-337. IAEA. Vienna. 1985, p. 113-131], ионного обмена [Wei Y., Kumagai M., Takashima Y., Bruggerman Α., Gysemans M. A Rapid Elution Method of Tetravalent Plutonium from Anion Exchanger // J. Nuclear Science and Tech-nology. Vol. 36, № 3, 1999, p. 304-306], сорбции [Милютин В.В., Тананаев И.Г. Сорбция нептуния Np (VI, V) и плутония Pu (VI) на неорганических сорбентах из нейтральных и щелочных сред // Радиохимия, т. 33, № 3, 1993, с. 70-75] или осаждения [Крот Н.Н., Бессонов Α.Α., Гелис А.В. Соосаждение трансурановых элементов из щелочных растворов методом возникающих реагентов. Соосаждение Pu (VI, V) с Мп(ОН)г // Радиохимия, т. 40, № 6, 1988, с. 555-557] с последующим измерением содержания альфа-спектрометрическим методом.

Известен метод экспрессного определения альфа-излучающих радионуклидов (урана, нептуния, плутония, америция и кюрия) в водном теплоносителе ЯЭУ с использованием мембран (микрофильтрационные полиамидные, полифторэтиленовые или ацетат-целлюлозные пленки), импрегнированных гидратированным оксидом марганца, при контроле герметичности твэлов [Авторское свидетельство SU № 1693990, опубликовано Бюл. № 2, 1997]. Способ контроля альфа-излучающих радионуклидов в водном теплоносителе АЭУ включает отбор пробы, введение в нее аммиака при 10-50°С до концентраций 5·10-4 - 0,24 г/л, фильтрацию пробы с расходом 0,1-4 л/ч через ацетатцеллюлозную мембрану с диаметром пор 0,1-1,3 мкм, импрегнированную гидратированным оксидом марганца (МИГОМ), с последующим высушиванием потоком воздуха, создаваемым разрежением, и радиометрическим измерением альфа-активности.

Основным недостатком данного способа является то, что при суммарном выделении на МИГОМ альфа-излучающих радионуклидов в процесса альфа-спектрометрии пики 238Pu (Τ1/2 = 87,7 лет, Еα = 5,5 МэВ) и 241Аm (Т1/2 = 432 лет, Еα = 5,6 МэВ) накладываются, что снижает точность определения плутония, особенно в «холодной» пробе остановленного реактора (или в бассейне выдержки твэлов), в котором именно 238Pu+241Am являются определяющими альфа-активность нуклидами [Епимахов В.Н., Глушков C.B. Определение альфа-излучающих радионуклидов в водном теплоносителе АЭУ с использованием мембран, импрегнированных гидратированным диоксидом марганца. // Радиохимия, т. 36, вып. 6, 1994, с. 514-517].

Задача, решаемая данным изобретением, заключается в повышении точности определения плутония путем удаления из пробы примесей америция.

Техническим результатом изобретения является снижение погрешности определения содержания плутония в технологических средах ЯЭУ, что повышает эффективность контроля герметичности твэлов.

Сущность изобретения заключается в том, что в способе определения объемной альфа-активности плутония в технологических средах ЯЭУ, включающем отбор пробы, фильтрацию пробы с расходом 0,1-4 л/ч через ацетатцеллюлозную мембрану с диаметром пор 0,1-1,3 мкм, импрегнированную гидратированным оксидом марганца (МИГОМ), с последующим высушиванием потоком воздуха, создаваемым разрежением, и радиометрическим измерением альфа-активности, согласно изобретению анализируемую пробу предварительно обрабатывают азотной кислотой и упаривают досуха, а затем растворяют в 7,5 M растворе азотной кислоты с добавкой 2,5-3,0 г/л азотистокислого натрия и выдерживают при температуре 40 - 45°С до прекращения выделения окислов азота в виде бурого газа, охлажденный раствор фильтруют через сильноосновной анионит, например, типа АВ-17 со скоростью (7-10)·10-3 л/ч, после чего плутоний элюируют со смолы раствором 14-15 г/л йодида аммония в 10 M соляной кислоте со скоростью в два раза ниже скорости фильтрации, нейтрализуют аммиаком до рН =6-10 и направляют на фильтрацию через МИГОМ. При необходимости анализа «горячих» (высокоактивных) проб теплоносителя работающего реактора возможно проведение измерений плутония с использованием альфа-спектрометра на базе полупроводникового детектора.

По сравнению с прототипом осуществление согласно изобретению предварительной обработки пробы азотной кислотой и упаривания досуха, растворения пробы в 7,5 M растворе азотной кислоты с добавкой 2,5-3,0 г/л азотистокислого натрия и выдержки при температуре 40-45°С до прекращения выделения бурого газа, фильтрации охлажденного раствора через сильноосновной анионит типа АВ-17 со скоростью (7-10)·10-3 л/ч, элюирования плутония со смолы раствором 14-15 г/л йодида аммония в 10 M соляной кислоте со скоростью в два раза ниже скорости сорбции и нейтрализации аммиаком до рН = 6-10 позволяет перед фильтрацией через МИГОМ удалить из пробы практически все примеси ТУЭ и точно определить радиометрическим измерением альфа-активности содержание плутония, а при использовании альфа-спектрометра на базе полупроводникового детектора определить и содержание отдельных изотопов плутония. Это позволяет контролировать не только герметичность твэлов, но определять как срок кампании реактора, так и время его останова даже при длительном сроке их хранения в бассейне выдержки.

Способ осуществляется следующим образом.

Пробу технологических сред ЯЭУ обрабатывают азотной кислотой и упаривают досуха, а затем растворяют в 7,5 M азотной кислоте с добавкой 2,5-3,0 г/л азотистокислого натрия и выдерживают при температуре 40-45°С до прекращения выделения бурого газа (окислов азота). В результате все формы плутония переходят в Pu(IV). Охлажденный раствор фильтруют через мелкодисперсный (фракция 0,04-0,08 мм) сильноосновной анионит типа АВ-17 (или типа Дауэкс 1×4) со скоростью (7-10)·10-3 л/ч. При этом на анионите сорбируется только плутоний, а все остальные ТУЭ, и в первую очередь америций, остаются в растворе. Для полноты удаления примесей ТУЭ анионит дважды промывают чистым раствором 7,5 M азотной кислоты. Затем плутоний элюируют со смолы раствором 14-15 г/л йодида аммония в 10 M соляной кислоте в виде Pu(III) со скоростью в два раза ниже скорости фильтрации. Для полноты выведения плутония анионит дважды промывают раствором 10 M соляной кислоты, соединяя промывки с элюатом. Объединенный солянокислый раствор нейтрализуют аммиаком до рН=6-10 и направляют на фильтрацию со скоростью 0,1-4 л/ч через ацетатцеллюлозную мембрану с диаметром пор 0,1-1,3 мкм, импрегнированную гидратированным оксидом марганца (МИГОМ), с последующим высушиванием потоком воздуха, создаваемым разрежением, и радиометри-ческим измерением альфа-активности. При необходимости анализа «горячих» (высокоак-тивных) проб теплоносителя работающего реактора возможно проведение измерений плу-тония с использованием альфа-спектрометра на базе полупроводникового детектора (до-полнительно определяется сумма 239Pu (Τ1/2 = 2,41·104 лет, Еα = 5,15 МэВ) и 240Pu (Τ1/2 = 6,54·103 лет, Еα = 5,15 МэВ). В то же время при анализе «холодных» проб теплоносителя остановленного реактора или воды бассейнов выдержки в отсутствии примесей америция практически вся альфа-активность определяется изотопом 238Pu и радиометрическое измерение альфа-активности является достаточным для контроля содержания плутония.

Примеры конкретного выполнения.

Пример 1 (Прототип). Пробу воды бассейна выдержки твэлов водо-водяной ЯЭУ объемом 100 мл обрабатывали при температуре 20°С аммиаком до рН=8 и фильтровали с расходом 2 л/ч, обеспечиваемым компрессорной установкой, через ацетатцеллюлозную мембрану с диаметром пор 0,45 мкм, импрегнированную свежеприготовленным гидратированным оксидом марганца (пропитка 0,3 M раствором перманганата калия) - МИГОМ. Высушивали МИГОМ потоком воздуха, создаваемым разрежением, и проводили радиометрическое измерение альфа-активности на радиометре типа УМФ-2000. Суммарная объемная альфа-активность составляла 210 Бк/л.

Пример 2 (Заявляемый способ). Отличается от примера 1 тем, что пробу теплоно-сителя предварительно обрабатывали азотной кислотой и упаривали досуха, а затем растворяли в 7,5 M азотной кислоте с добавкой 3,0 г/л азотистокислого натрия и выдерживали при температуре 40°С до прекращения выделения бурого газа (окислов азота). Охлажденный раствор фильтровали через мелкодисперсный (фракция 0,04 - 0,08 мм) сильноосновной анионит типа Дауэкс 1×4 со скоростью 8·10-3 л/ч. Для полноты удаления примесей ТУЭ анионит дважды промывали чистым раствором 7,5 M азотной кислоты. Затем плутоний элюировали со смолы раствором 15 г/л йодида аммония в 10 M соляной кислоте со скоростью в два раза ниже скорости фильтрации. Для полноты выведения плутония анионит дважды промывали раствором 10 M соляной кислоты, соединяя промывки с элюатом. Объединенный солянокислый раствор нейтрализовали аммиаком до рН=8 и фильтровали на МИГОМ со скоростью 2 л/ч. Высушивали мембрану потоком воздуха и измеряли альфа-активность на радиометре типа УМФ-2000. Суммарная объемная альфа-активность составляла 150 Бк/л.

Дополнительно проводили анализ на альфа-спектрометре типа «ОСТЕТЕ Plus» на базе полупроводникового детектора. Объемная альфа-активность 238Pu составляла 150 Бк/л, а 239Pu + 240Pu - 0,2±0,l Бк/л.

Предлагаемый способ по сравнению с прототипом обеспечивает высокую радиохимическую чистоту получаемого препарата плутония и, таким образом, повышение точности определения его в технологических средах ЯЭУ на 40%.

В предлагаемом способе используются ионообменные смолы, штатно применяемые при эксплуатации ЯЭУ, и широко распространенные дешевые минеральные кислоты. Таким образом, предлагаемый способ является промышленно применимым.

1. Способ определения объемной альфа-активности плутония в технологических средах ядерных энергетических установок, включающий отбор пробы, фильтрацию пробы с расходом 0,1-4 л/ч через ацетатцеллюлозную мембрану с диаметром пор 0,1-1,3 мкм, импрегнированную гидратированным оксидом марганца, с последующим высушиванием потоком воздуха, создаваемым разрежением, и радиометрическим измерением альфа-активности, отличающийся тем, что анализируемую пробу предварительно обрабатывают азотной кислотой и упаривают досуха, а затем растворяют в 7,5 M растворе азотной кислоты с добавкой 2,5-3,0 г/л азотистокислого натрия и выдерживают при температуре 40-45°C до прекращения выделения окислов азота в виде бурого газа, охлажденный раствор фильтруют через сильноосновной анионит, например, типа AB-17 со скоростью (7-10)·10-3 л/ч, после чего плутоний элюируют со смолы раствором 14-15 г/л йодида аммония в 10 M соляной кислоте со скоростью в два раза ниже скорости фильтрации, нейтрализуют аммиаком до pH=6-10 и направляют на фильтрацию через мембрану.

2. Способ по п. 1, отличающийся тем, что определение плутония в высокоактивных пробах теплоносителя работающего реактора производят с использованием альфа-спектрометра на базе полупроводникового детектора.



 

Похожие патенты:

Изобретение относится к области метрологического обеспечения дозиметрического контроля облучения личного состава, действующего в условиях воздействия смешанного нейтронного и гамма-излучения, и может быть использовано для испытаний и поверки индивидуальных дозиметров.
Изобретение относится к области радиационных технологий, а именно к способам контроля герметичности капсулы с источником ионизирующего излучения (ИИИ). Технический результат - упрощение технологии контроля герметичности капсулы с источником ионизирующего излучения.

Изобретение относится к радиационному контролю помещений и промплощадки, а именно к измерению объемной активности радиоактивных аэрозолей. Способ основан на отборе проб аэрозолей путем прокачки воздуха с контролируемыми аэрозолями через фильтрующую ленту с заданной постоянной скоростью, установке над зоной фильтрации полупроводникового детектора и формировании с его помощью импульсов напряжения, амплитуды которых пропорциональны энергиям α- и β-частиц, испускаемых осевшими на фильтре частицами радиоактивного аэрозоля.

Использование: для точной идентификации по меньшей мере одного источника, в частности по меньшей мере одного нуклида, заключенного в теле человека и/или контейнере.

Изобретение относится к ядерной технике, а именно к области радиационного мониторинга, и может быть использовано в машиностроении, медицине и других отраслях для контроля несанкционированного перемещения ядерных материалов и других радиоактивных веществ.

Изобретение относится к области контроля окружающей среды, а именно к способам обнаружения и выделения горячих частиц (ГЧ) с различных поверхностей и из воздушной среды, загрязненных радиоактивными веществами.

Изобретение относится к области радиационной экологии. Сущность изобретения заключается в том, что устройство для дистанционного обнаружения источников альфа-излучения содержит измерительный открытый на воздух детектор аэроионов, сопряженный с блоком переноса аэроионов и подключенный к источнику рабочего напряжения и к измерительному счетчику импульсов соответственно, калибровочный альфа-источник, калибровочный детектор аэроионов, аналогичный измерительному детектору, выполненному газоразрядным, подключенный к источнику рабочего напряжения, и компаратор, причем калибровочный детектор соединен с калибровочным счетчиком импульсов, выход которого соединен с первым входом компаратора, второй вход которого соединен с шиной наперед заданного числа, при этом дополнительно содержит двухпозиционный переключатель режима работы устройства, сумматор, причем управляющий вход двухпозиционного переключателя является входом выбора режима устройства, первый информационный вход соединен с шиной нулевого потенциала, а второй - с дополнительной шиной наперед заданного числа, первый вход сумматора подключен к выходу компаратора, второй - к выходу двухпозиционного переключателя режима работы, а выход сумматора подключен к управляющему входу источника рабочего напряжения.

Изобретение относится к средствам дистанционного контроля радиационного состояния объекта. .

Изобретение относится к области радиационной экологии и может быть использовано для дистанционного поиска остатков ядерного топлива, например плутония, загрязняющих поверхности в результате аварий или в ходе производственных процессов.

Изобретение относится к области ядерной и радиационной физики и может быть использовано для регистрации гамма- или тормозного излучения (ТИ) мощных импульсных источников.

Изобретение относится к области радиационной экологии. Устройство содержит два идентичных газоразрядных детектора, открытых на воздух: измерительный и калибровочный. Измерительный детектор регистрирует аэроионы, возникающие на следах альфа-частиц и доставляемые от исследуемой поверхности в рабочую область детектора с помощью воздушного потока. Калибровочный детектор регистрирует только ионы, поступающие от калибровочного источника альфа-излучения, так как аэроионы от исследуемой поверхности не поступают в рабочую область детектора из-за наличия электростатического фильтра, через который воздушный поток проходит к калибровочному детектору. Использование калибровочного детектора, калибровочного источника альфа-излучения, источника отрицательного напряжения, электростатического фильтра, постоянного резистора и переменного резистора позволяет отслеживать и компенсировать потерю чувствительности устройства из-за налипания на тонкие анодные проволочки газоразрядных детекторов и, работающих при высоком напряжении, мельчайших пылинок, переносимых воздушным потоком. Технический результат - обеспечение стабильной высокой чувствительности устройства при его длительной непрерывной работе. 1 ил.

Изобретение относится к области выявления радиационной обстановки в окрестностях объектов атомной энергетики после аварийного выброса в атмосферу радиоактивных веществ. Сущность изобретения заключается в том, что осуществляют воздушную радиационную разведку местности с помощью неспециализированного прибора, например носимого измерителя мощности дозы гамма-излучения, обладающего только одним детектором излучения, размещенного на борту летательного аппарата. При ведении радиационной разведки по заданному маршруту на каждом прямолинейном участке необходимо два раза произвести изменение высоты полета. Это позволяет получить данные, которые в неявном виде содержат информацию о величине ослабления гамма-излучения в зависимости от высоты над поверхностью земли. Путем обработки данных определяют коэффициенты для пересчета уровней радиации, измеренных на высоте полета летательного аппарата, к высоте 1 м над поверхностью земли. Технический результат - повышение точности определения радиационной обстановки. 4 табл., 4 ил.

Изобретение относится к способам контроля радиационной обстановки и может быть использовано для контроля фонового уровня радиации вокруг АЭС. Сущность: осуществляют зондирование территорий АЭС, содержащих эталонные площадки с известным уровнем радиации. Причем для зондирования используют космические средства на теневом участке орбиты в ультрафиолетовом и ближнем инфракрасном диапазонах. Формируют синтезированную матрицу из попиксельных отношений ультрафиолетового изображения к инфракрасному изображению. Нормируют функцию сигнала синтезированной матрицы в стандартной шкале 0…255 уровней квантования. Посредством программы выделяют контуры на синтезированном изображении. Рассчитывают площади контуров и фрактальную размерность изображения внутри выделенных контуров. Определяют эквивалентную площадь радиационного загрязнения вокруг АЭС. Оценивают динамику изменения радиационного фона. Технический результат: повышение достоверности и оперативности контроля. 5 ил.

Изобретение относится к способу измерения уровня безопасности содержащего радионуклиды сыпучего материала. Сыпучий материал засыпается на ленточный транспортер и подается на приемное устройство, причем сыпучий материал во время транспортировки проводится мимо первых датчиков, которые по ширине ленточного транспортера спектрометрически измеряют гамма-излучение. Для того чтобы при высокой пропускной способности иметь возможность выполнять точное определение радиоактивности, предусмотрены следующие шаги способа: определение соотношения радионуклидов в сыпучем материале перед засыпкой на ленточный конвейер, учитывая по меньшей мере один эталонный нуклид, вычисление радиоактивности сыпучего материала на основе измеренных при помощи первых датчиков гамма-лучей и их интенсивностей, учитывая один или несколько эталонных нуклидов, имеющихся в радионуклидах, проверка определенного ранее соотношения радионуклидов и/или измеренной радиоактивности при помощи измеряющих α- и/или β-излучение вторых датчиков, которые расположены над ленточным транспортером. 16 з.п. ф-лы, 6 ил.

Изобретение относится к области радиоэкологического мониторинга районов мирных подземных ядерных взрывов в пределах нефтегазоносных бассейнов, в частности к малогабаритным устройствам пробоподготовки горючих природных газовых проб в полевых условиях и перевода опасных для транспортировки горючих природных газовых проб в безопасные водные образцы для дальнейшего определения в них содержания трития в лабораторных условиях методом жидкостно-сцинтилляционной спектрометрии. Устройство включает последовательно установленные в едином корпусе и взаимосвязанные компрессор подачи горючего природного газа или попутного нефтяного газа в инжекционную горелку, водоохлаждаемый конденсатор и контейнер для сбора конденсата водяного пара - конденсированных продуктов горения, при этом инжекционная горелка установлена таким образом, что сопло ее направлено вертикально вниз для подачи продуктов горения во входное отверстие установленного ниже по ее оси водоохлаждаемого конденсатора, а держатель горелки прикреплен к конденсатору с возможностью изменения расстояния между выходом горелки и входом продуктов горения в конденсатор от 4,7 до 5,0 см в зависимости от состава горючего газа. Водоохлаждаемый конденсатор выполнен в виде дугообразно изогнутой под прямым углом трубки с внутренним диаметром не более 15 мм, переходящей в вертикальную трубку, высотой не более 20 см и внутренним диаметром не более 40 мм, закрытую воронкообразным днищем с отверстиями для слива конденсированных продуктов горения в нижеустановленный контейнер. Внутри вертикальной трубки конденсатора соосно установлена охлаждаемая трубка, на которой также соосно установлены по крайней мере три конуса с коаксиальным зазором не менее 2 мм между внутренней поверхностью конденсатора и внешними краями конусов. Техническим результатом является получение конденсата водяного пара в полевых условиях, безопасного для перевозки любым видом транспорта, в стационарную лабораторию, исключая необходимость транспортировки газовой пробы в стальных баллонах. 3 ил.

Изобретение относится к области аналитической радиохимии и может использоваться для контроля содержания плутония в технологических средах ядерных энергетических установок. Способ определения объемной альфа-активности плутония в технологических средах ядерных энергетических установок, включающий отбор пробы, фильтрацию пробы с расходом 0,1-4 лч через ацетатцеллюлозную мембрану с диаметром пор 0,1-1,3 мкм, импрегнированную гидратированным оксидом марганца, с последующим высушиванием потоком воздуха, создаваемым разрежением, и радиометрическим измерением альфа-активности, при этом анализируемую пробу предварительно обрабатывают азотной кислотой и упаривают досуха, а затем растворяют в 7,5 M растворе азотной кислоты с добавкой 2,5-3,0 гл азотистокислого натрия и выдерживают при температуре 40-45°C до прекращения выделения окислов азота в виде бурого газа, охлажденный раствор фильтруют через сильноосновной анионит, например, типа AB-17 со скоростью ·10-3 лч, после чего плутоний элюируют со смолы раствором 14-15 гл йодида аммония в 10 M соляной кислоте со скоростью в два раза ниже скорости фильтрации, нейтрализуют аммиаком до pH6-10 и направляют на фильтрацию через мембрану. Технический результат - повышение точности определения объемной альфа-активности плутония в технологических средах ЯЭУ на 40. 1 з.п. ф-лы.

Наверх