Способ очистки водных растворов от железа (iii)

Изобретение может быть использовано в аналитической химии железа, а именно для концентрирования железа (III) из воды и водных растворов и количественного определения железа (III) в концентрате. Для осуществления способа железо (III) из водного раствора осаждают в твердую фазу в образующейся двухфазной системе. Способ включает введение в стеклянную пробирку анализируемой пробы, подкисление хлороводородной или серной кислотой из расчета создания концентрации ионов водорода 0,1-0,2 моль/л в конечном объеме 20,00 мл, затем вводят равные объемы по 5,00 мл водных растворов 0,4 M антипирина и 2 М перхлората натрия, разбавляют дистиллированной водой до 15,00 мл, затем пробирку плотно закрывают пробкой, интенсивно встряхивают в течение 10 минут, отстаивают при комнатной температуре, отфильтровывают от осадка очищенный от железа (III) маточный раствор. Определяют содержание железа (III) в концентрате-осадке известными методами. Способ обеспечивает очистку воды и водных растворов солей различных металлов от железа (III) в широком интервале кислотности количественного выделения осадка железа, упрощение процесса, повышение безопасности и экологичности метода очистки. 5 ил., 2 табл.

 

Изобретение относится к области аналитической химии железа, а именно концентрированию железа(III) из воды и водных растворов осаждением с целью очистки и количественного определения железа(III) в концентрате.

Известен способ экстракции железа(III) из перхлоратных растворов диантипирилметаном в хлороформ ил дихлорэтан [Т.Б. Москвитинова Экстракция ионов металлов диантипирилметаном из перхлоратных растворов. Дис… канд. хим. наук. - Пермь: ПГУ, 1981. С. 55, 60]. Способ (аналог) основан на экстракции катионного комплекса железа(III) с диантипирилметаном в присутствии перхлорат ионов в качестве аниона партнера хлороформом или дихлорэтаном.

Несмотря на количественное извлечение железа(III) в дихлорэтан, аналитического применения эти результаты не имеют.

Из известных технических решений наиболее близким по назначению и технической сущности к заявляемому объекту прототипом является [Экстракционно-фотометрическое определение железа(III) в водной расслаивающейся системе содержащей антипирин и монохлоруксусную кислоту / Б.И. Петров, С.И. Рогожников // Журнал аналитической химии, 1984, T. 39, №10, С. 1848-1852].

Способ выделения железа(III) из водных растворов жидкостной экстракцией в системе вода - антипирин - монохлоруксусная кислота.

В делительную воронку вводят анализируемый раствор, содержащий 5-30 мкг железа(III), 4,00 мл 2,5 M раствора антипирина, 5,00 мл 8 M раствора монохлоруксусной кислоты, 0,5 мл концентрированного аммиака до pH 2,2, разбавляют водой до 20,00 мл и встряхивают в течение 1 минуты. После отстаивания нижнюю фазу переносят в кювету с L=3 мм и измеряют оптическую плотность на ФЭК-56М со светофильтром №3 относительно экстракта контрольного опыта. В случае помутнения экстракта кювету перед фотометрированием выдерживают на водяной бане при 30-40°C до получения прозрачного раствора.

К недостаткам прототипа следует отнести:

- использование в качестве компонента расслаивающейся системы токсичной монохлоруксусной кислоты;

- узкий интервал pH (1,5-3,5), в котором существует область расслоения, следовательно, возможность выделения железа(III) в органическую фазу ограничена;

- зависимость объема органической фазы от солевого фона водного раствора, что вызывает ухудшение метрологических характеристик результатов анализа;

- возможность помутнения экстракта вызывает необходимость выдерживания кюветы перед фотометрированием на водяной бане при 30-40°C до получения прозрачного раствора.

Изобретение относится к области аналитической химии железа, а именно концентрированию железа(III) из воды и водных растворов осаждением с целью их очистки или дальнейшего количественного определения железа(III) в концентрате. Для измерения содержания железа(III) в жидких объектах анализа применен метод комплексонометрического титрования или фотометрирования растворов, полученных растворением концентрата железа(III) в пропиленкарбонате.

Общим для прототипа и заявляемого изобретения является применение в качестве комплексообразователя антипирина.

Отличается от прототипа тем, что:

1. в заявляемом изобретении применены производные пиразолона-антипирин и перхлорат иона в качестве иона осадителя;

2. расширяется интервал кислотности, в котором происходит количественное выделение железа(III), исключается возможность изменения объема концентрата при изменении солевого фона водной фазы, либо помутнения экстракта при фотометрировании;

3. повышается безопасность и экологичность за счет исключения токсичной монохлоруксусной кислоты.

Сущность предлагаемого способа очистки водных растворов от железа(III), заключается в том, что железо(III) из водного раствора осаждают в твердую фазу двухфазной системы вода-минеральная кислота-антипирин-перхлорат натрия, вводят в стеклянную пробирку пробу, подкисляют хлороводородной или серной кислотой из расчета создании концентрации ионов водорода 0,1-0,2 моль/л в конечном объеме 20,00 мл, затем равные объемы по 5,00 мл водных растворов 0,4 M антипирина и 2 М перхлората натрия, разбавляют дистиллированной водой до 15,00 мл, затем пробирку плотно закрывают пробкой, интенсивно встряхивают в течение 10 минут, отстаивают при комнатной температуре, отфильтровывают от осадка очищенный от железа(III) маточный раствор.

Концентрирование железа(III) происходит из жидкой пробы в режиме «in situ», то есть в процессе формирования новой фазы - осадка. Определяют содержание железа(III) в концентрате (осадке) известными методами.

Осуществление изобретения.

Для концентрирования железа(III) вводят пробу, подкисляют хлороводородной или серной кислотами до концентрации ионов водорода 0,1-0,2 моль/л в общем объеме 20,00 мл, добавляют 5,00 мл 0,4 M водного раствора антипирина «фармакопейного» (брутто формула C11H12N2O, температура плавления 113°C, молярная масса 188,23 г/моль), разбавляют дистиллированной водой до 15,00 мл, затем вводят 5,00 мл 2 M водного раствора перхлората натрия (ТУ 6-09-3605-74, брутто формула NaClO4*H2O, молярная масса 140,45 г/моль) для образования осадка, который является концентратом железа(III), затем пробирку плотно закрывают пробкой и интенсивно встряхивают в течение 10 мин, для установления равновесия между водной фазой и осадком, отстаивают 5 минут при комнатной температуре, отфильтровывают очищенный водный раствор от осадка железа.

Предварительно методом введено-найдено определяют оптимальные условия осаждения железа(III) в данной системе из модельных водных растворов с добавками 0,05 M раствора сульфата железа(Ш) стандартизованного комплексонометрически. Растворы с меньшей концентрацией железа(III) готовят последовательным разбавлением. Для выделения твердой фазы (осадка) используют 0,4 M антипирина «фармакопейного» и 2 M раствор перхлората натрия одноводного. Общий объем системы равен 20,00 мл. Количественное выделение (≥99%) обеспечивают: 0,1-0,2 моль/л концентрация ионов водорода (рис. 1); 20 кратный и более (0,8 г и более) избыток антипирина (рис. 2); 5 кратный и более избыток перхлорат ионов (рис. 3). Степень выделения железа(III) в осадок ≥99%, что позволяет использовать вышеназванную систему для очистки воды и водных растворов от железа(III). После отфильтровывания осадка сигнал железа(III) для маточного раствора соизмерим с сигналом контрольного опыта в фотометрическом методе с сульфосалициловой кислотой (около 0,1 мкгFe/мл).

При растворении комплексообразователя - антипирина в объекте анализа (водном растворе, содержащем макро- или микроколичества железа(III)), образуется ярко окрашенный катионный водорастворимый комплекс железа(III) с антипирином. На растворимость комплекса, следовательно, на полноту осаждения железа(III), влияет природа анионного фона водного раствора. Анионы с высокой энергией гидратации (сульфат, хлорид, нитрат) не осаждают катионный комплекс, в отличие от перхлорат иона, имеющего низкую энергию гидратации. При ассоциации с катионным комплексом образуется значительный по размеру, объемный ионный ассоциат, нарушающий упорядоченную структуру воды, что служит причиной его выделения в твердую фазу. Из водного раствора количественно осаждаются как макро- (2*10-4 моль), так и микроколичества (до 1*10-7 моль) железа(III). Окончание аналитической процедуры заключается в определении железа(III) в осадке комплексонометрическим титрованием макроколичеств железа(III) и фотометрическим методом микроколичеств железа(III). Для расширения интервала определяемых фотометрических концентраций железа(III) строят два градуировочных графика. Для этого используют различные объемы (1,00-10,00 мл) стандартного (1,6*10-3 моль/л) раствора железа(III), выполняют его осаждение в системе вода-минеральная кислота-антипирин-перхлорат натрия. Выделившийся осадок отфильтровывают, промывают жидкостью, полученной в контрольном опыте, растворяют в пропиленкарбонате, раствор количественно переносят в мерную колбу вместимостью 20,00 мл, разбавляют до метки пропиленкарбонатом, тщательно перемешивают. Полученный раствор переносят в кювету с L=3 см и фотометрируют при λ=540 нм. По результатам фотометрирования строят градуировочный график (рис. 4). Для увеличения чувствительности фотометрических определений к раствору антипиринового комплекса железа(III) в пропиленкарбонате добавляют 0,50 мл 7 M раствора тиоцианата натрия и фотометрируют при λ=540 нм в кювете с L=3 см. Градуировочный график строят (рис. 5), используя различные объемы (0,25-10,00 мл) стандартного раствора железа(III) меньшей концентрации (4*10-4 моль Fe/л). Методом введено-найдено исследуют влияние посторонних ионов на осаждение железа(III). Результаты представлены в таблицах 1 и 2.

В зависимости от количества железа(III) в концентрате содержание определяют методом комплексонометрического титрования либо фотометрированием раствора, полученного растворением осадка в пропиленкарбонате. Достигается возможность очистки воды и водных растворов солей различных металлов от железа(III), определения железа(III) различными методами в выделенном осаждением концентрате, упрощение процесса, повышение безопасности, экологичности.

Способ очистки водных растворов от железа(III), включающий анализируемый раствор железа(III) и раствор антипирина, отличающийся тем, что железо(III) из водного раствора осаждают в твердую фазу двухфазной системы вода - минеральная кислота - антипирин - перхлорат натрия, вводят в стеклянную пробирку пробу, подкисляют хлороводородной или серной кислотой из расчета создания концентрации ионов водорода 0,1-0,2 моль/л в конечном объеме 20,00 мл, затем равные объемы по 5,00 мл водных растворов 0,4 М антипирина и 2М перхлората натрия разбавляют дистиллированной водой до 15,00 мл, затем пробирку плотно закрывают пробкой, интенсивно встряхивают в течение 10 минут, отстаивают при комнатной температуре, отфильтровывают от осадка очищенный от железа(III) маточный раствор.



 

Похожие патенты:

Изобретение относится к водной экологии и токсикологии и может быть использовано для оценки токсичности вод Азово-Черноморского бассейна. В способе тест-объекты выдерживают в тестируемых растворах; регистрируют физиологический ответ и о степени токсичности загрязнителя судят по токсикологическим параметрам.

Изобретение относится к медицине и может быть использовано для определения биологической активности питьевой воды. Для этого проводят определение содержания связанной воды и дополнительно определяют общую минерализацию воды по массе сухого остатка и рассчитывают показатель структурированности ПС как отношение содержания связанной воды к общей минерализации в условных единицах.

Изобретение относится к области исследований экологического состояния водоемов. Способ включает определение среднемесячной температуры воды, уровня выпавших осадков и уровня влажности воздуха.

Изобретение относится к анализам количественного определения содержания изотопа дейтерия в жидкостях различной природы с использованием методов ядерного магнитного резонанса.

Изобретение относится к аналитической химии, а именно к способу определения концентрации гидрохлорида полигексаметиленгуанидина (ПГМГ) в водах различных типов. Способ основан на взаимодействии катионов ПГМГ с реагентом, представляющим собой предварительно полученный коллоидный раствор отрицательно заряженных наночастиц серебра в цитратном буфере.

Изобретение относится к исследованию и анализу материалов и может быть использовано для определения структурного состояния талой воды в разное время после таяния.

Изобретение относится к устройству и способу детектирования качества жидкости, используемых в устройствах очистки воды. Устройство детектирования «визуализирует» качество воды в виде видимого излучения вместо преобразования интенсивности ультрафиолетового излучения в цифровую форму и содержит первое окно детектирования, покрытое первым материалом для преобразования принятого первого ультрафиолетового излучения, которое испускается источником ультрафиолетового излучения и проходит через жидкость, в первое видимое излучение.

Изобретение относится к области аналитической химии применительно к анализу природных, поверхностных, подземных, сточных и технологических вод. Способ включает разделение с последующей идентификацией ацетона и метанола на капиллярной хроматографической колонке в потоке газа-носителя, представляющем собой азот; образование и регистрацию пламенно-ионизационным детектором исследуемых ионов, образующихся в пламени, при этом готовят основной раствор, хорошо сохраняющийся 2 месяца, при температуре от -2°C до -5°C, готовят промежуточный раствор с концентрацией 6,32 мг/дм3 разведением основного раствора очищенной водой, готовят градуировочные растворы для диапазона концентраций: ацетон 0,025-6,32 мг/дм3, метанол 0,025-6,32 мг/дм3 разведением водой промежуточного раствора, градуируют хроматограф, вводя в него предварительно отобранную паровую фазу градуировочных растворов, строят градуировочный график, после термостатирования исследуемого раствора отбирают паровую фазу парофазным шприцем и вводят в испаритель хроматографа, данные обрабатывают компьютерной программой ChemStation, которой комплектуется хроматографический комплекс МАЭСТРО 7820А.

Изобретение относится к области биотехнологии и может быть использовано для повышения эффективности и достоверности определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях путем проведения твердофазного иммуноферментного анализа.

Способ определения влияния токсичности сточных вод на водные соленые среды относится к водной токсикологии и предназначен для оценки токсичности морской среды, содержащей сточные воды. Способ состоит из определения показателей роста культуры морской одноклеточной водоросли в тестируемой воде и включает культивирование культуры морской одноклеточной водоросли, процедуру биотестирования, состоящую из отбора проб воды, внесения в контроль и в тестируемую среду инокулята культивируемой водоросли, подсчета численности клеток водоросли.

Изобретение относится к области разделения смесей жидкостей с различной температурой кипения, составляющих многокомпонентную смесь. Наиболее предпочтительная область применения - получение пресной воды из водного солевого раствора, например, морских и минерализованных вод и промышленных стоков.

Изобретение относится к способу и системе для непрерывной очистки отработанной воды и/или технической воды. В отработанную воду дозируют перуксусную кислоту, измеряют поток отработанной воды и окислительно-восстановительный потенциал, измеряют концентрацию перуксусной кислоты ниже по потоку от дозирования.

Изобретение относится к устройствам для получения механических колебаний с использованием электромагнитизма и может быть использовано в различных технологических процессах для обработки жидкостей и растворов путем виброструйного магнитного воздействия, сопровождаемого изменением свойств жидкостей и растворов.

Изобретение может быть использовано для выделения органических веществ из водных сред, водосодержащих биологических жидкостей и водных экстрактов-вытяжек. Для осуществления способа проводят экстракцию органических веществ из водной среды в органический растворитель в сочетании с вымораживанием в условиях действия поля центробежных сил.

Изобретение относится к новым полимерам для очистки от металлов и их применениям. Описаны применения композиции, содержащей полимер, полученный, по крайней мере, из двух мономеров: акрил-х и алкиламин, где указанный полимер модифицирован таким образом, что содержит более 55 мол.% дитиокарбаминовой кислоты, способной очищать одну или несколько композиций, содержащих один или более описанных металлов.

Изобретение относится к обработке воды и может быть использовано для охлаждения промышленных процессов. Система обеспечения промышленного процесса охлаждающей водой включает контейнер 12 для хранения охлаждающей воды с дном 13 для приема осевших частиц; линию подачи 11 в контейнер поступающей воды; автоматизированную систему 10, выполненную с возможностью получения информации, обработки этой информации и активации операций, выполняемых средством введения химических веществ 18, подвижным средством всасывания 22 и фильтрующим средством; средство введения химических веществ; подвижное средство всасывания 22; движущее средство 23; фильтрующее средство 20; коллекторную линию 19, соединяющую подвижное средство всасывания 22 и фильтрующее средство 20; возвратную линию 21 из фильтрующего средства 20 в контейнер 12; линию впуска 1 в теплообменник от контейнера к промышленному процессу и линию возврата 2 воды из промышленного процесса в контейнер 12.
Изобретение относится к области промышленной экологии и может быть использовано для очистки сточных вод от тяжелых металлов и органических веществ. Предложен способ получения ионообменного сорбента, представляющего собой сополимер лигносульфоната натрия и полиметилакрилата.

Изобретения могут быть использованы при реминерализации исходной пресной воды для возвращения минералов, в частности карбоната кальция, в предварительно опресненную, обессоленную или содержащую недостаточное количество минералов воду при получении питьевой воды.

Изобретение относится к водоочистке. Предложен способ очистки воды и/или осушения ила и/или осадков, который включает обеспечение очищаемого объекта, содержащего примеси; и обеспечение поверхностно-обработанного карбоната кальция, в котором, по меньшей мере, 1% доступной площади его поверхности содержит покрытие, содержащее, по меньшей мере, один катионный полимер.

Изобретение относится к микробиологии. Штамм бактерий Exiguobacterium sp.

Изобретение относится к химической промышленности. Смешанный коагулянт из минерального сырья получают путем растворения бемит-каолинитового боксита в автоклаве соляной кислотой концентрацией 220 г/л при соотношении Т:Ж=1:6 в течение 1-3 часов в интервале температур 150-180°C.

Изобретение может быть использовано в аналитической химии железа, а именно для концентрирования железа из воды и водных растворов и количественного определения железа в концентрате. Для осуществления способа железо из водного раствора осаждают в твердую фазу в образующейся двухфазной системе. Способ включает введение в стеклянную пробирку анализируемой пробы, подкисление хлороводородной или серной кислотой из расчета создания концентрации ионов водорода 0,1-0,2 мольл в конечном объеме 20,00 мл, затем вводят равные объемы по 5,00 мл водных растворов 0,4 M антипирина и 2 М перхлората натрия, разбавляют дистиллированной водой до 15,00 мл, затем пробирку плотно закрывают пробкой, интенсивно встряхивают в течение 10 минут, отстаивают при комнатной температуре, отфильтровывают от осадка очищенный от железа маточный раствор. Определяют содержание железа в концентрате-осадке известными методами. Способ обеспечивает очистку воды и водных растворов солей различных металлов от железа в широком интервале кислотности количественного выделения осадка железа, упрощение процесса, повышение безопасности и экологичности метода очистки. 5 ил., 2 табл.

Наверх