Способ обработки продуктивного карбонатного пласта



Способ обработки продуктивного карбонатного пласта
Способ обработки продуктивного карбонатного пласта
Способ обработки продуктивного карбонатного пласта
Способ обработки продуктивного карбонатного пласта
Способ обработки продуктивного карбонатного пласта

 


Владельцы патента RU 2565293:

Открытое акционерное общество "Татнефть" имени В.Д. Шашина (RU)

Изобретение относится к нефтедобывающей промышленности, в частности к способам интенсификации добычи нефти из продуктивных карбонатных пластов, вскрытых скважинами с открытыми горизонтальными стволами. Способ обработки продуктивного карбонатного пласта включает выделение интервалов обработки вскрытого скважиной с открытым горизонтальным стволом в нефтенасыщенных породах карбонатного пласта, спуск в интервал обработки пласта колонны труб с гидромониторной насадкой с радиально расположенными под углом 120° по образующей соплами с отверстиями, закачку кислоты в интервалы обработки пласта по колонне насосно-компрессорных труб порциями в режиме гидромониторного воздействия, чередуя порции кислоты с порциями песчано-водного раствора поверхностно-активного вещества, которым выполняют гидропескоструйное воздействие на интервалы обработок пласта. После выделения интервалов обработки в нефтенасыщенных породах карбонатного пласта вскрытого скважиной с открытым горизонтальным стволом на устье скважины колонну труб оснащают снизу-вверх: сферической воронкой, гидромониторной насадкой с посадочным седлом под сбрасываемый в колонну труб с устья скважины вымываемый запорный элемент, патрубком-центратором, при открытой затрубной задвижке на устье скважины колонну труб с промывкой технологической жидкостью и вращением спускают в скважину, устанавливают гидромониторную насадку напротив начала ближайшего к забою открытого горизонтального ствола скважины интервала обработки, с устья скважины сбрасывают вымываемый запорный элемент в колонну труб и технологической жидкостью доводят его до посадочного седла гидромониторной насадки, далее вращают колонну труб с устья скважины и производят закачку порции кислоты по колонне труб в режиме кислотного гидромониторного воздействия с образованием поперечной плоскости, затем прекращают вращение колонны труб с устья скважины и закачку кислоты по колонне труб и перемещают колонну труб от забоя к устью скважины на один метр в интервале обработке и в режиме кислотного гидромониторного воздействия образуют следующую поперечную полость как описано выше, после чего технологический процесс с образованием поперечных полостей повторяют через каждый метр в зависимости от длины интервала обработки в открытом горизонтальном стволе скважины, начиная с вращения колонны труб с устья скважины и заканчивая перемещением колонны труб от забоя к устью скважины на один метр в пределах интервала обработки открытого горизонтального ствола скважины, по окончанию создания последней поперечной полости в интервале обработки открытого горизонтального ствола, закрывают затрубную задвижку на устье скважины, не прерывая вращение колонны труб с устья скважины, производят закачку по колонне труб песчано-водного раствора поверхностно-активного вещества в режиме гидропескоструйного воздействия на поперечную плоскость, прекращают вращение колонны труб с устья скважины и закачку песчано-водного раствора поверхностно-активного вещества по колонне труб, затем перемещают колонну труб от устью к забою скважины на один метр, и в режиме гидропескоструйного воздействия обрабатывают следующую поперечную полость как описано выше, после чего технологический процесс повторяют в зависимости от количества поперечных полостей в интервале обработки, начиная с вращения колонны труб с устья скважины и заканчивая перемещением колонны труб от устью к забою скважины на один метр в пределах интервала обработки открытого горизонтального ствола скважины, аналогичным образом производят гидромониторную кислотную и гидропескоструйное песчано-водное раствором поверхностно-активного вещества воздействия на все оставшиеся интервалы обработки открытого горизонтального ствола, вымывают запорный элемент и остатки песчаной смеси из открытого горизонтального ствола скважины закачкой технологической жидкости в затрубное пространство с одновременным вращением и перемещением колонны труб в открытом горизонтальном стволе скважины от устья к забою, при этом перед наращиванием колонны труб производят промывку открытого горизонтального ствола скважины в объеме одного цикла с трех кратной проработкой на длину одной трубы до достижения шаровой воронкой забоя открытого горизонтального ствола скважины, после чего колонну труб извлекают на поверхность. Предлагаемый способ обработки продуктивного карбонатного пласта позволяет: - повысить эффективность кислотных обработок интервалов карбонатного пласта вскрытого открытым стволом горизонтальной скважины; - увеличить нефтеотдачу (дебит) карбонатного пласта; - исключить вероятность возникновения аварии в скважине, связанных с прихватом колонны труб; - сократить продолжительности обработки пласта. 5 ил. на 2 л.

 

Изобретение относится к нефтедобывающей промышленности, в частности к способам интенсификации добычи нефти из продуктивных карбонатных пластов, вскрытых скважинами с открытыми горизонтальными стволами.

Известен способ кислотной обработки призабойной зоны (ОПЗ) пластов в скважинах с открытыми стволами (В.Г. Уметбаев. Геолого-технические мероприятия при эксплуатации скважин. - М.: Недра, 1989. - С. 62-64), включающий спуск колонны труб до забоя, закачку в колонну труб расчетного количества раствора кислоты, закачку продавочной жидкости в объеме полости колонны труб и выдержку кислоты на реагирование (технология ″кислотные ванны″).

Недостатком способа является низкая эффективность так, как кислотной обработке подвергается лишь пристенный слой пласта, а нефтенасыщенная матрица пласта практически остается необработанной, особенно по глубине.

Также известен способ обработки продуктивного карбонатного пласта (Бурение и заканчивание скважин с горизонтальным стволом на трещиноватые карбонаты // Нефть, газ и нефтехимия за рубежом / Перев. изд. журн. США. - 1989, 10. С. 11), включающий спуск колонны труб в скважину, установку башмака колонны в интервале обработки, закачку кислотного раствора по трубам и воздействие им на породу пласта.

Недостатками данного способа являются:

- во-первых, неравномерное кислотное воздействие на породу пласта в условиях открытого и относительно длинного ствола, при этом кислота активно реагирует с породой и обрабатывает лишь участок пласта, расположенный непосредственно у башмака колонны;

- во-вторых, кислотной обработке подвергаются интервалы пласта, а низкопроницаемые плотные нефтенасыщенные участки пласта остаются практически необработанными, а при случайном расположении нижнего конца колонны труб на этих участках кислотного воздействия в этих плотных породах явно недостаточно для вовлечения их в эксплуатацию.

Наиболее близким по технической сущности к данному изобретению является способ обработки продуктивного карбонатного пласта (патент RU №2205950, МПК Е21В 43/27, опубл. 10.06.2003 г.), включающий выделение интервалов обработки вскрытого скважиной с открытым горизонтальным стволом в нефтенасыщенных породах карбонатного пласта, спуск в интервал обработки пласта колонны труб, оснащенной на конце заглушенной снизу гидромониторной насадкой с радиально расположенными под углами 90 или 120° по образующей соплами с отверстиями, закачку кислотного раствора по колонне труб и воздействие им на породу пласта, причем закачку кислоты в пласт осуществляют порциями в режиме гидромониторного воздействия, чередуя порции кислоты с порциями песчано-водного раствора поверхностно-активного вещества, которым выполняют гидропескоструйное воздействие на пласт, причем чередование кислотного гидромониторного и гидропескоструйного воздействий осуществляют поочередно посредине каждого интервала обработки.

Недостатками данного способа являются:

- во-первых, низкая эффективность кислотных обработок интервалов карбонатного пласта вскрытого открытым стволом горизонтальной скважины, так как кислотное гидромониторное и гидропескоструйного воздействия осуществляют поочередно точечно только посредине каждого выделенного интервала обработки, а не по всей длине выделенного интервала обработки;

- во-вторых, низкая нефтеотдача карбонатного пласта после реализации способа, что связано с небольшой площадью охвата абразивно-струйным воздействием каждого плотного нефтенасыщенного интервала открытого горизонтального ствола скважины;

- в-третьих, высокая вероятность возникновения аварии в скважине в связи с прихватом колонны труб ввиду того, что при реализации способа невозможно осуществить промывку ствола скважины через заглушенную снизу гидромониторную насадку как в процессе спуска колонны труб в скважину, так и после кислотной обработки пласта;

- в-четвертых, продолжительный (длительный по времени) технологический процесс реализации способа, обусловленный тем, что необходимо обрабатывать по отдельности каждый выделенный интервал обработки открытого горизонтального ствола скважины.

Технической задачей изобретения является повышение эффективности кислотных обработок интервалов карбонатного пласта вскрытого открытым стволом горизонтальной скважины, увеличение нефтеотдачи карбонатного пласта, исключение вероятности возникновения аварии в скважине, связанных с прихватом колонны труб при реализации способа, а также сокращение продолжительности технологического процесса реализации способа.

Поставленная техническая задача решается способом обработки продуктивного карбонатного пласта, включающим выделение интервалов обработки вскрытого скважиной с открытым горизонтальным стволом в нефтенасыщенных породах карбонатного пласта, спуск в интервал обработки пласта колонны труб с гидромониторной насадкой с радиально расположенными под углом 120° по образующей соплами с отверстиями, закачку кислоты в интервалы обработки пласта по колонне насосно-компрессорных труб порциями в режиме гидромониторного воздействия, чередуя порции кислоты с порциями песчано-водного раствора поверхностно-активного вещества, которым выполняют гидропескоструйное воздействие на интервалы обработок пласта.

Новым является то, что после выделения интервалов обработки в нефтенасыщенных породах карбонатного пласта вскрытого скважиной с открытым горизонтальным стволом на устье скважины колонну труб оснащают снизу-вверх: сферической воронкой, гидромониторной насадкой с посадочным седлом под сбрасываемый в колонну труб с устья скважины вымываемый запорный элемент, патрубком-центратором, при открытой затрубной задвижке на устье скважины колонну труб с промывкой технологической жидкостью и вращением спускают в скважину, устанавливают гидромониторную насадку напротив начала ближайшего к забою открытого горизонтального ствола скважины интервала обработки, с устья скважины сбрасывают вымываемый запорный элемент в колонну труб и технологической жидкостью доводят его до посадочного седла гидромониторной насадки, далее вращают колонну труб с устья скважины и производят закачку порции кислоты по колонне труб в режиме кислотного гидромониторного воздействия с образованием поперечной плоскости, затем прекращают вращение колонны труб с устья скважины и закачку кислоты по колонне труб и перемещают колонну труб от забоя к устью скважины на один метр в интервале обработке и в режиме кислотного гидромониторного воздействия образуют следующую поперечную полость как описано выше, после чего технологический процесс с образованием поперечных полостей повторяют через каждый метр в зависимости от длины интервала обработки в открытом горизонтальном стволе скважины, начиная с вращения колонны труб с устья скважины и заканчивая перемещением колонны труб от забоя к устью скважины на один метр в пределах интервала обработки открытого горизонтального ствола скважины, по окончанию создания последней поперечной полости в интервале обработки открытого горизонтального ствола, закрывают затрубную задвижку на устье скважины, не прерывая вращение колонны труб с устья скважины, производят закачку по колонне труб песчано-водного раствора поверхностно-активного вещества в режиме гидропескоструйного воздействия на поперечную плоскость, прекращают вращение колонны труб с устья скважины и закачку песчано-водного раствора поверхностно-активного вещества по колонне труб, затем перемещают колонну труб от устью к забою скважины на один метр, и в режиме гидропескоструйного воздействия обрабатывают следующую поперечную полость как описано выше, после чего технологический процесс повторяют в зависимости от количества поперечных полостей в интервале обработки, начиная с вращения колонны труб с устья скважины и заканчивая перемещением колонны труб от устью к забою скважины на один метр в пределах интервала обработки открытого горизонтального ствола скважины, аналогичным образом производят гидромониторную кислотную и гидропескоструйное песчано-водное раствором поверхностно-активного вещества воздействия на все оставшиеся интервалы обработки открытого горизонтального ствола, вымывают запорный элемент и остатки песчаной смеси из открытого горизонтального ствола скважины закачкой технологической жидкости в затрубное пространство с одновременным вращением и перемещением колонны труб в открытом горизонтальном стволе скважины от устья к забою, при этом перед наращиванием колонны труб производят промывку открытого горизонтального ствола скважины в объеме одного цикла с трех кратной проработкой на длину одной трубы до достижения шаровой воронкой забоя открытого горизонтального ствола скважины, после чего колонну труб извлекают на поверхность.

На фигуре 1-4 схематично изображен процесс реализации предлагаемого способа.

На фигуре 5 схематично изображено сечение А-А интервала обработки открытого горизонтального ствола скважины.

Предлагаемый способ осуществляют в следующей последовательности.

Длина открытого горизонтального ствола 1 (см. фиг. 1) скважины вскрывшей продуктивный карбонатный пласт 2 составляет L=167 м (в интервале 1252-1419 м). Дебит нефти при этом 1,4-1,9 т/сут.

Проведением геофизических исследований выявили интервалы с высокой проницаемостью, сложенные трещиноватыми породами, и неработающие относительно плотные нефтенасыщенные прослои, которые были расположены в трех интервалах, начиная от забоя открытого горизонтального ствола 1 скважины, а именно это интервалы обработки 3′; 3″; 3″′, соответственно: 1407-1403 м, 1339-1334 м и 1285-1281 м.

После выделения интервалов обработки 3′; 3″; 3″ в нефтенасыщенных породах карбонатного пласта 2 на устье скважины колонну труб 4 (см. фиг. 2) оснащают снизу-вверх (на фиг. 2, 3, 4 показано справа налево): сферической воронкой 5, гидромониторной насадкой 6 с посадочным седлом 7 под сбрасываемый в колонну труб с устья скважины вымываемый запорный элемент 8 (см. фиг. 3), патрубком-центратором 9 (см. фиг. 2).

Вымываемый запорный элемент 8 выполнен в виде шара и изготовлен из материал, обеспечивающего подъем из колонны труб на поверхность в потоке жидкости, например из полиуретана.

Гидромониторная насадка 6 оснащена радиально расположенными под углом 120° к образующей трех сопел 10 с отверстиями 11 диаметром, например 6 мм.

При открытой затрубной задвижке (на фиг. 1-5 не показано) на устье скважины колонну труб 4 (см. фиг. 1 и 2) с промывкой технологической жидкостью, например плотностью 1080 кг/м3 и вращением, например с помощью бурового ротора марки Р-250, установленного на устье скважины с частотой вращения 20 об/мин спускают в скважину со скоростью 0,25 м/с и устанавливают гидромониторную насадку 6 напротив начала (1407 м) ближайшего к забою 12 (1419 м) открытого горизонтального ствола скважины интервала обработки 3′ длиной l=1407-1403 м.

С устья скважины сбрасывают вымываемый запорный элемент 8 в колонну труб 4 и технологической жидкостью доводят его до посадочного седла 7 (см. фиг. 3) гидромониторной насадки 6.

Далее вращают колонну труб 4 с устья скважины с частотой вращения 60 об/мин и при открытой затрубной задвижке на з с устье скважины агрегатом насосным АН-700 производят закачку порции кислоты, например 15% водного раствора соляной кислоты в объеме 1 м3, по колонне труб 4 в режиме кислотного гидромониторного воздействия через отверстия 11 сопел 10 гидромониторной насадки 6 с образованием поперечной плоскости 13′ в интервале 1407 м интервала обработки 3′.

Затем прекращают вращение колонны труб 4 с устья скважины и закачку кислоты по колонне труб 4. Перемещают колонну труб 4 от забоя 12 к устью скважины на один метр в интервале обработки 3′ и образуют следующую поперечную полость 13″.

Для этого вращают колонну труб 4 с устья скважины с частотой вращения 60 об/мин и при открытой затрубной задвижке на с устье скважины агрегатом насосным АН-700 производят закачку порции кислоты, например 15% водного раствора соляной кислоты в объеме 1 м3 по колонне труб 4 (см. фиг. 1, 3 и 5) в режиме кислотного гидромониторного воздействия через отверстия 11 сопел 10 гидромониторной насадки 6 с образованием поперечной плоскости 13″ в интервале 1406 м интервала обработки 3′. После чего технологический процесс с образованием поперечных полостей 13′″…13n повторяют через каждый метр, как описано выше в зависимости от длины интервала обработки 3′, начиная с вращения колонны труб 4 с устья скважины и заканчивая перемещением колонны труб 4 от забоя 12 к устью скважины на один метр в пределах интервала обработки 3′ открытого горизонтального ствола 2 скважины.

Например, закачкой кислоты в объеме по 1 м3 в режиме кислотного гидромониторного воздействия образуют еще две поперечные полости 13′″ и 13″″ в интервале 1405 и 1404 м соответственно интервала обработки 3′ открытого горизонтального ствола 1 скважины.

Таким образом, за счет большой кинетической энергии струи (скорость струи на выходе из отверстий 11 сопел 10 гидромониторной насадки 6 достигает скорости 150 м/с) приобретают режущие свойства, что позволяет получить в открытом горизонтальном стволе 1 в интервале обработки 3′ через каждый один метр получить поперечные полости 13′; 13″; 13′″; 13″″ (см. фиг. 1 и 5) с многократным увеличением площади фильтрации с достижением глубины обработки радиусом R=1,5-2 м.

Расстояние l=1 м между поперечными полостями 13′; 13″; 13′″; 13″″ получено опытным путем, так как при расстояние менее одного метра может произойти разрушение поперечных полостей 13′; 13″; 13′″; 13″″, а при расстоянии более одного метра снижается площадь фильтрации продукции пласта 2 в открытый горизонтальный ствол 1, что снижает эффективность реализации предлагаемого способа.

По окончанию создания последней поперечной полости 13″″ в интервале обработки 3″″ открытого горизонтального ствола, закрывают задвижку на затрубье, не прерывая вращение колонны труб 4 с устья скважины, производят закачку по колонне труб песчано-водного раствора поверхностно-активного вещества в режиме гидропескоструйного воздействия на поперечную плоскость 13″″ в интервале 1404 м.

Например, при закрытой затрубной задвижке с устья скважины агрегатом насосным АН-700 по колонне труб 4 в режиме гидропескоструйного воздействия через отверстия 11 сопел 10 гидромониторной насадки 6 при давлении 16-18 МПа продавливают в поперечную полость 13″″ песчано-водный раствор поверхностно-активного вещества в объеме 0,75 м3. В качестве поверхностно-активного вещества применяют, например МЛ-81, а песчано-водный раствор поверхностно-активного вещества имеет следующую концентрацию: ПАВ МЛ-81 - 0,1%; песок мелкой фракции - 35-45 кг/м3, вода - 99,9%.

Затем прекращают вращение колонны труб 4 с устья скважины и закачку песчано-водного раствора поверхностно-активного вещества МЛ-81 по колонне труб 4. Перемещают колонну труб 4 от устья скважины к забою 12 на один метр в интервале обработки 3′ и воздействуют на следующую поперечную полость 13′″ в интервале 1405 м.

Для этого вращают колонну труб 4 с устья скважины с частотой вращения 60 об/мин и при закрытой затрубной задвижке с устье скважины агрегатом насосным АН-700 по колонне труб 4 в режиме гидропескоструйного воздействия через отверстия 11 сопел 10 гидромониторной насадки 6 при давлении 16-18 МПа продавили в поперечную полость 13″″ песчано-водный раствор поверхностно-активного вещества в объеме 0,75 м3.

После чего технологический процесс с гидропескоструйным воздействием на оставшиеся поперечные полости 13′″ и 13″″ повторяют через каждый метр, начиная с вращения колонны труб 4 с устья скважины и заканчивая перемещением колонны труб 4 от устья к забою 12 скважины на один метр в пределах интервала обработки 3′ открытого горизонтального ствола 1 скважины. Например, в режиме гидропескоструйного воздействия закачкой песчано-водного раствора поверхностно-активного вещества МЛ-81 в объеме по 0,75 м3 в каждый обрабатывают еще две поперечные полости 13″ и 13′ в интервале 1406 и 1407 м, соответственно, интервала обработки 3′ открытого горизонтального ствола 1 скважины.

Аналогичным образом производят гидромониторную кислотную и гидропескоструйное песчано-водное раствором поверхностно-активного вещества воздействия на все оставшиеся интервалы обработки 3″ (1339-1334 м) и 3′″ (1407-1403 м) открытого горизонтального ствола 1 скважины с образованием поперечных полостей на фигуре 1 в интервалах обработки 3″ и 3′″ карбонатного пласта 2 показано условно.

Повышается эффективность кислотных обработок интервалов карбонатного пласта вскрытого открытым стволом горизонтальной скважины, так как кислотное гидромониторное и гидропескоструйного воздействия осуществляют по всей длине каждого выделенного интервала обработки, а наличия патрубка-центратора 9 и шаровой воронки 5 позволяют разместить гидромониторную насадку 6 симметрично оси открытого горизонтального ствола 1 скважины и воздействовать струями жидкости перпендикулярно открытому горизонтальному стволу 1 скважины.

В итоге в 3-4 раза, т.е. до 4,2-7,6 т/сут увеличивается нефтеотдача (дебит) карбонатного пласта после реализации способа, что связано со значительным увеличением площади охвата абразивно-струйным воздействием каждого плотного нефтенасыщенного интервала обработки 3′; 3″; 3″′ карбонатного пласта 2 вскрытого открытым горизонтальным стволом 1 скважины.

Сокращается продолжительность обработки пласта так, как все интервалы обработок 3′; 3″; 3′″ карбонатного пласта 2 вскрытого открытым горизонтальным стволом 1 скважины подвергаются гидромониторному и гидропескоструйному воздействию поочередно за один двойной ход колонны труб 4 в открытом горизонтальном стволе 1 скважины (от забоя 12 открытого горизонтального ствола 1 к устью и обратно).

Вымывают запорный элемент 8 из колонны труб 4 и остатки песчаной смеси из открытого горизонтального ствола 1 скважины закачкой технологической жидкости, плотностью 1080 кг/м3 в затрубное пространство 14 с одновременным вращением буровым ротором колонны труб 4 и ее перемещением в открытом горизонтальном стволе 1 скважины от устья 12 к забою. Перед наращиванием колонны труб 4 производят промывку открытого горизонтального ствола 1 закачкой технологической жидкости в затрубное пространство через сферическую воронку 5 и подъемом по колонне труб 4 в объеме 1 цикла с трех кратной проработкой на длину одной трубы до достижения гидромониторной насадкой 6 забоя 16 (см. фиг. 1 и 4) открытого горизонтального ствола 1 скважины.

Например, от начала открытого ствола в интервале 1252 м и до конца открытого ствола (забоя) скважины в интервале 1419 м, т.е. на протяжении 167 м применяют колонну бурильных труб марки ТБПН 73·9,19, например длиной по 10 м в количестве 16 штук и одного патрубка длиной 7 м.

Перед каждым наращиванием колонны бурильных труб 4 производят промывку открытого горизонтального ствола скважины закачкой технологической жидкости в затрубное пространство 14 и подъемом технологической жидкости по колонне труб 4 через сферическую воронку 5 на устье скважины в объеме одного цикла с трех кратной проработкой в местах затяжек и посадок с расхаживанием компоновки на длину наращиваемой бурильной трубы, т.е. на длину 10 м. Один цикл промывки равен одному объему внутреннего пространства колонны бурильных труб ТБПН 73·9,19, начиная с длины: L=1252 м.

Получаем объем: V1=(3,14·d2/4)·L=3,14·(0,073-(,00919 м·2))2/4·1252 м=2,95 м3.

Таким образом, перед каждым наращиванием колонны труб 4 производят промывку в объеме одного цикла, начиная с объема V1=2,95 м3 (в интервале 1252 м) и далее с каждым наращиванием бурильной колонны труб на 10 м доводят объем промывки в одном цикле до объема V2=3,35 м3 в интервале 1419 м).

Промывка скважины в процессе спуска в нее колонны труб 4 (см. фиг. 2 и 4), а также после обработки интервалов открытого горизонтального ствола 1 пласта 2 позволяет исключить заклинивание, зацепы, прихваты колонны труб 4 в открытом горизонтальном стволе 1 скважины и, как следствие, исключается возникновение аварийной ситуации в скважине. После чего извлекают колонну труб 4 на поверхность.

Предлагаемый способ обработки продуктивного карбонатного пласта позволяет:

- повысить эффективность кислотных обработок интервалов карбонатного пласта вскрытого открытым стволом горизонтальной скважины;

- увеличить нефтеотдачу (дебит) карбонатного пласта;

- исключить вероятность возникновения аварии в скважине, связанных с прихватом колонны труб;

- сократить продолжительности обработки пласта.

Способ обработки продуктивного карбонатного пласта, включающий выделение интервалов обработки вскрытого скважиной с открытым горизонтальным стволом в нефтенасыщенных породах карбонатного пласта, спуск в интервал обработки пласта колонны труб с гидромониторной насадкой с радиально расположенными под углом 120° по образующей соплами с отверстиями, закачку в интервалы обработок пласта по колонне насосно-компрессорных труб порциями в режимах кислотного гидромониторного воздействия и гидропескоструйного воздействия песчано-водным раствором поверхностно-активного вещества, отличающийся тем, что после выделения интервалов обработки в нефтенасыщенных породах карбонатного пласта вскрытого скважиной с открытым горизонтальным стволом на устье скважины колонну труб оснащают снизу-вверх: сферической воронкой, гидромониторной насадкой с посадочным седлом под сбрасываемый в колонну труб с устья скважины вымываемый запорный элемент, патрубком-центратором, при открытой затрубной задвижке на устье скважины колонну труб с промывкой технологической жидкостью и вращением спускают в скважину, устанавливают гидромониторную насадку напротив начала ближайшего к забою открытого горизонтального ствола скважины интервала обработки, с устья скважины сбрасывают вымываемый запорный элемент в колонну труб и технологической жидкостью доводят его до посадочного седла гидромониторной насадки, далее вращают колонну труб с устья скважины и производят закачку порции кислоты по колонне труб в режиме кислотного гидромониторного воздействия с образованием поперечной плоскости, затем прекращают вращение колонны труб с устья скважины и закачку кислоты по колонне труб и перемещают колонну труб от забоя к устью скважины на один метр в интервале обработке и в режиме кислотного гидромониторного воздействия образуют следующую поперечную полость как описано выше, после чего технологический процесс с образованием поперечных полостей повторяют через каждый метр в зависимости от длины интервала обработки в открытом горизонтальном стволе скважины, начиная с вращения колонны труб с устья скважины и заканчивая перемещением колонны труб от забоя к устью скважины на один метр в пределах интервала обработки открытого горизонтального ствола скважины, по окончанию создания последней поперечной полости в интервале обработки открытого горизонтального ствола, закрывают затрубную задвижку на устье скважины, не прерывая вращение колонны труб с устья скважины, производят закачку по колонне труб песчано-водного раствора поверхностно-активного вещества в режиме гидропескоструйного воздействия на поперечную плоскость, прекращают вращение колонны труб с устья скважины и закачку песчано-водного раствора поверхностно-активного вещества по колонне труб, затем перемещают колонну труб от устью к забою скважины на один метр, и в режиме гидропескоструйного воздействия обрабатывают следующую поперечную полость как описано выше, после чего технологический процесс повторяют в зависимости от количества поперечных полостей в интервале обработки, начиная с вращения колонны труб с устья скважины и заканчивая перемещением колонны труб от устью к забою скважины на один метр в пределах интервала обработки открытого горизонтального ствола скважины, аналогичным образом производят гидромониторную кислотную и гидропескоструйное песчано-водное раствором поверхностно-активного вещества воздействия на все оставшиеся интервалы обработки открытого горизонтального ствола, вымывают запорный элемент и остатки песчаной смеси из открытого горизонтального ствола скважины закачкой технологической жидкости в затрубное пространство с одновременным вращением и перемещением колонны труб в открытом горизонтальном стволе скважины от устья к забою, при этом перед наращиванием колонны труб производят промывку открытого горизонтального ствола скважины в объеме одного цикла с трех кратной проработкой на длину одной трубы до достижения шаровой воронкой забоя открытого горизонтального ствола скважины, после чего колонну труб извлекают на поверхность.



 

Похожие патенты:

Группа изобретений относится к нефтегазовой промышленности и предназначено для теплового воздействия на призабойную зону, снижения вязкости скважинной жидкости перед приемом погружного насоса и для предупреждения образования асфальтено-парафино-гидратных отложений.

Изобретение относится к способам разработки нефтяных месторождений горизонтальными скважинами с применением гидравлического разрыва пласта. Способ включает бурение горизонтального ствола скважины в продуктивном пласте с цементированием обсадной колонны, спуск в горизонтальный ствол скважины на колонне труб перфоратора и выполнение перфорационных отверстий в горизонтальном стволе скважины, направленных азимутально вверх, спуск колонны труб с пакером в скважину, посадку пакера, закачку по колонне труб жидкости разрыва и формирование трещин гидравлического разрыва пласта в горизонтальном стволе скважины.

Изобретение относится к нефтяной промышленности и, в частности, к способам обработки призабойной зоны скважин. Технический результат - увеличение эффективности обработки за счет создания структурированного адсорбционного слоя поверхностно-активных веществ в пласте.

Изобретение относится к составам для обработки скважин для применения в нефтедобывающей области. Состав для обработки скважины, содержащий реагент для обработки скважины, адсорбированный на водонерастворимом адсорбенте, где состав получают осаждением реагента для обработки скважины из жидкости, при этом реагент для обработки скважины адсорбируют на водонерастворимом адсорбенте, и где реагент для обработки скважины осаждают в присутствии металлической соли.
Изобретение относится к нефтегазодобывающей промышленности. Технический результат - увеличение проницаемости осушенной призабойной зоны пласта, повышение степени разглинизации призабойной зоны и повышение производительности скважин.

Изобретение относится к нефтедобывающей промышленности. Технический результат - выравнивание профиля притока добывающих скважин в неоднородных по проницаемости карбонатных пластах, создание новых флюидопроводящих каналов по всей перфорированной толщине пласта, восстановление коллекторских свойств призабойной зоны за счет ее очистки от кольматирующих твердых частиц.

Изобретение относится к нефтедобыче. Технический результат - интенсификация добычи нефти из горизонтальной скважины, увеличение дебита нефти в 1,5-2 раза, снижение обводненности добываемой продукции на 30-50%.

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке карбонатных нефтяных пластов с естественной трещиноватостью горизонтальными скважинами с применением большеобъемной кислотной обработки при наличии вблизи горизонтальных стволов водонасыщенных пропластков.
Изобретение относится к нефтяной промышленности. Технический результат - увеличение нефтеотдачи залежи.

Изобретение относится к технологии повышения продуктивности скважины. Технический результат - повышение эффективности большеобъемной селективной кислотной обработки (БСКО) карбонатных коллекторов.

Группа изобретения относится к гидравлическому разрыву пласта. Технический результат - улучшение проводимости пачек из мелкодисперсного расклинивающего агента.
Изобретение относится к области нефтедобычи, а именно к способу добычи высоковязкой нефти. Технический результат - увеличение дебета скважины по добыче высоковязкой нефти за счет снижения кинематической вязкости добываемой нефти, увеличение межремонтного интервала насосного оборудования за счет снижения тяжести режима работы, снижение энергопотребления при добыче высоковязкой нефти.

Изобретение относится к области нефтедобычи и может быть использовано при разработке нефтяных месторождений с высокой пластовой температурой, в том числе на поздних стадиях разработки.

Изобретение относится к нефтяной промышленности, в частности к обработке добывающих и нагнетательных скважин с трудноизвлекаемыми запасами нефти. В способе увеличения нефтеотдачи пласта, включающем последовательную закачку в пласт циклами не менее двух, разбитых на равные порции оторочек полимера в воде и солевого сшивающего агента в воде с буфером воды между ними, в качестве солевого сшивающего агента используют реагент АМГ и дополнительно осуществляют закачку оторочек глинистого агента в воде и оторочек реагента многофункционального действия и спирта алифатического и/или ароматического, или отхода производства, их содержащего, с обеспечением снижения межфазного натяжения в системе «нефть-вода» до 0,005 мН/м, в следующей последовательности оторочек и при следующих их составах, мас.%: 1) 0,001-3 полимера в воде, 2) 0,0001-0,5 АМГ в воде, 3) 0,0001-20 глинистого агента в воде, 4) реагент многофункционального действия 0,1-99,9 и указанные спирт или отход остальное, при соотношении объемов состава 1) и реагента многофункционального действия равном 1: (0,06-0,25) или 1) 0,001-3 полимера в воде, 2) 0,0001-0,5 АМГ и 0,0001-20 глинистого агента в воде, 3) реагент многофункционального действия 0,1-99,9 и указанные спирт или отход остальное, при соотношении объемов состава 1) и реагента многофункционального действия равном 1:0,06-0,25.

Изобретение относится к способу обработки угля и получению из него полезных продуктов. Способ обработки угля, содержащего углеродсодержащие соединения природного происхождения, включает стадии: введение в контакт угля с одним или более сложным эфиром уксусной кислоты, выбранным из группы, состоящей из метилацетата, этилацетата, пропилацетата, изопропилацетата, н-бутилацетата, изобутилацетата, амилацетата, изоамилацетата, гексилацетата, гептилацетата, октилацетата, нонилацетата, децилацетата, ундецилацетата, лаурилацетата, тридецилацетата, миристилацетата, пентадецилацетата, цетилацетата, гептадецилацетата, стеарилацетата, бегенилацетата, гексакозилацетата и триаконтилацетата, осуществляя таким образом солюбилизацию, по меньшей мере, части углеродсодержащих соединений в угле посредством превращения углеродсодержащих соединений в соединения, которые растворяются в воде, за счет разрыва химических связей углеродсодержащих соединений в угле и/или реагирования с углеродсодержащими соединениями в угле.

Изобретение относится к нефтедобывающей промышленности и используется для регулирования профилей приемистости нагнетательных скважин. Состав для выравнивания профиля приемистости нагнетательных скважин, содержащий соль алюминия и воду, в качестве соли алюминия содержит хлорид и/или сульфат алюминия и дополнительно - технические лигносульфонаты на натриевой основе, соляную кислоту и нефтепродукты с вязкостью 1-30 мПа·с при следующем соотношении компонентов, мас.

Изобретение относится к повышению нефтеотдачи пласта. Способ микробиологического повышения нефтеотдачи из нефтеносного пласта по четырем его вариантам включает обработку воды, предназначенной для закачки в нефтеносный пласт, для реализации микробиологической активности и добавление кислорода, способствующего микробиологического активности.

Изобретение относится к нефтяной промышленности. Технический результат - увеличение коэффициента извлечения нефти.

Изобретение относится к области добычи нефти и газа и может быть использовано для снижения выноса песка в скважину. Технический результат - увеличение межремонтного пробега работы скважины и повышение добычи углеводородов.

Изобретение относится к нефтедобыче, точнее к способам увеличения дебита нефти в добывающих скважинах. В способе повышения добычи нефти, включающем закачку через добывающую скважину в пласт водной суспензии полиакриламида, обработанного ионизирующим излучением, суспензию получают смешением 1 вес.

Изобретение относится к нефтегазодобывающей промышленности. Технический результат - полное выравнивание профиля притока в добывающих скважинах и профиля приемистости в нагнетательных скважинах, изоляция водопритока, интенсификация добычи нефти и газа, возможность использования независимо от сезона года. В способе обработки призабойной зоны пласта порядок закачки композиций реагентов выдерживают следующий: первая оторочка алюмосодержащей жидкости, разведенной в воде при соотношении объемов 1:4; пресная вода; раствор гидролизованных в щелочи отходов волокна или тканей полиакрилонитрила; пресная вода; вторая оторочка алюмосодержащей жидкости; соляная кислота или алюмосодержащая жидкость, разведенная в воде при соотношении объемов 1:4 или 1:5, или 1:6. В качестве алюмосодержащей жидкости используют раствор хлористого алюминия - отход катализаторного производства при получении алкилбензолов или отход кумыльного производства, дополнительно содержащий полигликоли, карбамид, поверхностно-активное вещество АФ9-12 и ингибитор кислотный универсальный ИКУ-1. В качестве гидролизованных в щелочи отходов волокна или тканей полиакрилонитрила используется водо-полимерная композиция, дополнительно содержащая неионогенное поверхностно-активное вещество, например, АФ9-12, имеющая низкую температуру застывания от минус 25°C до минус 35°C и образующая большее количество тампонирующего материала в трещинно-поровом пространстве пласта. После закачивания первой оторочки алюмосодержащей жидкости делают перерыв и оставляют скважину в покое на 48-72 часа для гелеобразования. 3 з.п. ф-лы, 6 пр.
Наверх