Оптическое согласующее устройство



Оптическое согласующее устройство
Оптическое согласующее устройство
Оптическое согласующее устройство
Оптическое согласующее устройство
Оптическое согласующее устройство
Оптическое согласующее устройство
Оптическое согласующее устройство
Оптическое согласующее устройство

 

H01L33/44 - Полупроводниковые приборы по меньшей мере с одним потенциальным барьером или с поверхностным барьером, предназначенные для светового излучения, например инфракрасного; специальные способы или устройства для изготовления или обработки таких приборов или их частей; конструктивные элементы таких приборов (соединение световодов с оптоэлектронными элементами G02B 6/42; полупроводниковые лазеры H01S 5/00; электролюминесцентные источники H05B 33/00)

Владельцы патента RU 2565324:

Потемкин Александр Петрович (DE)

Изобретение может использоваться как для изготовления энергосберегающих ламп, так и светосильных светодиодных излучателей.

Оптическое согласующее устройство состоит из оптического согласующего элемента, излучающего полупроводникового светодиода и расположенным между ними промежуточного слоя, причем оптический согласующий элемент выполнен из оптически прозрачного материала, показатель преломления которого подобен показателю преломления излучающего полупроводникового светодиода, при этом промежуточный слой выполнен туннельно-прозрачным, с модулем упругости более низким по сравнению с модулями упругости полупроводникового светодиода и оптического согласующего элемента. Изобретение позволяет повысить эффективность излучения и сохранить срок службы светодиода за счет низкого значения модуля упругости материала промежуточного слоя, выполненного туннельно прозрачным, и который позволяет снижать механические напряжения, возникающие между материалом светодиода и оптическим согласующим элементом. 2 з.п. ф-лы, 6 ил.

 

Изобретение относится к области оптических согласующих устройств для светодиодов (LED), G02, которые могут служить в качестве согласующих устройств при изготовлении светодиодов с повышенной светоотдачей. Изобретение может использоваться как для изготовления энергосберегающих ламп, так и светосильных светодиодных излучателей.

Высокие показатели преломления полупроводниковых материалов - более чем 2,5 для карбида кремния и 3,3 для арсенида галлия, а также сравнительно низкие показатели преломления применяемых в массовом производстве синтетических материалов порядка 1,6 приводят к значительным отражениям света на граничной поверхности между полупроводником LED и синтетическим материалом оптического согласующего устройства.

Применение материалов с высоким показателем преломления, таких как халькогенидные стекла и т.п., для оптических согласующих устройств в большинстве случаев невозможно, так как линейные коэффициенты теплового расширения слишком сильно различаются, что приводит к возникновению дополнительных напряжений и сокращению срока службы светодиода.

Известен способ изготовления устройства светодиода с улучшенной эффективностью вывода излучения (US 2005032257).

Известным способом (варианты) возможно изготовление светодиода разных материалов с повышенным показателем преломления.

Стыковку разнородных материалов проводят способом горячего прессования, при использовании которого развиваются микротрещины, возникают дислокации, что ухудшает эффективность излучения светодиода. Также для проведения эпитаксиального наращивания ряд материалов с температурами плавления, превышающими температуру плавления полупроводника, на который они осаждаются (типа окиси циркония с температурой плавления более 2000 градусов).

В результате несовпадения периодов кристаллографических решеток слоя полупроводника и осаждаемого материала будут осаждаться только дефектные слои с другими оптическими свойствами, а после остывания на границе раздела слоев из-за несоответствия температурных коэффициентов расширения возникнут значительные механические напряжения, вызывающие ускоренную деградацию светодиода.

В известном способе промежуточный слой изготавливают из материалов с низким показателем преломления (из таких материалов, как фтористый магний, оптические стекла, эпоксидные и кремнийорганические материалы), но малой толщины.

Однако из-за несоответствия температурных коэффициентов расширения применение данных материалов приведет к увеличению механических напряжений, стимулирующих деградацию конструкции.

Известна конструкция устройства светодиодов, работающих с повышенным перепадом температур (Патент DE 102010045316).

Оптический согласующий слой между светодиодом и линзой изготавливают из материала с низким показателем преломления типа силикон, эпоксидная смола, полиуретаны или силиконоэпоксидная смесь или смесь из этих материалов с толщиной более 30-50 мкм.

Применение данных материалов, с толщиной, превышающей длину волны излучения светодиода в оптическом согласующем слое, приводит к значительному уменьшению эффективности излучения светодиода за счет эффекта полного внутреннего отражения излучения на границе раздела полупроводниковый материал с высоким показателем преломления и материал согласующего слоя с низким показателем преломления.

Известны оптические согласующие устройства на основе полусферы из полупроводникового материала, который соответствует тому, из которого изготавливают светогенерирующую область, например, инфракрасного светодиода AL107A и светодиода (KR 101078063).

Известны оптические согласующие устройства на основе полусферы Вейерштрасса, в которых полусфера и светогенерирующая область светодиода типа 3L115 выполнены из полупроводникового материала (WO 2007/123289).

В этих конструкциях коэффициент теплового расширения материала светодиода и оптического согласующего устройства одинаков, что обеспечивает высокую светоотдачу и срок службы.

Недостатком конструкции является увеличение потребления материала полупроводника и соответствующее удорожание светодиода.

Известны оптические согласующие устройства на основе синтетических материалов, в которых излучение, исходящее из полупроводника, передается через куполообразное покрытие в окружающую среду (WO 2011/002508).

Недостатком данной конструкции является низкая светоотдача ввиду большой разницы между показателем преломления полупроводника светодиода и синтетического материала оптического согласующего устройства.

Известно устройство для изучения ультрафиолетовых лучей, включающее светодиод, фокусирующую линзу и промежуточный слой (Патент US 2007267645).

Наличие промежуточного слоя позволяет уменьшить разницу показателей преломления излучающей поверхности полупроводника и слоя с одной стороны, а также между основанием конденсирующей линзы и слоя с другой стороны.

Однако при анализе результатов прохождения излучения через данные слои с точки зрения лучевой оптики и с точки зрения волновой оптики обнаружен ряд недостатков известного решения.

Рассмотрим различные соотношения между показателями преломления с точки зрения лучевой оптики:

излучающей поверхности полупроводника n1
промежуточного слоя n2
основанием фокусирующей линзы n3

При соотношении показателей преломления n1≥n2≥n3 наличие промежуточного слоя уменьшает разницу показателей преломления на границах слоев и увеличивает эффективность вывода излучения светодиода из излучающей поверхности полупроводника в основание фокусирующей линзы.

Однако для дальнейшего увеличения эффективности вывода излучения из излучающей полупроводниковой области более эффективно применять фокусирующие линзы из материала с высоким показателем преломления n3 (близким к показателю преломления излучающей поверхности полупроводника).

Данная конструкция обеспечивает наивысшую эффективность вывода излучения.

В известной конструкции, качестве материалов промежуточного слоя используют или silicon resign или fluorine system resign, которые характеризуются показателем преломления n2≈1,4, меньшим, чем показатель преломления излучающей поверхности полупроводника - n1≥2,4.

В известном устройстве толщина промежуточного слоя составляет не менее 10 микрон.

При данной толщине слоя и длине волны излучения λ≈0.4 мкм ход лучей на границе раздела излучающей поверхности полупроводника и промежуточного слоя точно описывается эффектом полного внутреннего отражения.

В результате, даже при показателях преломления n3≈n1≥2,4 введение промежуточного слоя с показателем преломления n2≈1,4 приведет к значительному увеличению доли излучения, отражающейся по закону полного внутреннего отражения от границы раздела излучающей поверхности полупроводника и промежуточного слоя.

При использовании данного сочетания параметров слоя (низкого показателя преломления и толщины, многократно превышающей длину волны излучения) дальнейшее применение слоев с повышенным показателем преломления будет уже неэффективно.

Из-за этого соотношения в большинстве промышленно выпускаемых светодиодах в качестве оптически прозрачного слоя используют гель с показателем преломления n2≈1,4 и фокусирующие линзы с показателем преломления n3≈1,6. (n2≈n3).

Наиболее близким по технической сущности к предлагаемому техническому решению является устройство, состоящее из светоизлучающего диода, промежуточный слой из силикона и линзы, материал которой может быть любым (US 2011062469).

В известной конструкции используют набор материалов, обеспечивающих достижение высокого показателя преломления от линзы, промежуточных слоев и до полупроводника. Толщины слоев составляют несколько микрон.

Одним из недостатков известной конструкции является низкий срок службы конструкции из-за разницы температурных коэффициентов расширения используемых материалов.

Используемые в данной конструкции различные материалы промежуточных слоев значительно отличаются от материалов излучающих полупроводников температурными коэффициентами расширения, что приводит к механическим разрушениям границ раздела из-за термоциклирования при включении и выключении светодиода и климатических воздействий.

В настоящее время никто в мире до сих пор не создал надежно соединенных материалов с высоким коэффициентами преломления и различными температурными коэффициента излучения.

Следует отметить, что эксперименты, проведенные во многих странах по стыковке полупроводникового слоя светодиода с другими материалами с высоким показателем преломления, пока неудачны.

Примером неудачной стыковки является соединение верхнего слоя полупроводникового излучателя с халькогенидными стеклами.

Использование в известной конструкции материалов типа силиконовой смолы или силиката приводит к значительному уменьшению показателя преломления до 1,3-1,6.

Вторым недостатком известной конструкции является то, что при изготовлении конструкции используют технологию сжатия и нагрева, толщины промежуточных слоев будут составлять величины в несколько микрон.

В результате, при толщинах слоев в микроны, из-за эффекта полного внутреннего отражения, значительная часть излучения не будет выводиться из полупроводникового слоя светодиода.

Третьим недостатком известной конструкции является применение на дальнейшем пути светового потока материалов с высоким показателем преломления (промежуточных слоев и фокусирующей линзы), ухудшает вывод излучения (вследствие возрастания оптических Френелевских потерь на границах раздела сред с различными показателями преломления).

Четвертым недостатком известной конструкции является неэффективность использования в промежуточном слое с низким показателем преломления наночастиц с более высоким показателем преломления

Основная причина неэффективности заключается в невысоком показателе преломления наночастиц, даже изготовленных из материалов с высоким показателем преломления. На поверхности наночастиц всегда существует нарушенный слой, показатель преломления которого меньше, чем показатель преломления объемного материала. При размерах частиц в десятки нанометров доля данного слоя составляет существенную часть от всего объема наночастицы.

Поэтому применение наночастиц не приводит к значительному увеличению показателя преломления среды, в которую их помещают.

Кроме того, ряд материалов в нанометровом диапазоне изменяет свои оптические свойства. Так, например, наноалмазы из-за наличия на поверхности графитизированного слоя чернеют и тем самым увеличивают оптические потери проходящего излучения.

Поэтому применение наночастиц в силиконовой смоле (по сравнению с использованием монолитного материала с высоким показателем преломления в конструкции патента US 2011062469) существенно ухудшает вывод излучения из светодиода.

Техническим результатом, решаемым предлагаемым изобретением, является создание оптического согласующего устройства для светодиода, позволяющего повысить эффективность излучения и сохранить срок службы светодиода за счет низкого значения модуля упругости материала промежуточного слоя, который снижает механические напряжения, возникающие между материалом светодиода и оптическим согласующим элементом из-за различия коэффициентов теплового расширения.

Технический результат в предлагаемом изобретении достигают созданием оптического согласующего устройства, состоящего из оптического согласующего элемента, излучающего полупроводникового светодиода и расположенного между ними промежуточного слоя, причем оптический согласующий элемент выполнен из оптически прозрачного материала, показатель преломления которого подобен показателю преломления излучающего полупроводникового светодиода, в котором, согласно изобретению, промежуточный слой выполнен туннельно-прозрачным, с модулем упругости, более низким по сравнению с модулями упругости полупроводникового светодиода и оптического согласующего элемента.

Снабжение промежуточного слоя наночастицами, размер которых меньше длины волны пропускаемого света (например, красного, зеленого и т.д), с показателем преломления, большим, чем показатель преломления промежуточного слоя, позволяет повысить эффективно показатель преломления туннельно-прозрачного слоя, что повышает коэффициент передачи через слой излучения от светодиода к оптическому согласующему элементу.

Выполнение промежуточного слоя с микро- и нанопустотами (неоднородностями), позволяет снизить модуль упругости материала промежуточного слоя.

Туннельно-прозрачный слой может быть изготовлен непосредственно или на поверхности оптического согласующего элемента, или светодиода и из тех же материалов, что исключает:

необходимость применения других материалов в промежуточном слое,

границу раздела между областью с неоднородностями и материалов, в которых они изготовлены, что приводит к повышению надежности конструкции и увеличению срока службы.

В предлагаемом оптическом согласующем устройстве используют эффект туннелирования света, называемый также эффектом нарушенного полного внутреннего отражения (frusted total internal reflection).

Данный эффект не допускает объяснения в рамках лучевой оптики, однако хорошо описывается и подтверждается экспериментально на основе волновой оптики, использующей при расчетах уравнения Максвелла (http://dic.academic.ru/dic.nsf/enc_physics).

Важнейшим условием проявления туннельного эффекта является толщина слоя.

Для прохождения излучения необходимо, чтобы данный слой был туннельно прозрачным. Размер туннельно прозрачного слоя D не превышает величину порядка длины волны в материале - λ (при больших размерах происходит экспоненциально уменьшение амплитуды туннелирующего излучения).

Различия в распространении света по двум данным законам поясняются на фиг.6, где в колонке слева показан ход лучей в модели на основе лучевой оптики и справа в модели на основе волновой оптики.

Показано, что при тонком слое (относительно длины волны излучения) свет проходит сквозь слой и входит в следующую среду с повышенным показателем преломления. Однако при дальнейшем увеличении толщины слоя свет испытывает полное внутреннее отражение и возвращается в ту среду, из которой выходил.

Эффект туннелирования света (нарушенного полного внутреннего отражения) возникает даже при значительно меньших величинах показателя преломления промежуточного слоя.

В результате применения туннельно-прозрачного слоя становится возможно использовать любые оптически прозрачные материалы с любыми показателями преломления - даже значительно более низкими по сравнению с показателем преломления излучающей поверхности полупроводникового светодиода.

Расширение диапазона применяемых материалов (при создании туннельно прозрачного слоя) позволяет использовать материалы с низкой жесткостью, что снижает механические напряжения на границах раздела материалов, обеспечивает повышение надежности и увеличение срока службы светодиодов.

Оптическое поглощение наночастицами в туннельно прозрачном слое исключительно мало (вследствие туннельно прозрачной толщины).

В то же время даже небольшое увеличение показателя преломления, которое они дают, влияет (вследствие экспоненциальной зависимости коэффициента передачи от показателя преломления) на эффективность вывода излучения.

Применение туннельно-прозрачного эластичного слоя с наночастицами, у которого показатель преломления больше показателя преломления эластичного материала, не ухудшает, а повышает эффективность вывода излучения.

Указанная цель повышения эффективности излучения и сохранения срока службы достигается за счет низкого значения модуля упругости материала туннельно-прозрачного слоя, который снижает механические напряжения, возникающие между материалом светодиода и оптическим согласующим элементом из-за различия коэффициентов теплового расширения.

За счет выполнения промежуточного слоя туннельно-прозрачным становится возможным применять для согласующего элемента материалы, которые имеют подобный полупроводниковому материалу высокий показатель преломления, но совсем другой коэффициент теплового расширения, чем у материала светодиода.

Применение наночастиц в туннельно-прозрачном слое приводит к повышению эффективного показателя преломления слоя, что повышает коэффициент передачи через слой излучения от светодиода к оптическому согласующему элементу.

Повышение коэффициента передачи через промежуточный слой вследствие его малой туннельно-прозрачной толщины не сопровождается эффектами значительного поглощения проходящего излучения или его светорассеяния.

Сущность предлагаемого оптического согласующего устройства светодиода, поясняется нижеследующим описанием и чертежами, где

на фиг.1 изображено схематично предлагаемое оптическое согласующее устройство светодиода (в сечении);

на фиг. 2 изображен вид сверху фиг 1;

на фиг.3 изображено предлагаемое оптическое согласующее устройство, промежуточный слой 2, которого содержит наночастицы;

на фиг. 4 изображено предлагаемое оптическое согласующее устройство промежуточный слой 2, которого выполнен с микро и нано пустотами (неоднородностями);

на фиг. 5 изображен вид А фиг.4;

на фиг. 6 - графические материалы, поясняющие различия в распространении света по двум законам, где в колонке слева показан ход лучей в модели на основе лучевой оптики и справа в модели на основе волновой оптики.

Оптическое согласующее устройство содержит оптический согласующий элемент 1, например, сферической формы, промежуточный слой 2, расположенный между оптическим согласующим элементом 1 и излучающим полупроводниковым светодиодом 3.

Промежуточный слой 2 выполнен туннельно-прозрачным, причем его модуль упругости более низкий по сравнению с модулями упругости полупроводникового светодиода и оптического согласующего элемента.

Причем оптический согласующий элемент выполнен из оптически прозрачного материала, показатель преломления которого подобен показателю преломления излучающего полупроводникового светодиода.

Технология изготовления оптического согласующего устройства базируется на микроэлектронных гибридных технологиях.

Способ изготовления оптического согласующего устройства может состоять, например, из следующих операций:

сначала наносят промежуточный слой 2 на полупроводниковый светодиод 3 и затем устанавливают оптический согласующий элемент 1 на поверхность слоя 2.

Допустимо применение промежуточного слоя 2, который содержит наночастицы с показателем преломления, такими же как показатели преломления материала полупроводникового светодиода 3.

Допустимо также изготовление туннельно-прозрачного слоя непосредственно или на поверхности оптического согласующего элемента или светодиода и из тех же материалов.

Оптическое согласующее устройство светодиода способствует повышению светоотдачи от светоизлучающей плоскости светодиода, без сокращения срока службы.

Был изготовлен и испытан опытный образец оптического согласующего устройства.

Данные об испытаниях приведены в приложениях 1 и 2.

1. Оптическое согласующее устройство, состоящее из оптического согласующего элемента, излучающего полупроводникового светодиода и расположенного между ними промежуточного слоя, причем оптический согласующий элемент выполнен из оптически-прозрачного материала, показатель преломления которого подобен показателю преломления излучающего полупроводникового светодиода, отличающееся тем, что промежуточный слой выполнен туннельно-прозрачным, с модулем упругости более низким по сравнению с модулями упругости полупроводникового светодиода и оптического согласующего элемента.

2. Оптическое согласующее устройство по п.1, отличающееся тем, что промежуточный слой снабжен наночастицами, размер которых меньше длины волны пропускаемого света (например, красного, зеленого и т.д), с показателем преломления, большим, чем показатель преломления промежуточного слоя.

3. Оптическое согласующее устройство по п.1, отличающееся тем, что промежуточный слой выполнен из материала с нано- и микропустотами.



 

Похожие патенты:

Настоящее изобретение относится к области получения наноструктур на поверхности карбида кремния. Cпособ получения наноструктур на поверхности карбида кремния содержит этапы, на которых устанавливают твердую мишень в рабочую кювету с жидкостью, устанавливают рабочую кювету с твердой мишенью на координатный столик, осуществляют лазерную абляцию при помощи Nd:YAG лазера, работающего в импульсном режиме, при этом Nd:YAG лазер осуществляет облучение твердой мишени ультрафиолетовым излучением на длине волны 355 нм, с длительностью импульса 10 пс, с частотой повторения импульса 50 кГц и со средней мощностью 3,5 Вт, и в качестве жидкости используют воду, прошедшую этап очистки в системе обратного осмоса.

Изобретение относится к активным электронным компонентам. Согласно изобретению в отличие от обычного светотранзистора с одним излучающим p-n-переходом в светотиристоре в открытом состоянии два перехода являются излучающими, а один переход поглощает тепловую энергию.

Изобретение относится к осветительной технике, а именно к светодиодным осветительным устройствам, в которых в качестве источников света использованы светоизлучающие диоды.

Данный нитридный полупроводниковый ультрафиолетовый светоизлучающий элемент обеспечивается: базовой секцией структуры, которая включает в себя сапфировую подложку (0001) и слой AlN, сформированный на подложке; и секцией структуры светоизлучающего элемента, которая включает в себя слой покрытия n-типа полупроводникового слоя AlGaN n-типа, активный слой, имеющий полупроводниковый слой AlGaN, и слой покрытия p-типа полупроводникового слоя AlGaN p-типа, при этом упомянутый слой покрытия n-типа, активный слой и слой покрытия p-типа сформированы на базовой секции структуры.

Изобретение относится к светодиодной технике и может быть использовано в устройствах автоблокировки на перегоне и на железнодорожных станциях. Устройство содержит печатную плату 1, линзу 2 с квадратным или круглым основанием 3, снабженную светоприемной полусферической поверхностью 4 и светоизлучающей асферической поверхностью 5, направляющие штыри 6, излучатель света 7 с присоединительными выводами, слой антибликового силикона 8, слой силикон-люминофорной композиции 9, слой корректирующего силиконового обрамления 10.

Полупроводниковое светоизлучающее устройство согласно изобретению содержит многослойную подложку, которая содержит основу; и затравочный слой, связанный с основой; и полупроводниковую структуру, выращенную поверх затравочного слоя, причем полупроводниковая структура содержит светоизлучающий слой, расположенный между областью n-типа и областью p-типа; при этом вариация показателя преломления в направлении, перпендикулярном направлению роста полупроводниковой структуры, находится между основой и светоизлучающим слоем.

Полупроводниковая структура для фотопреобразующего и светоизлучающего устройств состоит из полупроводниковой подложки (1) с лицевой поверхностью, разориентированной от плоскости (100) на (0,5-10) градусов и, по меньшей мере, одного р-n перехода (2), включающего, по меньшей мере, один активный полупроводниковый слой (3), заключенный между двумя барьерными слоями (4) с шириной запрещенной зоны Eg0.

Использование: для получения управляемой последовательности мощных лазерных импульсов. Сущность изобретения заключается в том, что лазер-тиристор содержит катодную область (1), включающую подложку n-типа проводимости (2), широкозонный слой n-типа проводимости (3), анодную область (4), включающую контактный слой p-типа проводимости (5), широкозонный слой p-типа проводимости (6), одновременно являющийся слоем оптического ограничения лазерной гетероструктуры и эмиттером, инжектирующим дырки в активную область (13), первую базовую область (7), слой p-типа проводимости (8), вторую базовую область (9), слой n-типа проводимости (10), волноводную область (12), оптический Фабри-Перо резонатор, образованный естественно сколотой гранью (14) с нанесенным просветляющим покрытием и естественно сколотой гранью (15), первый омический контакт (16), второй омический контакт (18), мезаканавку (19), третий омический контакт (20), при этом параметры материалов слоев первой и второй базовых областей удовлетворяют определенным выражениям.

Изобретение относится к оптоэлектронике и может быть использовано для разработок и производства высокоэффективных источников с управляемым спектром излучения. Источник излучения выполнен в виде двух тонких (менее 0,5 мм) пластин из термостойкого стекла, склеенных вакуумплотно по периметру, на которые нанесены пленочные электроды, на одной - прозрачный, на другой - отражающий.

Изобретение относится к области светотехники и может быть использовано при изготовлении источников света, используемых в составе светотехнического оборудования для общего и местного наружного и внутреннего освещения.

Подложка для оптической системы снабжена тонкоструктурным слоем, включающим в себя точки, состоящие из множества выпуклых или вогнутых участков, проходящих в направлении от главной поверхности подложки наружу поверхности, причем тонкоструктурный слой имеет множество точечных линий, в которых множество точек размещено с шагом Py в первом направлении на главной поверхности подложки, в то же время имея множество точечных линий, в которых множество точек размещено с шагом Px во втором направлении, ортогональном первому направлению, на главной поверхности подложки, один из шага Py и шага Px является постоянным интервалом нанометрового диапазона, тогда как другой является непостоянным интервалом нанометрового диапазона, или оба они являются непостоянными интервалами нанометрового диапазона. Изобретение повышает относительную световую эффективность СИД, одновременно повышая внутреннюю квантовую эффективность IQE за счет уменьшения количества дислокационных дефектов в слое полупроводника. 5 н. и 17 з.п. ф-лы, 26 ил., 1 табл.

Изобретение относится к области светотехники. Техническим результатом является повышение эффективности теплоотвода и упрощение конструкции. Осветительное устройство (100) содержит источник (110) света, скомпонованный для генерации света, несущий элемент (120), скомпонованный для поддержки источника света, и колбу (130), ограждающую источник света и несущий элемент. При этом упомянутая колба (130) и несущий элемент (120) выполнены из керамического материала. Несущий элемент (120) скомпонован в непосредственном тепловом контакте с колбой (130) вдоль контактной поверхности так, что вся поверхность колбы используется для рассеяния тепла из осветительного устройства. 12 з.п. ф-лы, 6 ил.

Изобретение относится к области электронной техники и техники освещения на основе полупроводниковых светоизлучающих диодов (СИД), а именно к фотолюминофорной смеси для приготовления фотолюминесцентной пленки белых светодиодов. Смесь содержит связующее, пластификатор, растворитель и порошок фотолюминофора желто-оранжевого свечения на основе активированного церием редкоземельного граната (ΣLn)3Al5O12, где Ln - лантаноиды, включающие иттрий, церий, гадолиний. При этом соотношении компонентов следующее, мас. %: указанный порошок фотолюминофора - 3,0-30,0; связующее - 3,0-15,0; пластификатор - 0,08-1,0; растворитель - остальное. Указанный порошок фотолюминофора имеет гранулометрический состав кристаллитов в диапазоне от 3 до 20 мкм. Изобретение позволяет получить состав фотолюминофорной смеси для изготовления фотолюминесцентной пленки белых светодиодов с пониженной цветовой температурой, увеличенной световой отдачей и высокой однородностью свечения. 4 ил., 1 табл.

Изобретение относится к светодиоду или лазерному диоду и способу его изготовления. Нитридный полупроводниковый элемент 1 включает в себя основную структурную часть 5 и структурную часть 11 элемента, сформированную на основной структурной части 5 и имеющую, по меньшей мере, полупроводниковый слой 6 AlGaN n-типа и полупроводниковые слои 8, 9, 10 AlGaN p-типа и дополнительно включает в себя n-электродную контактную часть 13а, образованную на полупроводниковом слое 6 AlGaN n-типа, n-электродную часть 13b контактной площадки, образованную на n-электродной контактной части 13a, и p-электрод 12, образованный на полупроводниковых слоях 8, 9, 10 AlGaN p-типа, причем мольная доля AlN в полупроводниковом слое 6 AlGaN n-типа составляет 20% или более, n-электродная контактная часть 13а включает в себя один или более металлических слоев, и p-электрод 12 и n-электродная часть 13b контактной площадки имеют общую наслоенную структуру из двух или более слоев со слоем Au как самым верхним слоем и слоем, предотвращающим диффузию Au, состоящим из проводящего оксида металла и образованным под самым верхним слоем для предотвращения диффузии Au. Настоящее изобретение позволяет предотвратить образование сплава Au на поверхности n-электрода и на поверхности p-электрода в нитридном полупроводниковом элементе. 2 н. и 11 з.п. ф-лы, 9 ил.

Светоизлучающее диодное (СИД) устройство содержит кристалл (40) СИД, содержащий светоизлучающий полупроводниковый слой (20), эпитаксиально выращенный на подложке роста и продолжающийся, по существу, по всему кристаллу СИД, причем кристалл СИД имеет верхнюю поверхность, содержащую слой (28) растекания тока, покрывающий полупроводниковый слой; и металлический электродный рисунок (42, 44, 46) только на участке верхней поверхности для пропускания тока через СИД для питания СИД, причем упомянутый электродный рисунок содержит множество металлических контактов (42) на верхней поверхности, имеющих ширины приблизительно между 2 и 10 разами больше, чем длина Lt передачи контактов, где длина передачи определяется из соотношения связывающего поверхностное сопротивление в Омах на квадрат слоя растекания тока и контактное удельное сопротивление границы раздела контакта и слоя растекания тока в Ом/м2, причем металлические контакты, по существу, блокируют свет, излученный светоизлучающим полупроводниковым слоем; и металлические соединения (44), соединяющие одни из контактов друг с другом, причем металлические соединения имеют ширины меньше чем 2Lt. Изобретение обеспечивает уменьшение контактного сопротивления и улучшение равномерности распределения тока без снижения светоотдачи. 18 з.п. ф-лы, 14 ил.

Изобретение относится к области изготовления наноструктурных материалов и может быть использовано в оптоэлектронике для производства светоизлучающих индикаторов. Способ получения пористого кремния со стабильной фотолюминесценцией согласно изобретению осуществляют путем анодного электрохимического травления монокристаллической кремниевой подложки в электролите, состоящем из плавиковой кислоты, этанола и водного раствора перманганата калия при освещении подложки и в темноте. Изобретение позволяет получить пленки пористого кремния, обладающие стабильными спектрами фотолюминесценции при длительном хранении в естественных условиях.

Изобретение относится к светоизлучающим устройствам, которые способны преобразовывать высокоэнергетическое первичное излучение во вторичное излучение с большей длиной волны в видимой области спектра, и могут быть использованы в качестве преобразователей излучения в светоизлучающих устройствах, излучающих цветной или белый свет. Светоизлучающее устройство согласно изобретению содержит первый светоизлучающий диод, поверхностно-модифицированный люминофор, выполненный с возможностью поглощать свет, излучаемый из первого светоизлучающего диода, и излучать свет, имеющий отличную от поглощенного света длину волны, причем поверхностно-модифицированный люминофор содержит силикатный люминофор, и фторированное покрытие, расположенное на силикатном люминофоре. Изобретение имеет улучшенную устойчивость к влажности воздуха и другим факторам окружающей среды, и увеличенный эксплуатационный ресурс. 15 з.п. ф-лы, 11 ил., 6 табл.

Изобретение относится к области электронной техники. Техническим результатом является обеспечение высокой эффективности светодиодного источника белого света с удаленным конвертером, обеспечение высокой цветовой однородности, а также возможность задавать диаграмму направленности испускаемого светового потока при малом размере светодиодного источника белого света. В светодиодном источнике белого света, содержащем корпус и рефлектор, корпус выполнен из теплорассеивающего материала, внутренняя часть корпуса выполнена в виде по меньшей мере одного сегментированного рефлектора, формирующего диаграмму направленности распределения светового потока, содержащего слой отражающего материала, состоящий из по меньшей мере одного слоя, и слой светопропускающего диэлектрического материала, состоящий из по меньшей мере одного слоя. По меньшей мере один кристалл светоизлучающего диода (СИД) закреплен внутри корпуса. Сверху корпус накрыт конвертером, выполненным из по меньшей мере одного слоя светопропускающего материала. По меньшей мере на одну сторону конвертера нанесен слой точечного люминофора. Сторона конвертера, направленная к по меньшей мере одному кристаллу СИД, покрыта слоем отражающего материала, состоящим из по меньшей мере одного слоя. 3 н. и 26 з.п. ф-лы, 9 ил., 1 табл.

Использование: для изготовления твердотельных светоизлучающих диодов. Сущность изобретения заключается в том, что светоизлучающий диод содержит множество слоев, причем первый слой из данного множества слоев содержит наноструктурированную поверхность, которая содержит квазипериодический анизотропный массив удлиненных ребристых элементов, имеющих рисунок волнообразной структуры, причем каждый ребристый элемент имеет волнообразное поперечное сечение и ориентирован по существу в первом направлении. Технический результат: обеспечение возможности повышения КПД тонкопленочного СИД, уменьшения потерь света и исключения неравномерного распределения тока. 4 н. и 16 з.п. ф-лы, 24 ил.

Изобретение относится к области полупроводниковых светоизлучающих приборов, а именно, к светоизлучающим устройствам, содержащим эпитаксиальные структуры на основе нитридных соединений металлов III группы - алюминия, галлия, индия (AIIIN). Сущность изобретения заключается в том, что в светоизлучающем устройстве, содержащем расположенные на общей изолирующей подложке и разделенные промежутками светоизлучающие элементы, каждый из которых включает эпитаксиальную структуру, содержащую расположенные последовательно в направлении эпитаксиального роста слой n-типа проводимости, активный слой с p-n-переходом и слой р-типа проводимости, а также металлическую n-контактную площадку к слою n-типа проводимости, размещенную в углублении, сформированном в эпитаксиальной структуре на уровне слоя n-типа проводимости, и первый металлический слой, нанесенный поверх слоя р-типа проводимости, при этом, по меньшей мере, для части светоизлучающих элементов слой n- типа проводимости одного светоизлучающего элемента электрически связан со слоем р-типа проводимости соседнего с ним светоизлучающего элемента с обеспечением их последовательного электрического соединения, согласно изобретению металлическая контактная площадка к слою n-типа проводимости каждого светоизлучающего элемента в горизонтальной плоскости сечения имеет вид протяженной узкой полосы, ориентированной вдоль двух его противоположных сторон и размещенной в центральной части указанного сечения так, что концевые участки указанной полосы расположены с зазором относительно двух других противоположных сторон указанного сечения, при этом устройство содержит изоляционный слой, в каждом светоизлучающем элементе расположенный поверх первого металлического слоя и покрывающий боковую поверхность углубления, сформированного в эпитаксиальной структуре для размещения металлической контактной площадки к слою n-типа проводимости, а также покрывающий поверхность разделяющих светоизлучающие элементы промежутков, и второй металлический слой, расположенный поверх изоляционного слоя и контактирующий в каждом светоизлучающем элементе в сформированном в эпитаксиальной структуре углублении со слоем n-типа проводимости с образованием металлической контактной площадки к слою n-типа проводимости, причем в каждом светоизлучающем элементе в изоляционном слое имеется выборка, образующая сквозное окно, в месте расположения которого первый и второй металлические слои контактируют друг с другом, а во втором металлическом слое на участке поверхности светоизлучающего элемента, расположенном вблизи указанной выборки, по всей поверхности элемента выполнен разрыв, расположенный таким образом, что слой n-типа проводимости одного светоизлучающего элемента электрически связан со слоем р-типа проводимости соседнего с ним светоизлучающего элемента. Изобретение обеспечивает повышение эффективности излучения высоковольтного светоизлучающего устройства. 2 ил.
Наверх