Способ определения температуры газа в рабочей полости роторной машины

Изобретение относится к области термометрии и может быть использовано для определения температуры газа в рабочей полости роторной машины, например компрессора, вакуум-насоса. Температура газа определяется в рабочей полости роторной машины, в полом корпусе которой размещены два ротора, каждый из которых имеет два выступа и две впадины. Температуру газа в рабочей полости роторной машины определяют как значение температуры, измеренное одним датчиком, который закреплен в одной из впадин одного из двух вращающихся роторов. На одном из двух выступов ответного ротора выполнена канавка для предотвращения повреждения датчика температуры выступом этого ротора в процессе вращения роторов. Для предотвращения перетечек газа из полости высокого давления профиль канавки в поперечном сечении ротора представляет собой кривую сопряжения с траекторией движения поверхности датчика при вращении роторов с учетом эквидистантного занижения на величину минимального зазора. Технический результат - повышение точности измерения температуры газа в рабочей полости роторной машины. 1 ил.

 

Изобретение относится к экспериментальной теплофизике и может быть использовано для определения температуры газа в рабочей полости роторной машины, например компрессора, вакуум-насоса.

Особенностью конструкции роторных машин является то, что поверхность их внутреннего корпуса соприкасается с поверхностью выступа ротора на протяжении всего рабочего процесса, а радиальный зазор между ними составляет 0,1 мм. Поэтому установка датчиков для измерения температуры газового потока является затруднительной.

Наиболее близким по технической сущности является способ определения температуры газа в рабочей полости роторной машины, согласно которому датчики закреплены на стенке полого корпуса машины, а температура газа в рабочей полости определяется как среднее значение температур, измеренных датчиками, для предотвращения повреждения датчиков в процессе вращения роторов на обеих поверхностях одного из двух роторов изготовлены канавки, профиль дна которых в поперечном сечении ротора представляет собой дугу окружности, см. RU, Патент №2474797, МПК G01K 13/02 (2006.01), 2013.

Недостатком этого способа является наличие канавок на обеих поверхностях ротора, что приводит к перетечкам газа со стороны нагнетания на сторону всасывания, это уменьшает коэффициент полезного действия машины; в процессе вращения роторов датчики находятся в струе перетекаемого через канавку газа, это вносит погрешность при измерении температуры в рабочей полости роторной машины, кроме того, осреднение значений температуры по показаниям нескольких датчиков вносит дополнительную погрешность.

Задачей изобретения является определение температуры газа в рабочей полости роторной машины без повреждения датчика при вращении роторов и обеспечение технического результата, заключающегося в упрощении и повышении точности измерения.

Техническая задача решается способом определения температуры газа в рабочей полости роторной машины, в полом корпусе которой размещены два ротора, каждый из которых имеет два выступа и две впадины, в котором температуру газа в рабочей полости определяют как значение температуры, измеренное датчиком, закрепленным в одной из впадин одного из двух вращающихся роторов, при этом на одном из двух выступов ответного ротора выполнена канавка для предотвращения повреждения датчика температуры выступом этого ротора в процессе вращения роторов, а для предотвращения перетечек газа из полости высокого давления профиль канавки в поперечном сечении ротора представляет собой кривую сопряжения с траекторией движения поверхности датчика при вращении роторов с учетом эквидистантного занижения на величину минимального зазора.

Решение технической задачи позволяет определить температуру газа в рабочей полости роторной машины без повреждения датчика при вращении роторов и обеспечить технический результат, заключающийся в упрощении и повышении точности измерения.

На фиг. 1 изображено сечение роторной машины, где: 1 - полый корпус роторной машины, 2, 3 - роторы, 4 - выступ ротора, 5 - впадина ротора, 6 - датчик температуры, 7 - канавка.

Заявляемый способ определения температуры газа в рабочей полости роторной машины проиллюстрирован на примере роторной машины, в полом корпусе 1 которой размещены два ротора 2 и 3, каждый из которых имеет два выступа 4 и две впадины 5 (фиг. 1). На роторе 3 закреплен датчик 6 температуры. На одном из выступов ротора 2 выполнена профильная канавка 7. Для предотвращения перетечек газа из полости высокого давления дно канавки в поперечном сечении ротора представляет собой кривую сопряжения с траекторией движения поверхности датчика 6 при вращении роторов с учетом эквидистантного занижения на величину минимального зазора. Датчик температуры 6 установлен таким образом, чтобы при вращении он не повреждался ротором 2, оставаясь в канавке 7.

Измерение температуры осуществляют в процессе вращения роторов 2 и 3, при котором датчик температуры 6 осуществляет относительное перемещение в канавке 7 ротора 2. Данные с датчика 6 снимаются при помощи токосъемника.

Заявляемый способ определения температуры газа в рабочей полости роторной машины по сравнению с прототипом позволяет получать значения температуры в зависимости от угла поворота ротора, что не требует дополнительных расчетов по осреднению полученных данных. Кроме того, наличие лишь одной канавки со специальным профилем в поперечном сечении не оказывает практического влияния на коэффициент полезного действия роторной машины.

Определение температуры газа в рабочей полости роторной машины позволяет рассчитать параметры теплообмена между газом и стенками полого корпуса, которые заложены в уравнении математической модели рабочего процесса машины. Математическая модель используется для проектирования и оптимизации роторной машины.

Таким образом, решение технической задачи по сравнению с прототипом позволяет определять температуру газа в рабочей полости роторной машины без повреждения датчика при вращении роторов и обеспечивает технический результат, заключающийся в упрощении и повышении точности измерения.

Способ определения температуры газа в рабочей полости роторной машины, в полом корпусе которой размещены два ротора, каждый из которых имеет два выступа и две впадины, отличающийся тем, что температуру газа в рабочей полости определяют как значение температуры, измеренное датчиком, закрепленным в одной из впадин одного из двух вращающихся роторов, при этом на одном из двух выступов ответного ротора выполнена канавка для предотвращения повреждения датчика температуры выступом этого ротора в процессе вращения роторов, а для предотвращения перетечек газа из полости высокого давления профиль канавки в поперечном сечении ротора представляет собой кривую сопряжения с траекторией движения поверхности датчика при вращении роторов с учетом эквидистантного занижения на величину минимального зазора.



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано для измерения температуры в первичном потоке двухвального двухконтурного турбореактивного двигателя.

Изобретение относится к области термометрии и предназначено для определения максимальных температур в камерах сгорания авиадвигателей различного назначения. Газодинамический насадок для определения температуры газа включает проточную камеру с входным и выходным патрубками и жиклерами в них.

Изобретение относится к области дистанционного измерения высоких температур газов и может быть применено для экспериментальных исследований рабочего процесса силовых установок.

Изобретение относится к термометрии и может быть использовано для измерения температуры быстропротекающих высокотемпературных процессов в газодинамике. Устройство содержит термопару в металлическом корпусе, рабочий спай которой расположен внутри защитного наконечника, выступающего за пределы корпуса.

Изобретение относится к измерительной технике, а именно к измерителям уровня путем измерения емкости конденсаторов, и предназначено для измерения температуры и уровня продукта, заполняющего хранилище.

Изобретение относится к области авиации и может быть использовано для корректировки температурных параметров в турбореактивном двигателе летательного аппарата.

Изобретение относится к области термостатического регулирования и может быть использовано при изготовлении водоразборных кранов-смесителей. Заявлен патрон (1), содержащий термостатический элемент (72), который подвергается тепловому воздействию со стороны смеси холодной текучей среды и горячей текучей среды, который механически связан с заслонкой регулирования (70) и который перемещается при помощи единственной рукоятки (50) управления расходом и температурой этой смеси.

Изобретение относится к области авиации и может быть использовано для оценки температурных параметров в турбореактивном двигателе летательного аппарата. Заявленный способ оценивания по изобретению содержит этап цифрового моделирования температуры потока с помощью моделированного сигнала (T1) и этап коррекции этого моделированного сигнала с помощью сигнала (T2) ошибки.

Изобретение относится к области термометрии и может быть использовано для измерения температуры газов автотранспортных средств. Заявлен температурный датчик, содержащий термочувствительный элемент (3), периферический кожух (7) с закрытым концом (9), в котором находится термочувствительный элемент (3).

Изобретение относится к экспериментальной теплофизике и может быть использовано для определения температуры газа в рабочей полости роторной машины. .

Изобретение относится к области термометрии и может быть использовано в процессе измерения температуры текучей среды в технологическом процессе. Предложена сенсорная трубка (12) для защиты датчика (13), введенного в движущуюся технологическую текучую среду. Сенсорная трубка (12) включает в себя участок (16) контакта с технологической текучей средой для установки в технологической емкости и удлиненный участок, проходящий от участка (16) контакта с технологической текучей средой до герметично закрытого конца (22). Удлиненный участок включает в себя скрученный участок (20), имеющий продольную ось. Участок (16) контакта с технологической текучей средой и удлиненный участок образуют канал (36) для датчика, выполненный с возможностью размещения в нем датчика (13). Скрученный участок (20) имеет поперечное сечение, которое включает в себя по меньшей мере три стенки одинакового размера, которые образуют многоугольник, и в котором стенки образуют спирали вдоль продольной оси скрученного участка. Технический результат - повышение прочностных и рабочих характеристик устройства. 3 н. и 17 з.п. ф-лы, 7 ил.

Изобретение относится к области термографии и может быть использовано при создании технологии тепловизионного определения количественных пульсационных характеристик турбулентности неизотермического потока жидкости. Согласно заявленному способу осуществляют промер температурного поля с помощью тепловизора, получая тепловизионную термовидеограмму и находя последовательное изменение температуры в n-м количестве кадров, взятых из цифрового тепловизионного фильма в каждом контрольном пикселе. Выбирают сосуд с прозрачной для инфракрасного излучения стенкой, заполняют его жидкостью и осуществляют промер теплового потока в зоне пограничного с внутренней поверхностью стенки сосуда слоя. Причем предварительно проводят точную фокусировку макрообъектива на внутренней поверхности стенки сосуда. Затем по тепловизионной термовидеограмме определяют зависимость амплитуды пульсаций теплового потока от времени и с помощью прямого преобразования Фурье строят спектральные кривые пульсаций теплового потока в контрольных точках, по которым выделяют и сравнивают частоты изменения теплового потока. После определяют степенной закон и по результатам сравнения идентифицируют участки турбулентного спектра. Съемку цифрового тепловизионного фильма проводят с частотой кадров, как минимум вдвое превышающей измеряемую частоту пульсаций теплового потока. Технический результат - повышение точности и достоверности получаемых данных. 1 з.п. ф-лы, 4 ил.

Изобретение относится к области дистанционного измерения температур и касается способа измерения температуры потока газа с поглотителем. Измерение температуры проводят в, по крайней мере, трех слоях заданной толщины. При осуществлении способа производят юстировку оптической системы для одного из средних слоев газа. Измеряют парциальное давление в каждом слое газа и определяют содержание поглотителя в потоке газа. Перемещают источник излучения вдоль линии визирования и измеряют величину изменения сигнала в зависимости от расфокусировки оптической системы. Определяют для каждого слоя газа характеристику спектра излучения потока газа. Определяют величину изменения сигнала источника излучения при прохождении его к приемнику излучения через поток газа. По полученным величинам изменения сигнала вычисляют поправочный коэффициент для каждого слоя газа. Для каждого слоя газа вычисляют зависимость значений волнового числа поглотителя от температуры газа. Температуру в каждом слое определяют с учетом поправочного коэффициента по точке пересечения линии, отображающей зависимость волнового числа поглотителя в этом слое от температуры газа с линией, полученной по результатам измерения спектра излучения, соответствующего этому слою газа. Технический результат заключается в обеспечении возможности получения информации о распределении температуры по всему сечению потока газа. 6 ил.

Изобретение относится к области измерительной техники и может быть использовано для измерения температуры движущихся газовых сред на выходе из реакторов и теплообменных аппаратов с различной структурой теплообменных поверхностей. Предложен сетчатый комбинированный термоприемник, содержащий преобразователь температуры в виде сетки из нитей со специальным покрытием, а также тепловизионную камеру, имеющую в своем составе монитор. Преобразователь температуры содержит, по крайней мере, одну термопару, представляющую собой вплетенный в ячейку сетки нитевидный элемент, диаметр и цилиндрический спай которого совпадает с диаметром нитей сетки. Расстояние между нитями сетки составляет 50-1000 мкм, а толщина нитей сетки составляет 2-100 мкм. В качестве специального покрытия нитей сетки и термопары используется зечернение. Степень черноты поверхности нитей сетки и термопары ε составляет порядка 1. Для осуществления способа измерения температурного поля газового потока в каналах в качестве преобразователя температуры используют сетку из нитей со специальным покрытием, которую размещают перпендикулярно потоку измеряемой среды. Температуру определяют по температурному полю сетки, формируемому при прогреве или охлаждении нитей сетки. Преобразователь температуры размещают непосредственно на выходном срезе канала, или внутри канала, или перед каналом. Технический результат - повышение разрешающей способности и точности измерения температурного поля газового потока в каналах. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области измерения температурных полей газовых потоков, в частности к области измерения температуры плазменного потока. Предложен способ измерения температуры плазменного потока, по которому теплоприемник устанавливают так, что одна из ограничивающих его поверхностей омывается плазмой. Измеряют температуру на противоположной ей поверхности теплоприемника. При этом температуру омываемой поверхности теплоприемника и тепловой поток через нее от плазменного потока находят с использованием решения граничной обратной задачи нестационарной теплопроводности, а температуру плазменного потока вычисляют исходя из найденного теплового потока от плазмы с учетом конвективной и лучистой его составляющих. Технический результат - повышение точности измерения температуры плазменного потока. 5 ил.

Изобретение относится к термометрии и может быть использовано для измерения быстропротекающих высокотемпературных процессов в газодинамике и построения систем автоматического регулирования температуры. Быстродействующее устройство измерения температуры газового потока состоит из двух каналов измерения для реализации дифференциальной схемы и блока обработки информации. Каждый канал измерения содержит струйный генератор, пьезоэлектрический преобразователь для преобразования акустического сигнала в электрический, электронно-перестраиваемый фильтр, компаратор фаз, ключ, генератор пилообразного напряжения, одновибратор, преобразователь напряжение-код. Блок обработки информации содержит вычитатель кодов, один элемент «ИЛИ», три схемы «И», первый и второй инвертор, два делителя кодов. В устройстве реализуется принцип фазовой автоподстройки первой гармоники частоты полигармонического сигнала с применением электронно-перестраиваемого фильтра, управляемого генератором пилообразного напряжения, и цифровой обработки измерительной информации, реализующей дифференциальный способ измерения. Технический результат - повышение быстродействия и точности, а также упрощение схемы устройства для измерения температуры газового потока, с сохранением работоспособности при выходе из строя одного из каналов измерения. 1 табл., 2 ил.

Изобретение относится к технике приборостроения и может быть использовано для визуального контроля, поверки, достоверности и исправности электроцепей термоэлектрического преобразователя. Согласно предложенному решению в излучаемый объект, преимущественно термометр световой профильный и входящие в его состав указатель температуры выходящих газов двигателя воздушного судна и колодку переходную компенсирующую, расположенные в газогенераторном контуре двигателя воздушного судна, устанавливают упомянутый термочувствительный элемент, выполненный в виде упомянутых термопар, и определяют при нагревании термопар ключевые точки значений температур. Затем отсоединяют термопары от колодки переходной и на их место посредством клемм соединительного кабеля подсоединяют второй чувствительный элемент, в качестве которого используют прибор имитатор температуры выходных газов двигателя, выполненный в виде пластикового корпуса с размещенными на нем переключателем температуры, эквивалентной ЭДС упомянутой термопары, выключателем питания и светодиодным индикатором наличия питания и включающий в себя батарейный отсек с четырьмя элементами питания суммарным напряжением 6 вольт, печатную плату с радиоэлементами схемы источников напряжения, имитирующих ЭДС термопары. Осуществляют упомянутую операцию, заключающуюся в периодическом сличении показаний температуры и напряжения, а в случае расхождения показаний от упомянутого указателя температуры выходящих газов с показаниями, снятыми с бортовой автоматизированной системы контроля, локализируют причину расхождения показаний и устраняют неисправности электроцепей термометра светового профильного и входящих в его состав вышеупомянутых указателя температуры выходящих газов двигателя воздушного судна и колодки переходной компенсирующей без запуска двигателя воздушного судна. Технический результат - улучшение характеристик точности и качества поверки и контроля электроцепей термоэлектрического преобразователя. 2 н. и 1 з.п. ф-лы, 6 ил.

Изобретение относится к области контактных измерений температуры высокотемпературных газов, в частности к средствам измерения температуры газа и распределения ее значений в полостях высокотемпературных элементов газотурбинных двигателей, и может быть применено для экспериментальных исследований рабочего процесса силовых установок при проведении аэродинамических испытаний. Устройство для определения температуры газа в полых высокотемпературных элементах газотурбинных двигателей содержит размещенные в высокотемпературном элементе корпус с цилиндрической державкой, установленные в державке основную и по меньшей мере одну компенсационную термопары, подключенные через блоки регистрации к электронному сумматору, причем термоспаи основной и компенсационной термопар выполнены одинаковыми по размерам и теплоизолированы между собой. Согласно изобретению устройство снабжено источником постоянного излучения, выполненным с возможностью размещения его в полости высокотемпературного элемента и перемещения относительно корпуса устройства, который установлен в высокотемпературном элементе с возможностью возвратно-поступательного перемещения, державка установлена в корпусе с возможностью поворота вокруг своей оси и снабжена приводом, а поверхностный слой термоспая компенсационной термопары выполнен из материала, коэффициент поглощения которого отличается по значению от коэффициента поглощения материала поверхностного слоя термоспая основной термопары. Технический результат - исключение искажений показаний термопар, связанных с лучистым теплообменом их термоспаев. 3 ил.

Изобретение относится к термометрии и может быть использовано для измерения температуры быстропротекающих высокотемпературных процессов в газодинамике. Устройство представляет собой металлический блок, выполненный в виде соединенного с корпусом цилиндра с продольным осевым каналом, в котором размещена термопара, представляющая собой металлическую трубку с керамической вставкой, в которой проходят термопарные провода, выступающие на конце термопары за пределы металлической трубки с керамической вставкой и соединенные в рабочий спай. Термопарные провода в металлической трубке с керамической вставкой расположены в керамической вставке под углом в 90° по отношению друг к другу по четырем углам вставки максимально близко к месту сопряжения вставки с металлической трубкой термопары при условии соблюдения достаточности электрического сопротивления между термопарными проводами и металлической трубкой термопары. При этом выступающие за пределы вставки четыре термопарных провода предварительно скручены в области термоспая и соединены в рабочий спай с помощью лазерной сварки по поверхности термопарных проводов на глубину половины диаметра термопарного провода с соотношением длины термоспая к общей длине выступающих термопарных проводов как 1:3, а точки выхода двух термопарных проводов из вставки по отношению к направлению набегающего газового потока ориентированы продольно. Технический результат - повышение быстродействия устройства при сохранении его механической прочности и устойчивости к газодинамическим нагрузкам от газового потока. 1 ил.

Изобретение относится к термометрии и может быть использовано для измерения быстропротекающих температурных процессов в газодинамике. Предложено дифференциальное устройство измерения температуры газового потока, состоящее из двух каналов измерения, каждый из которых содержит струйный генератор и пьезоэлектрический преобразователь. В каналы измерения введены адаптивные селекторы, входы которых соединены с выходами пьезоэлектрических преобразователей, а выходы соединены с входами схемы вычитания частот блока обработки информации, выход которого через вход элемента «ИЛИ» поступает на выход всего устройства. Выходы адаптивных селекторов подсоединены к первым входам соответствующих схем «И», вторые входы которых соединены через инверторы с выходом противоположного адаптивного селектора, а выходы схем «И» через соответствующие делители частот соединены с входами элемента «ИЛИ». Технический результат - повышение быстродействия и точности в сочетании с его упрощением. 2 ил.

Изобретение относится к области термометрии и может быть использовано для определения температуры газа в рабочей полости роторной машины, например компрессора, вакуум-насоса. Температура газа определяется в рабочей полости роторной машины, в полом корпусе которой размещены два ротора, каждый из которых имеет два выступа и две впадины. Температуру газа в рабочей полости роторной машины определяют как значение температуры, измеренное одним датчиком, который закреплен в одной из впадин одного из двух вращающихся роторов. На одном из двух выступов ответного ротора выполнена канавка для предотвращения повреждения датчика температуры выступом этого ротора в процессе вращения роторов. Для предотвращения перетечек газа из полости высокого давления профиль канавки в поперечном сечении ротора представляет собой кривую сопряжения с траекторией движения поверхности датчика при вращении роторов с учетом эквидистантного занижения на величину минимального зазора. Технический результат - повышение точности измерения температуры газа в рабочей полости роторной машины. 1 ил.

Наверх