Способ получения нанокристаллических порошков гафната диспрозия и керамических материалов на их основе


 


Владельцы патента RU 2565712:

Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (RU)
федеральное государственное автономное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет "МИФИ" (НИЯУ МИФИ) (RU)

Изобретение может быть использовано при изготовлении нейтронопоглощающих материалов для стержней регулирования систем управления и защиты ядерных реакторов. Способ получения керамических материалов на основе нанокристаллических порошков гафната диспрозия включает изготовление смешанного гидроксида диспрозия и гафния путем растворения в воде солей HfOCl2·8H2O и Dy(NO3)3·5H2O и добавления полученного раствора к раствору аммиака. Далее проводят фильтрацию и промывку полученного осадка, сушку с последующим прокаливанием до получения гафната диспрозия, его размол, прессование и отжиг полученных компактов. Стадию сушки и прокаливания смешанного гидроксида проводят под действием СВЧ-излучения с непрерывной мощностью 1,5-6,0 кВт. При этом ступенчато изменяют температуру в течение 1,0-1,5 час до получения нанокристаллического порошка гафната диспрозия. Изобретение позволяет сократить длительность сушки и прокаливания смешанного гидроксида диспрозия и гафния и получить керамические материалы с высокой плотностью. 4 пр.

 

Предлагаемое изобретение относится к технологии неорганических материалов, в частности к способам получения порошков и керамики на основе гафната диспрозия, и может быть использовано для изготовления нейтронопоглощающих материалов для стержней регулирования систем управления и защиты ядерных реакторов водо-водяного типа [1].

Известен способ получения поглотителя нейтронов на основе гафната диспрозия (Dy2O3·HfO2) [2], согласно которому смесь оксидов диспрозия (12-85 мас. %), гафния (0,5-87 мас. %) и ниобия (0,5-20 мас. %) расплавляют методом высокочастотного индукционного плавления в холодном тигле. Быстрое охлаждение расплава, после окончания синтеза, приводит к получению однофазного гафната диспрозия, имеющего гранецентрированную кубическую (ГЦК) структуру флюорита.

Недостатком данного способа является высокая температура синтеза (свыше 2300°С), что приводит к увеличению эксплуатационных расходов из-за использования специального комплекса аппаратуры (установки «Кристалл-401»), неоднородности получаемого порошка по химическому и фазовому составу из наличия гарнисажного слоя, а также ограниченные эксплуатационные возможности получаемого гафната диспрозия, а именно его использование только в виде порошка. Это объясняется тем, что невозможно получить прочные и плотные изделия (таблетки) из материала, который был синтезирован в расплаве при температуре, значительно превышающей температуру спекания таблеток, из-за очень высокой твердости порошка.

Проблему компактирования предлагается решить использованием нанокристаллического состояния. Наиболее эффективным способом получения нанокристаллических порошков смешанных оксидов, содержащих несколько катионов, является химический метод, основанный на соосаждении смеси солей этих металлов путем нейтрализации щелочным агентом, фильтрации и промывке полученного осадка смешанного гидроксида, его сушке и дальнейшем прокаливании до соответствующего оксида [3]. Данный метод позволяет существенно снизить температуру прокаливания, получая при этом однофазные нанокристаллические порошки в широком диапазоне размеров кристаллитов (от 3-5 до 100 нм). В работе [4] для снижения агрегации нанопорошков диоксида циркония стадии сушки и прокаливания гидроксида циркония проводят под действием СВЧ-излучения.

Наиболее близким к предлагаемому изобретению и принятому в качестве прототипа является способ получения порошков состава Ln2+xM2-xO7-ч/2, где Ln - редкоземельный элемент, М - металл подгруппы IVB (Ti, Zr, Hf), описанный в работе [5], согласно которому раствор, полученный в результате растворения солей Dy(NO)3)3·5H2O и HfOCl2·8H2O, при интенсивном перемешивании дозируют к раствору аммиака (NH4OH). Полученную суспензию фильтруют и далее осадок смешанного гидроксида диспрозия и гафния промывают, сушат при 90°С в течение 12 час и прокаливают в муфельной печи при 800°С в течение 3 час. Полученный однофазный нанокристаллический порошок гафната диспрозия Dy2HfO5 (размер области когерентного рассеяния - ОКР - 8 нм) мехактивируют в планетарной мельнице, прессуют и далее компактированную таблетку спекают при 1550°С в течение 4 час. Главным недостатком описанного способа является длительность процесса термообработки промытого осадка смешанного гидроксида диспрозия и гафния с получением нанокристаллического порошка гафната диспрозия.

Технический результат, заключающийся в уменьшении длительности процесса термообработки промытого осадка смешанного гидроксида с получением нанокристаллического порошка гафната диспрозия с 12 час до 1,0-1,5 час, достигается тем, что в известном способе, включающем изготовление смешанного гидроксида диспрозия и гафния путем растворения в воде солей HfOCl2·8H2O и Dy(NO3)3·5H2O и добавления полученного раствора к раствору аммиака, фильтрацию и промывку полученного осадка, сушку с последующим прокаливанием до получения гафната диспрозия, его размол, прессование и отжиг полученных компактов, при этом стадию сушки и прокаливания смешанного гидроксида проводят под действием СВЧ-излучения с непрерывной мощностью 1,5-6,0 кВт, ступенчато изменяя температуру в течение 1,0-1,5 час до получения нанокристаллического порошка гафната диспрозия.

Использование СВЧ-нагрева как на стадии сушки смешанного гидроксида диспрозия и гафния, так и его прокаливания приводит к сокращению длительности процесса термообработки промытого осадка поскольку процесс основан на проникновении электромагнитной энергии в материал и ее поглощении, в результате чего вся поглощенная материалом энергия преобразуется в тепловую энергию. Процесс является объемным и практически безынерционным, поэтому он обеспечивает равномерный нагрев по всему объему материала. Распределение температуры в материале оказывается противоположным существующему при традиционной тепловой обработке (в сушильном шкафу или муфельной печи), а именно, максимум температуры находится в середине тела. При этом распределение температуры в теле материала создает наиболее благоприятные условия для ускорения диффузии пара, выделяющегося из внутренних слоев смешанного гидроксида к периферийным, так как все три градиента (температура, давление, концентрация), определяющие скорость диффузии, здесь направлены в одну сторону. Это приводит к большей однородности получаемого нанопорошка гафната диспрозия.

Используется СВЧ-излучение с рабочей частотой 2450 МГц и непрерывной мощностью 1,5-6,0 кВт в течение 1,0-1,5 час. Применение СВЧ-излучения с мощностью менее 1,5 кВт в течение менее 1,0 час приводит к тому, что в полученном нанокристаллическом порошке гафната диспрозия сохраняется значительное количество кристаллизационной воды, что приводит к возможному появлению трещин в таблетках после отжига компактированных образцов. Использование СВЧ-излучения с непрерывной мощностью более 6,0 кВт приводит к слишком высокой интенсивности процесса, что сопровождается разбрасыванием реакционной массы. Воздействие более 1,5 час приводит к существенному росту размера кристаллитов более 100 нм и переходу от нано- к микрокристаллическому порошку гафната диспрозия и снижает плотность таблеток менее 8,00 г/см3.

Пример 1.

21,8 г Dy(NO3)3·5H2O и 10,3 г HfOCl2·8H2O растворяли в 200 мл дистиллированной воды. Полученный раствор фильтровали для удаления нерастворимых взвешенных частиц. 35 мл 25% NH4OH доводили до 150 мл дистиллированной водой. При интенсивном перемешивании раствор смеси солей Dy и Hf дозировали в раствор аммиака, получая вязкую суспензию белого цвета с рН 10,36. Полученную суспензию фильтровали и далее осадок смешанного гидроксида диспрозия и гафния промывали дистиллированной водой до отсутствия в промывных водах растворимых анионов. Промытый осадок, имеющий химический состав Dy2O3·HfO2·250 H2O, переносили в кварцевый тигель и помещали в СВЧ-печь. Процесс сушки и прокаливания проводили под действием СВЧ-излучения с рабочей частотой 2450 МГц и непрерывной мощностью 1,5 кВт в течение 1,5 час (90 мин). Температуру в ходе процесса изменяли ступенчато по следующей схеме: нагрев до 260°С в течение 50 мин, нагрев до 800°С в течение 25 мин, выдержка при 800°С в течение 5 мин. Полученный порошок содержал 4,0 мас. % кристаллизационной воды и имел насыпную плотность 3,40 г/см. Рентгенографический анализ показал наличие нанокристаллитов гафната диспрозия с размером области когерентного рассеяния (ОКР) 8 нм и ГЦК структурой типа флюорита. Порошок Dy2HfO5 механоактивировали в течение 60 мин. Удельная поверхность порошка после механоактивации составляла 10,0 м2/г. Порошок далее прессовали (при давлении 180 МПа) в таблетку диаметром 12,0 мм и высотой 12,0 мм, имеющую плотность 4,09 г/см3. Таблетку прокаливали при температуре 1550°С в течение 4 час. Полученная после прокаливания таблетка была светло-кремового цвета, однородной, без трещин, имела диаметр 9,2 мм, высоту 9,35 мм и плотность 8,79 г/см3.

Пример 2.

21,8 г Dy(NO3)3·5H2O и 10,3 г HfOCl2·8H2O растворяли в 200 мл дистиллированной воды. Полученный раствор фильтровали для удаления нерастворимых взвешенных частиц. 35 мл 25% NH4OH доводили до 150 мл дистиллированной водой. При интенсивном перемешивании раствор смеси солей Dy и Hf дозировали в раствор аммиака, получая вязкую суспензию белого цвета с рН 10,36. Полученную суспензию фильтровали и далее осадок смешанного гидроксида диспрозия и гафния промывали дистиллированной водой до отсутствия в промывных водах растворимых анионов. Промытый осадок сушили при температуре 90°С в течение 12 час. Высушенный порошок прокаливали в муфельной печи на воздухе при 800°С в течение 3,0 час. Полученный порошок содержал 2,7 мас. % кристаллизационной воды и имел насыпную плотность 3,45 г/см3. Рентгенографический анализ показал наличие нанокристаллитов гафната диспрозия с размером ОКР 9 нм и ГЦК структурой типа флюорита. Порошок Dy2HfO5 механоактивировали в течение 33 мин.Удельная поверхность порошка после механоактивации составляла 10,4 м2/г. Порошок далее прессовали (при давлении 180 МПа) в таблетку диаметром 12,1 мм и высотой 12,0 мм, имеющую плотность 4,71 г/см3. Таблетку прокаливали при температуре 1550°С в течение 4 час. Полученная после прокаливания таблетка была светло-кремового цвета, однородной, без трещин, имела диаметр 9,6 мм, высоту 9,4 мм и плотность 8,00 г/см3.

Пример 3.

21,8 г Dy(NO3)3·5H2O и 10,3 г HfOCl2·8H2O растворяли в 200 мл дистиллированной воды. Полученный раствор фильтровали для удаления нерастворимых взвешенных частиц. 35 мл 25% NH4OH доводили до 150 мл дистиллированной водой. При интенсивном перемешивании раствор смеси солей Dy и Hf дозировали в раствор аммиака, получая вязкую суспензию белого цвета с рН 10,36. Полученную суспензию фильтровали и далее осадок смешанного гидроксида диспрозия и гафния промывали дистиллированной водой до отсутствия в промывных водах растворимых анионов. Промытый осадок переносили в кварцевый тигель и помещали в СВЧ-печь. Процесс сушки и прокаливания проводили под действием СВЧ-излучения с рабочей частотой 2450 МГц и непрерывной мощностью 1,4 кВт в течение 0,92 час (55 мин). Температуру в ходе процесса изменяли ступенчато по следующей схеме: нагрев до 260°С в течение 27 мин, нагрев до 800°С в течение 25 мин, выдержка при 800°С в течение 3 мин. Полученный порошок содержал 5,0 мас. % кристаллизационной воды и имел насыпную плотность 3,34 г/см3. Рентгенографический анализ показал наличие нанокристаллитов гафната диспрозия с размером ОКР 8 нм и ГЦК структурой типа флюорита. Порошок Dy2HfO5 механоактивировали в течение 60 мин. Удельная поверхность порошка после механоактивации составляла 10,1 м2/г. орошок далее прессовали (при давлении 180 МПа) в таблетку диаметром 12,1 мм и высотой 10,4 мм, имеющую плотность 4,15 г/см3. Таблетку прокаливали при температуре 1550°С в течение 4 час. Полученная после прокаливания таблетка была светло-кремового цвета, однородной, имела диаметр 9,3 мм, высоту 8,05 мм и плотность 8,07 г/см3, однако имела трещины, что является не допустимым для дальнейшей эксплуатации.

Пример 4.

21,8 г Dy(NO3)3·5H2O и 10,3 г HfOCl2·8H2O растворяли в 200 мл дистиллированной воды. Полученный раствор фильтровали для удаления нерастворимых взвешенных частиц. 35 мл 25% NH4OH доводили до 150 мл дистиллированной водой. При интенсивном перемешивании раствор смеси солей Dy и Hf дозировали в раствор аммиака, получая вязкую суспензию белого цвета с рН 10,36. Полученную суспензию фильтровали и далее осадок смешанного гидроксида диспрозия и гафния промывали дистиллированной водой до отсутствия в промывных водах растворимых анионов. Промытый осадок переносили в кварцевый тигель и помещали в СВЧ-печь. Процесс сушки и прокаливания проводили под действием СВЧ-излучения с рабочей частотой 2450 МГц и непрерывной мощностью 6,0 кВт в течение 1,58 час (95 мин). Температуру в ходе процесса изменяли ступенчато по следующей схеме: нагрев до 260°С в течение 50 мин, нагрев до 800°С в течение 25 мин, выдержка при 1000°С в течение 20 мин. Полученный порошок содержал 3,0 мас. % кристаллизационной воды и имел насыпную плотность 3,50 г/см3. Рентгенографический анализ показал наличие нанокристаллитов гафната диспрозия с размером ОКР 108 нм и ГЦК структурой типа флюорита. Порошок Dy2HfO5 механоактивировали в течение 60 мин. Удельная поверхность порошка после механоактивации составляла 10,0 м2/г. Порошок далее прессовали (при давлении 180 МПа) в таблетку диаметром 12,1 мм и высотой 13,7 мм, имеющую плотность 5,28 г/см3. Таблетку прокаливали при температуре 1550°С в течение 4 час. Полученная после прокаливания таблетка была светло-кремового цвета, однородной, имела диаметр 10,1 мм, высоту 11,8 мм и плотность 7,87 г/см3.

Таким образом, приведенные примеры показывают, что одновременное проведение стадии сушки и прокаливания смешанного гидроксида диспрозия и гафния под действием СВЧ-излучения с рабочей частотой 2450 МГц и непрерывной мощностью 1,5-6,0 кВт в течение 1,0-1,5 час при ступенчатом изменении температуры позволяет существенно сократить время проведения сушки и прокаливания смешанного гидроксида диспрозия и гафния с получением однофазных нанокристаллических порошков гафната диспрозия.

Литература

1. Risovany V.D., Zakharov A.V., Muraleva E.M., et al. Dysprosium hafhate as absorbing material for control rods // J. Nucl. Mater., 2006, v. 355, №1, p.163 - 170.

2. Патент РФ №2124240, МПК: G21C 7/24, 1998.

3. Шабанова Н.А., Попов В.В., Саркисов П.Д. Химия и технология нанодисперсных оксидов. М.: Академкнига, 2006, 309 с.

4. Патент РФ №2404125, МПК: C01G 25/02, 20.11.2010.

5. Патент РФ №2467983, МПК: В82В 3/00, 27.11.2012.

Способ получения керамических материалов на основе нанокристаллических порошков гафната диспрозия, включающий изготовление смешанного гидроксида диспрозия и гафния путем растворения в воде солей HfOCl2·8H2O и Dy(NO3)3·5H2O и добавления полученного раствора к раствору аммиака, фильтрацию и промывку полученного осадка, сушку с последующим прокаливанием до получения гафната диспрозия, его размол, прессование и отжиг полученных компактов, отличающийся тем, что стадию сушки и прокаливания смешанного гидроксида проводят под действием СВЧ-излучения с непрерывной мощностью 1,5-6,0 кВт, ступенчато изменяя температуру в течение 1,0-1,5 час до получения нанокристаллического порошка гафната диспрозия.



 

Похожие патенты:
Изобретение относится к изготовлению трубных изделий из гафния, которые могут быть использованы в качестве оболочек регулирующих стержней в ядерных реакторах с водяным охлаждением.
Изобретение относится к поглощающему нейтроны материалу на основе гафната диспрозия, содержащему оксиды диспрозия и гафния. Материал дополнительно содержит триоксид молибдена, имеет следующие соотношение компонентов, мас.%: оксид диспрозия 60…70 оксид гафния 25…35 триоксид молибдена 3…5 и его получают путем твердофазного синтеза при температуре 1500-1700°C в атмосфере воздуха.
Изобретение относится к ядерной технике. .
Изобретение относится к ядерной технике, в частности к поглощающим нейтроны материалам на основе редкоземельных элементов и может быть использовано в стержнях регулирования водоохлаждаемых реакторов.

Изобретение относится к материалам для стержней регулирования водо-водяных реакторов. .
Изобретение относится к атомной технике и может быть использовано в органах регулирования атомных реакторов. .

Изобретение относится к ядерной физике, радиационному материаловедению и может быть использовано в качестве материала для сбздания нейтронных фильтров для измерения эффективных сечений взаимодействия холодных нейтронов с веществом, нейтроноструктурного анализа, нейтронной спектрометрии широкого класса материалов и биологических объектов, биологической защиты.

Изобретение может быть использовано в производстве сцинтилляционной керамики с повышенным световыходом. Способ получения порошка фторида бария, активированного фторидом церия, включает взаимодействие раствора фторида аммония с раствором, содержащим нитрат бария и нитрат церия.

Изобретение относится к области получения изделий из оксидной керамики и может быть использовано в медицинской и химической промышленности, в частности в качестве источников радиоактивного излучения при лечении раковых опухолей.

Изобретение относится к области электротехники, а именно к способам получения газоплотных композитных электролитов со смешанной кислород-ионной и протонной проводимостью.

Изобретение относится к области электротехники, а именно к твердооксидным композитным электролитам, и может быть использовано в средне- и высокотемпературных электрохимических устройствах.
Изобретение относится к области получения керамики. .

Изобретение относится к тугоплавким неметаллическим материалам и может быть использовано для получения эффективных защитных покрытий нагревательных элементов на основе хромита лантана, работающих в воздушной атмосфере.
Изобретение относится к области получения высокотемпературных неметаллических материалов на основе хромита лантана, которые могут быть применены для изготовления высокотемпературных установок, работающих до 1850°С, и тепловыделяющих элементов для применения в окислительных средах.

Настоящее изобретение относится к монолитному керамическому телу с периферийной областью из смешанного оксида и металлической поверхностью и может быть использовано в качестве имплантата или защитного средства для людей, транспортных средств, зданий или космических аппаратов.
Наверх