Способ работы поршневого гидропневматического агрегата и устройство для его реализации

Изобретение относится к области поршневых машин объемного вытеснения. Способ работы агрегата заключается в попеременном последовательном сжатии в надпоршневой полости цилиндра газа при ходе поршня в сторону газовых распределительных органов и сжатии жидкости в подпоршневой полости цилиндра при ходе поршня в противоположную сторону, к жидкостным распределительным органам. В процессе сжатия жидкости к подпоршневой полости подсоединяют дополнительную полость с переменным объемом и этот объем изменяют в соответствии с давлением жидкости в подпоршневой полости. Гидропневматический агрегат состоит из основного цилиндра 1 с поршнем 2, делящим этот цилиндр на две полости. В полости 4 находится газовые всасывающий клапан 5 и нагнетательный клапан 6. В полости 7 находится жидкостный всасывающий клапан 8. В линии нагнетания установлены теплообменник 12 и рубашка охлаждения 13. Агрегат питает жидкостью потребитель 20 и потребитель сжатого газа. Снижение потерь в жидкостных клапанах позволяет повысить частоту возвратно-поступательного движения поршня и лучше согласовать работу газовой и жидкостной полостей. 2 н. и 1 з.п. ф-лы, 4 ил.

 

Изобретение относится к области поршневых машин объемного действия и может быть использовано при создании агрегатов для одновременного сжатия жидкости и газа.

Известен способ работы поршневого гидропневматического агрегата, заключающийся в попеременном последовательном сжатии в надпоршневой полости цилиндра газа и в подпоршневой полости - жидкости (см., например, АС СССР №1078126 по заявке 3513877/25-06, кл. F04B 39/06, опубл. 07.03.84, бюл. №9).

Известен также способ работы поршневого гидропневматического агрегата, заключающийся в попеременном последовательном сжатии в надпоршневой полости цилиндра газа при ходе поршня в сторону газовых распределительных органов и сжатии жидкости в подпоршневой полости цилиндра при ходе поршня в противоположную сторону, к жидкостным распределительным органам (см., например, патент РФ №118371, МКИ F04B 19/06 от 20.07.2012).

Недостатком этого способа является низкая эффективность работы надпоршневой полости. Это связано с тем, что невозможно осуществить достаточно высокую частоту возвратно-поступательного движения поршня из-за высокой плотности и вязкости жидкости, находящейся в подпоршневой полости, т.к. при высокой скорости движения поршня возрастает гидродинамическое сопротивление жидкостных самодействующих клапанов, что ведет к резкому увеличению давления жидкости под поршнем и необходимости совершать бесполезную работу на сжатие жидкости до намного большего давления нагнетания, чем давление в нагнетательной линии. В связи с этим поршневые насосы ограничивают низкой частотой возвратно-поступательного движения, что негативно сказывается на экономичности работы надпоршневой полости, т.к. это приводит к увеличению удельных (на один ход) утечек и требует изготовления агрегатов с большим диаметром цилиндра, что мешает согласовать производительность газовой и жидкостной полостей.

Задачей изобретения является повышение эффективности работы надпоршневой (газовой) полости за счет повышения частоты возвратно-поступательного движения поршня и получение возможности согласования работ обеих полостей.

Данный технический результат достигается тем, что при осуществлении способа работы гидропневматического агрегата в процессе сжатия жидкости к подпоршневой полости подсоединяют дополнительную полость с переменным объемом, и этот объем изменяют в соответствии с давлением жидкости в подпоршневой полости.

В гидропневматическом агрегате для осуществления описанного выше способа, содержащем основной цилиндр с размещенным в нем поршнем, делящим этот цилиндр на две полости, причем в полости над поршнем находятся газовые распределительные органы, соединенные с линией всасывания и нагнетания газа, а в полости под поршнем - жидкостные распределительные органы, соединенные с линиями всасывания и нагнетания жидкости, в нижней части основного цилиндра установлен дополнительный цилиндр, соединенный основным цилиндром каналом, и в этом цилиндре размерен дополнительный поршень, подпружиненный пружиной сжатия в сторону упомянутого канала. При этом пружина дополнительного поршня может быть уперта с противоположной этому поршню стороны в шток третьего поршня, размещенного в третьем цилиндре, соосном с дополнительным цилиндром, причем этот поршень подпружинен пружиной сжатия, а полость третьего цилиндра, находящаяся с противоположной стороны от действующей на третий поршень пружины, подключена к линии нагнетания жидкости.

Сущность изобретения поясняется чертежами.

На фиг. 1 схематично изображено продольное оси цилиндра сечение цилиндропоршневой группы агрегата с дифференциальным поршнем во время хода поршня вверх в сторону газораспределительных органов.

На фиг. 2 - при ходе поршня вниз в сторону жидкостных распределительных органов.

На фиг. 3 схематично изображено продольное (вдоль оси цилиндра) сечение гидропневматического агрегата с тронковым поршнем и отрицательной обратной связью между давлением нагнетания жидкости и производительностью агрегата по жидкости, а на фиг. 4 - с положительной обратной связью.

Гидропневматический агрегат (фиг. 1 и 2) состоит из основного цилиндра 1 с размещенным в нем поршнем 2 со штоком 3, делящим этот цилиндр на две полости - в полости 4 над поршнем 2 находятся газораспределительные органы - всасывающий клапан 5 и нагнетательный клапан 6, соединенные с линиями всасывания и нагнетания газа (условно не показаны), а в полости 7 под поршнем 2 - жидкостные распределительные органы - всасывающий клапан 8, соединенный с линией всасывания жидкости 9, и нагнетательный клапан 10, соединенный с линией нагнетания жидкости 11, в которую входят также теплообменник 12 и рубашка охлаждения 13 цилиндра 1.

В нижней части основного цилиндра 1 установлен дополнительный цилиндр 14, соединенный с основным цилиндром 1 каналом 15, и в этом цилиндре размещен дополнительный поршень 16, подпружиненный пружиной сжатия 17 в сторону канала 15. Пружина оперта на пяту 18, положение которой регулируется винтом 19. Агрегат питает жидкостью под давлением потребитель 20 и потребитель сжатого газа (на рисунке не показан). Канал 21 служит для отвода утечек через щелевое уплотнение между поршнем 16 и стенками цилиндра 14 в линию всасывания 9. Аббревиатурой ВМТ и штриховой линией обозначено положение верхней мертвой точки, НМТ и штриховой линией - в положении нижней мертвой точки. Стрелками показано направление движения газа, жидкости и поршня 2 со штоком 3.

В конструкции, изображенной на фиг. 3 и 4, нагнетаемая из полости 7 жидкость соединена с рубашкой 13 через отверстие 22, поршень 2 приводится в движение от приводного вала 23 через кривошип 24 и шатун 25. Полость 7 под поршнем 2 совмещена с полостью картера 26. В этом варианте пружина 17 дополнительного поршня 16 уперта с противоположной этому поршню стороны в шток 27 третьего поршня 28, размещенного в третьем цилиндре 29, соосном с дополнительным цилиндром 14, причем этот поршень 28 подпружинен пружиной сжатия 30, а полость третьего цилиндра 29, находящаяся с противоположной стороны от действующей на него пружины 30, подключена к линии 11 нагнетания жидкости через канал 31.

Осуществление способа работы гидропневматического агрегата происходит следующим образом (фиг. 1 и 2).

При возвратно-поступательном движении поршня 2 газ всасывается из линии всасывания (не показана) через клапан 5 в полость 4, сжимается в ней и нагнетается через клапан 6 и линию нагнетания (не показана) потребителю сжатого газа.

При ходе поршня 2 вверх (фиг. 1) в полости 7 создается разрежение, в результате чего жидкость из линии всасывания 9 через открывшийся под перепадом давления клапан 8 всасывается в полость 7. В связи с тем что давление в полости 7 низкое, пружина 17 перемещает поршень 16 по направлению к каналу 15. Положение поршня 16 показано в тот момент, когда он закончил свое движение в сторону канала 15.

После окончания хода поршня 2 вверх, когда процесс всасывания заканчивается, он начинает движение вниз, сжимая жидкость (фиг. 2). При этом клапан 8 закрывается, и после достижения в полости 7 давления нагнетания клапан 10 открывается, начинается вытеснение жидкости из полости 7 в линию нагнетания - через теплообменник 12, в котором она охлаждается, через рубашку 13, где жидкость отбирает теплоту от цилиндра 1, которую он получил при сжатии и нагреве газа в полости 4, и далее жидкость по линии нагнетания 11 проступает потребителю 20.

В связи с тем что движение поршень 2 получает от кривошипно-шатунного механизма, это движение неравномерное - сначала он движется медленно из положения ВМТ, где его скорость равна нулю, затем ускорятся, в середине хода скорость максимальна, а затем она снижается до нуля в положении НМТ. При увеличении скорости движения поршня 2 из положения ВМТ возрастает скорость течения жидкости, в связи с чем растет гидродинамическое сопротивление клапана 10 (возрастают и силы инерции движения жидкости, противодействующие ее перемещению), в связи с чем давление в полости 7 начинает существенно превышать давление в линии нагнетания 9 и поршень 16 сжимает пружину 17, предварительное усилие натяжения которой, установленное винтом 19, соответствует положению поршня 16 на фиг. 1 при давлении в полости 7, равном или меньше давления нагнетания жидкости. При движении поршня 16 влево (по рисунку) в цилиндре 14 образуется дополнительная соединенная через канал 15 полость, которая поглощает часть жидкости из полости 7, в связи с чем расход через клапан 10 уменьшается, его гидравлическое сопротивление падает, что приводит к снижению «избыточного» давления в полости 7 и незначительному превышению этого давления жидкости над давлением нагнетания в линии 9 при высокой скорости поршня.

После прохождения поршнем 2 середины пути его скорость начинает уменьшаться, уменьшается расход жидкости из полости 7 через нагнетательный клапан 10, давление в полости 7 уменьшается (при подходе поршня 2 к положению НМТ оно становится равным давлению нагнетания), в связи с чем пружина 17 начинает перемещать поршень 16 назад в сторону канала 15 (вправо по рисунку), уменьшая объем цилиндра 14, занятый жидкостью, которая вытесняется в полость 7. В момент достижения поршнем 2 НМТ объем жидкости под поршнем 16 еще не равен нулю.

При движении поршня 2 вверх из НМТ происходит увеличение объема полости 7 и падение в ней давления, в связи с чем клапан 10 закрывается и открывается клапан 8, через который жидкость поступает из линии всасывания 9 в полость 7. В это же время поршень 16 заканчивает движение вправо, вытесняя остатки жидкости из цилиндра 14 через канал 15 в полость 7, благодаря чему начало процесса всасывания происходит при плавном понижении давления в полости 7 без вспенивания жидкости и при низкой скорости течения жидкости в клапане 8. Затем цикл повторяется.

В конструкции, изображенной на фиг. 3, происходят аналогичные явления при возвратно-поступательном движении поршня 2. Отличие состоит в том, что предварительное натяжение пружины 17 регулируется положением штока 27, которое зависит от взаимодействия пружины 30, силы давления нагнетания, действующей на поршень 28 и установки регулирующего винта 19. Чем выше давление нагнетания, тем сильнее поршень 28 сдвинут вправо (по рисунку), тем слабее пята 18 давит на пружину 17, уменьшая усилие ее предварительного напряжения, тем с большей амплитудой движется поршень 16 при изменении давления в полости 7, тем больше жидкости затекает под поршень 16 через канал 15 и вытекает из под поршня 16 при возвратно-поступательном движении поршня 2. Это приводит к тому, что при увеличении давления в линии нагнетания 11 (потребитель 20 уменьшил расход жидкости) подача жидкости агрегатом (его производительность) снижается. То есть осуществляется обратная отрицательная связь между давлением жидкости и производительностью агрегата. Такая работа агрегата необходима, если стоит задача сохранить давление жидкости постоянным, слабо зависящим от расхода потребителя.

В конструкции, изображенной на фиг. 4, происходят явления, аналогичные явлениям, происходящим с конструкцией, изображенной на фиг. 3, с той разницей, что увеличение давления в линии нагнетания жидкости 11 приводят к увеличению предварительного натяжения пружины 17, т.е. к уменьшению амплитуды перемещения поршня 16 при работе агрегата и увеличению его производительности при увеличении давления нагнетания жидкости. То есть осуществляется положительная обратная связь между давлением нагнетания жидкости и производительностью агрегата. Такая работа может быть необходима, если, например, в качестве потребителя жидкости 20 выступает гидродвигатель привода транспортной машины.

Таким образом, предложенная конструкция позволяет существенно снизить потери энергии в жидкостных клапанах за счет уменьшения скорости течения в них жидкости, что дает возможность повысить частоту возвратно-поступательного движения поршня до характерной для экономичных поршневых компрессоров и, таким образом, повысить эффективность работы надпоршневой (газовой) полости, что дает возможность лучше согласовывать возможности обеих полостей.

Кроме того, описанный конструктивный вариант гидропневматического агрегата позволяет лучше адаптировать его характеристики к потребностям питаемых им гидравлических устройств.

1. Способ работы поршневого гидропневматического агрегата, заключающийся в попеременном последовательном сжатии в надпоршневой полости цилиндра газа при ходе поршня в сторону газовых распределительных органов и сжатии жидкости в подпоршневой полости цилиндра при ходе поршня в противоположную сторону, к жидкостным распределительным органам, отличающийся тем, что при сжатии жидкости к подпоршневой полости подсоединяют дополнительную полость с переменным объемом, и этот объем изменяют в соответствии с давлением жидкости в подпоршневой полости.

2. Гидропневматический агрегат для осуществления способа по п. 1, содержащий основной цилиндр с размещенным в нем поршнем, делящим этот цилиндр на две полости, причем в полости над поршнем находятся газовые распределительные органы, соединенные с линией всасывания и нагнетания газа, а в полости под поршнем - жидкостные распределительные органы, соединенные с линиями всасывания и нагнетания жидкости, отличающийся тем, что в нижней части основного цилиндра установлен дополнительный цилиндр, соединенный с основным цилиндром каналом, и в этом цилиндре размещен дополнительный поршень, подпружиненный пружиной сжатия в сторону упомянутого канала.

3. Гидропневматический агрегат по п. 2, отличающийся тем, что пружина дополнительного поршня уперта с противоположной этому поршню стороны в шток третьего поршня, размещенного в третьем цилиндре, соосном с дополнительным цилиндром, причем этот поршень подпружинен пружиной сжатия, а полость третьего цилиндра, находящаяся с противоположной стороны от действующей на третий поршень пружины, подключена к линии нагнетания жидкости.



 

Похожие патенты:

Изобретение относится к области гидравлической и пневматической техники. Насос-компрессор состоит из цилиндров 1 и 2 с поршнями 3 и 4.

Изобретение относится к области машиностроения, в частности к поршневым насосам, используемым для нагнетания жидкости с высоким давлением, например, при откачке воды или нефти из глубоких скважин.

Изобретение относится к области насосо- и компрессоростроения и может быть использовано при создании машин, предназначенных для сжатия и подачи потребителю одновременно или попеременно жидкостей и газов.

Изобретение относится к области насосо- и компрессоростроения и может быть использовано в поршневых машинах объемного действия, для одновременной или попеременной подачи жидкостей и газов.

Изобретение относится к области насосо- и компрессоростроения и может быть использовано при создании машин для сжатия и подачи одновременно или попеременно жидкостей и газов.

Изобретение относится к области насосо- и компрессоростроения и может быть использовано при создании поршневых машин объемного действия, предназначенных для сжатия и подачи потребителю одновременно или попеременно жидкостей и газов.

Изобретение предназначено для использования в области машиностроения и нефтедобычи для перекачивания газожидкостной среды. Поршневой насос содержит корпус 1, внутри которого с образованием рабочей камеры 2 установлен поршень 3 с поршневым кольцом 4 или щелевым уплотнением 5.

Изобретение относится к области компрессоро- и насосостроения и может быть использовано в нефтяной и газовой отраслях промышленности. .

Изобретение относится к нефтедобывающей промышленности, а именно к бустерным насосно-компрессорным машинам, предназначенным для использования в процессе добычи углеводородов для нагнетания технологических жидкостей, газов и многофазных сред при вторичных методах увеличения нефтеотдачи пластов.

Изобретение относится к области машин объемного действия, предназначенных для сжатия и перемещения жидкостей и газов, в которых предъявляются высокие требования к равномерности подачи жидкости. Машина состоит из цилиндра 1 с дифференциальным поршнем 2, с образованием полостей 3 и 4 с всасывающими 5 и 6 и нагнетательными 7 и 8 клапанами. Полость 3 соединена через обратный клапан 13 с дополнительным цилиндром 14, имеющим подпружиненный пружиной 15 поршень 16. Цилиндр соединен каналом 17 с нагнетательной жидкостной линией 11 через золотник 18, выполненный в виде подвижного стрежня, на один торец которого опирается пружина сжатия 20, а к другому подведен канал 21 от подпоршневой полости 4. Дроссельная шайба 24 служит для создания гарантированного перепада давления между полостью 3 и линией нагнетания 11 в процессе нагнетания жидкости из полости 3, обеспечивая высокую равномерность подачи жидкости. Позволяет повысить равномерность подачи жидкости при любом режиме работы машины - сжатии и перемещении только жидкостей, или сжатии и перемещении жидкости и газа одновременно. 1 з.п. ф-лы, 6 ил.

Изобретение относится к области насосо- и компрессоростроения и может быть использовано при создании машин для сжатия и подачи одновременно или попеременно жидкостей и газов. Способ работы состоит в том, что при пуске агрегата жидкостную полость соединяют с линией всасывания жидкости мимо всасывающего клапана до тех пор, пока давление нагнетания газовой полости не поднимется до заданного значения. Газожидкостный агрегат состоит из цилиндра 1 с установленным в нем с минимальным зазором 2 поршнем 3, делящим цилиндр 1 на газовую 4 и жидкостную 5 полости, которые соединены с газовой линией всасывания 6 и нагнетания 7 и с жидкостной линией всасывания 8 и нагнетания 9 через всасывающие клапаны 10 и 11 и нагнетательные клапаны 12 и 13. Жидкостная полость 5 дополнительно соединена с линией всасывания жидкости 8 через золотник 14, с входом 15 и выходом 16 подвижным элементом 17 с каналом 18, полостью 19, тарированной пружиной сжатия 20. Верхний торец элемента 17 имеет выступ-ограничитель 21, а нижний - выступ-ограничитель 22. В результате агрегат работает в номинальном режиме, при котором попавшая в процессе сжатия в полости 5 в зазор 2 жидкость впоследствии, при ходе поршня 3 вверх, вытесняется назад в полость 5 давлением сжатого в полости 4 газа. Таким образом, исключается значительное попадание жидкости в полость 4 и возможность гидроудара. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области насосо- и компрессоростроения и может быть использовано при создании гибридных поршневых машин объемного действия преимущественно малой и средней производительности, предназначенных для сжатия и подачи потребителю одновременно или попеременно жидкостей и газов. Насос-компрессор содержит цилиндр 1 и тронковый поршень 3, компрессорную полость 4 с клапанами 5 и 6. Цилиндр 1 установлен на картере 7, который соединен с рубашкой охлаждения 11 и через обратный клапан 12 - с потребителем жидкости, а через теплообменник 13 с источником жидкости. Рубашка охлаждения 11 выполнена в виде кольцевого цилиндра 14, открытого в сторону картера 7. Поршень 3 снабжен дополнительным кольцевым поршнем 15 с возможностью его перемещения с зазорами 16 и 17 в кольцевом цилиндре 14 с образованием насосной полости 18. За счет интенсивного охлаждения и снижения утечек газа повышается КПД компрессорной полости 4, появляется возможность получать высокое давление жидкости без загрязнения сжимаемого газа. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области насосо- и компрессоростроения и может быть использовано при создании поршневых машин объемного действия, предназначенных для сжатия и подачи потребителю одновременно или попеременно жидкостей и газов. Способ работы поршневого насоса-компрессора состоит в том, что осуществляют попеременное всасывание, сжатие и подачу потребителю газа из надпоршневой полости, а также всасывание и нагнетание жидкости в подпоршневую полость и подачу ее потребителю. Подача сжатого газа потребителю осуществляется через самодействующий нагнетательный клапан и линию нагнетания газа. Подача жидкости потребителю осуществляется через линию нагнетания жидкости. Сопротивление линии нагнетания газа изменяют в соответствии с давлением нагнетания жидкости. Насос-компрессор содержит цилиндр 1 с установленным в нем поршнем 2, делящим цилиндр на газовую 3 и жидкостную 4 полости. Они соединены с линиями всасывания газа 5 и жидкости через всасывающие самодействующие клапаны 6 и 10 и с линиями нагнетания газа 7 и жидкости 11 через нагнетательные самодействующие клапаны 9 и 12. Газовый нагнетательный клапан 9 имеет ограничитель подъема, выполненный в виде сильфона 17 с торцовой частью, обращенной в сторону газового нагнетательного клапана 9, и внутренняя полость которого подключена к жидкостной линии нагнетания 11. В линии нагнетания газа 7 может быть установлен подпружиненный поршень 20, размещенный одним концом в цилиндре 21, соединенном с жидкостной линией нагнетания, а другим концом размещен непосредственно в трубопроводе линии нагнетания газа 7 с возможностью частичного перекрытия этой линии. Действие пружины 19 направлено против действия давления в жидкостной линии нагнетания. В процессе пуска насоса-компрессора не создается условий для возникновения гидроудара из-за проникновения жидкости из камеры 4 в камеру 2 при отсутствии давления в линии нагнетания газа 7. Аналогично насос-компрессор работает, если по каким-либо причинам (разрыв линии нагнетания, увеличение расхода потребителя газа) давление в линии нагнетания газа существенно уменьшается против номинального. 3 н. и 2 з.п. ф-лы, 2 ил.

Изобретение относится к области компрессоро- и насосостроения и может быть использовано при создании быстроходных и экономичных машин объемного действия, к которым предъявляются высокие требования по массогабаритным и экономическим показателям. Машина содержит цилиндр 1 с поршнем 2, соединенным с механизмом привода. Над поршнем 2 размещена компрессорная полость 7 с клапанами 8 и 9. Подпоршневая полость 10 с картером 11 выполнена в виде жидкостного насоса с линией всасывания 12 и линией нагнетания 13. Участки линии нагнетания 13 и всасывания 14 выполнены в виде трубопроводов прямоугольного сечения, имеющих на противоположных гранях наклонные в сторону прямого потока жидкости три пары пазов 15 с установленными в них жесткой 16 и гибкой 17 пластинами. Цилиндр 1 окружен жидкостной рубашкой 19, соединенной с картером 11 через отверстие 20. Нагнетательная линия 13 соединена с насосной полостью 10 через рубашку 19, отверстие 20 и картер 11. Благодаря форме канала, по которому двигается жидкость, образуются мощные завихрения, вектор действия которых направлен против потока, а сечение потока сильно сокращается из-за прогнувшихся под действием сил сопротивления потоку пластин 17. Образовавшиеся сильные завихрения потока не только тормозят его, но и отбирают энергию за счет сил трения. Поэтому линия нагнетания 13 в процессе всасывания оказывает обратному потоку большое сопротивление, и он становится очень малым по сравнению с потоком в линии всасывания 12. Благодаря этому основной поток проходит через линию всасывания 12, заполняя полости 10 и 11 жидкостью от источника. Повышается быстроходность машины, улучшаются ее массогабаритные характеристики. 2 з.п. ф-лы, 6 ил.

Изобретение относится к области энергетики и может быть использовано при создании поршневых высокоэффективных машин для сжатия и перемещения газов и жидкостей. Машина содержит цилиндр 1 и размещенный в нем с радиальным зазором 2 поршень 3 с компрессорной 5 и насосной 6 полостями. На цилиндрической поверхности поршня имеется канавка 15, разделяющая его поверхность на две части 16 и 17. Боковые поверхности канавок расположены под острым углом к оси поршня 3 и цилиндра 1 в направлении к компрессорной полости 5. Объем канавки определяется выражением: где V - объем канавки, D - диаметр поршня, δ - радиальный зазор между поршнем и цилиндром, - средний перепад давления на поршне в процессе сжатия-нагнетания газа, L - длина цилиндрической части поршня, заключенная между нижним выступом канавки и нижним торцом поршня, µ - динамическая вязкость жидкости, τ - время, за которое поршень перемещается из нижней мертвой точки в верхнюю мертвую точку и наоборот, - средняя скорость поршня, с которой он перемещается из нижней мертвой точки в верхнюю мертвую точку и наоборот. Повышается КПД при сравнительно больших зазорах и надежность пуска. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области энергетических машин объемного действия и может быть использовано при создании гибридов типа «поршневой насос-компрессор». Поршневая машина содержит цилиндр 1, разделенный поршнем 2 на газовую 3 и жидкостную 4 камеры. Они соединены с источником и потребителем газа и жидкости через обратные всасывающие 5 и 6 и нагнетательные 7 и 8 клапаны. В днище поршня 2 напротив всасывающего клапана 5 полости 3 установлен обратный самодействующий жидкостный клапан 9, соединенный через отверстие 10 с камерой 3 и через каналы 11 с камерой 4. Пружина 12 клапана 9 опирается через стакан 13 на регулировочный винт 14. В процессе сжатия и нагнетания жидкости в жидкостной камере 4 за счет протечек жидкости через поршневое уплотнение, над поршнем 2 в газовой камере 3 создают слой жидкости, которую эвакуируют в конце процесса нагнетания газа в жидкостную подпоршневую камеру. К концу процесса нагнетания газа над поршнем 2 остается объем жидкости, превышающий мертвый объем камеры 3. Излишки жидкости истекают в камеру 4 через открывшийся клапан 9. Повышается энергетическая эффективность цикла работы газовой камеры, устраняются условия возникновения гидроудара, расширяется диапазон рабочих давлений жидкостной камеры. 2 н. и 2 з.п. ф-лы, 4 ил.

Изобретение относится к области энергетических машин и касается гибридных поршневых машин объемного действия, используемых в качестве насос-компрессоров, к которым предъявляются жесткие требования по массогабаритным характеристикам, экономичности и большому диапазону давлений нагнетания. Машина содержит цилиндр 1 с газовой 2 и жидкостной 3 полостями, соединенными соответственно с источниками и потребителями газа и жидкости через обратные самодействующие клапаны 4, 5, 6 и 7. Поршень 8 соединен пальцем 9 с механизмом привода, содержащим шатун 10 и коленчатый вал 11 с кривошипом 12. Цилиндр 1 имеет рубашку охлаждения 14. Жидкостная полость 3 образована с помощью ступеньки 15 на цилиндре 1 и ступеньки 16 на поршне 8. Цилиндр 1 установлен на картере 19, который частично заполнен жидкой смазкой 20. Снижается масса машины, повышается технологичность ее изготовления и диапазон рабочих давлений. 1 з.п. ф-лы, 3 ил.
Наверх