Теплоэлектроцентраль с открытой теплофикационной системой

Изобретение относится к энергетике. Теплоэлектроцентраль с открытой теплофикационной системой, содержащая теплофикационную паровую турбину, турбину с промышленным и теплофикационным отборами и установку подогрева сырой воды, дополнительно снабжена системой подогрева сырой воды в конденсаторе турбины с промышленным и теплофикационным отборами, содержащей регулятор рециркуляции, клапан рециркуляции с входным и двумя выходными патрубками, линию рециркуляции с трубопроводом и насосом рециркуляции, причём выход конденсатора турбины с промышленным и теплофикационным отборами связан трубопроводом подогретой сырой воды через первый выходной патрубок клапана рециркуляции с установкой подогрева сырой воды, а через его второй выходной патрубок соединен трубопроводом рециркуляции с трубопроводом холодной сырой воды и с входом этого конденсатора. Изобретение позволяет повысить электрическую мощность и экономичность теплоэлектроцентрали с увеличением выработки электроэнергии на тепловом потреблении. 1 ил.

 

Изобретение относится к области энергетики, а точнее к теплоэлектроцентралям с открытой теплофикационной системой.

Известна теплоэлектроцентраль с открытой теплофикационной системой, снабженная установкой подогрева «сырой» подпиточной воды, подаваемой на химводоочистку. Эта установка состоит из последовательно включенных по ходу воды встроенных пучков конденсаторов теплофикационных паровых турбин, охладителя расширителя непрерывной продувки паровых котлов и подогревателя сырой воды (Л.А. Рихтер, Д.П. Елизаров, В.М. Лавыгин. «Вспомогательное оборудование тепловых электростанций», Учебное пособие для вузов. - М.: Энергоиздат, 1987. Рис.3.15, стр.65).

Указанная теплоэлектроцентраль с открытой теплофикационной системой, снабженная установкой подогрева сырой воды, принята за прототип предлагаемого изобретения. Использование теплоты отработавшего пара для подогрева сырой воды во встроенном пучке конденсатора турбины позволяет повысить тепловую экономичность теплоэлектроцентрали. Но при большинстве режимов работы теплоэлектроцентрали часть низкого давления теплофикационной паровой турбины из-за небольшого расхода пара имеет низкий и даже отрицательный КПД, практически не вырабатывает дополнительную мощность, что приводит к снижению экономичности теплоэлектроцентрали.

Техническим результатом изобретения является устранение указанного недостатка прототипа, повышение электрической мощности и экономичности теплоэлектроцентрали с увеличением выработки электроэнергии на тепловом потреблении.

Технический результат достигается за счет того, что теплоэлектроцентраль с открытой теплофикационной системой, содержащая паровой котел, главный паропровод, теплофикационную паровую турбину, турбину с промышленным и теплофикационным отборами, трубопровод холодной сырой воды, трубопровод подогретой сырой воды, установку подогрева сырой воды, химводоочистку; установка подогрева сырой воды включает встроенный пучок конденсатора теплофикационной паровой турбины, охладитель расширителя непрерывной продувки котла и подогреватель сырой воды; трубопровод холодной сырой воды связан с химводоочисткой через установку подогрева сырой воды, подогреватель сырой воды соединен паропроводом с теплофикационным отбором теплофикационной паровой турбины, причем она дополнительно снабжена системой подогрева сырой воды в конденсаторе турбины с промышленным и теплофикационным отборами, содержащей регулятор рециркуляции, клапан рециркуляции с входным и двумя выходными патрубками, линию рециркуляции с трубопроводом и насосом рециркуляции, выход конденсатора турбины с промышленным и теплофикационным отборами связан трубопроводом подогретой сырой воды через первый выходной патрубок клапана рециркуляции с установкой подогрева сырой воды, а через его второй выходной патрубок соединен трубопроводом рециркуляции с трубопроводом холодной сырой воды и с входом этого конденсатора, регулятор рециркуляции соединен импульсными линиями с клапаном рециркуляции, с датчиками расхода и температуры холодной сырой воды.

Расход сырой воды на большинстве мощных ТЭЦ с открытой теплофикационной системой составляет от 3000 до 6000 т/ч. Подогрев сырой воды в конденсаторе турбины с промышленным и теплофикационными отборами пара, снабженном дополнительными клапаном рециркуляции, трубопроводом рециркуляции и насосом рециркуляции, позволяет:

- с помощью регулятора рециркуляции поддерживать при различных режимах работы теплоэлектроцентрали номинальный расход воды 8000 т/ч через конденсатор турбины ПТ-65/75-130/13;

- повысить до 20-35°С подогрев сырой воды в конденсаторе, в зависимости от расхода и температуры сырой воды;

- повысить электрическую мощность части низкого давления этой турбины, увеличить выработку электроэнергии на тепловом потреблении и тепловую экономичность теплоэлектроцентрали.

На чертеже фиг.1 приведена тепловая схема теплоэлектроцентрали с открытой теплофикационной системой.

Она содержит паровой котел 1, главный паропровод 2, теплофикационную паровую турбину 3, имеющую конденсатор со встроенным пучком 6, электрогенераторы 4, паровую турбину с промышленным и теплофикационными отборами пара 5, трубопровод подогретой воды 7, клапан рециркуляции 8, конденсатор турбины с промышленным и теплофикационными отборами пара 9, трубопровод рециркуляции 10, трубопровод сырой воды 11, охладитель расширителя продувки котла 12, насос рециркуляции 13, подогреватель сырой воды 14, паропровод 15, регулятор рециркуляции 16, химводоочистку 17, декарбонизатор 18, трубопровод декарбонизированной подпиточной воды 19, вакуумный деаэратор 20, трубопровод подпитки теплосети 21.

Паровой котел 1 соединен главным паропроводом 2 с теплофикационной паровой турбиной 3 и с паровой турбиной с промышленным и теплофикационными отборами пара 5. Трубопровод сырой воды 11 подключен через трубопровод рециркуляции 10 с насосом рециркуляции 13 к входу конденсатора турбины с промышленным и теплофикационными отборами пара 9. Его выход через первый выход клапана рециркуляции 8 трубопроводом подогретой воды 7 последовательно соединен со встроенным пучком 6 конденсатора теплофикационной паровой турбины 3, с охладителем расширителя продувки котла 12, с подогревателем сырой воды 14 и с химводоочисткой 17. Подогреватель сырой воды 14 соединен паропроводом 15 с теплофикационным отбором пара турбины 5. Второй выход клапана рециркуляции 8 связан трубопроводом рециркуляции 10 с входом конденсатора турбины с промышленным и теплофикационными отборами пара 9 и с трубопроводом сырой воды 11. Химводоочистка 17 через декарбонизатор 18 трубопроводом декарбонизированной подпиточной воды 19 соединена с вакуумным деаэратором 20, соединенным с трубопроводом подпитки теплосети 21. Регулятор рециркуляции 16 соединен импульсными линиями с датчиками расхода и температуры, установленными на трубопроводе сырой воды 11, и с клапаном рециркуляции 8.

Теплоэлектроцентраль с открытой теплофикационной системой работает следующим образом. Острый пар из парового котла 1 по главному паропроводу 2 подается в теплофикационную паровую турбину 3 и в паровую турбину с промышленным и теплофикационным отборами 5. Полезная работа расширения пара используется для выработки электроэнергии в их электрогенераторах 4. Сырая вода по трубопроводу сырой воды 11 подается во входной патрубок конденсатора 9, где теплота конденсации пара используется для подогрева сырой воды. Вышедшая из конденсатора подогретая сырая вода клапаном рециркуляции 8 разделяется на два потока - первый поток по трубопроводу рециркуляции 10 с помощью насоса рециркуляции 13 подается к входному патрубку конденсатора, где он смешивается и подогревает холодную сырую воду, подводимую в конденсатор 9 по трубопроводу сырой воды 11. Положением клапана рециркуляции 8, изменяющим величину кратности рециркуляции и устанавливающим при различных режимах работы теплоэлектроцентрали номинальный расход сырой воды через конденсатор 9, управляет регулятор рециркуляции 16, в соответствии с расходом и температурой холодной сырой воды в трубопроводе сырой воды 11. Рециркуляция сырой воды позволяет увеличить расход пара в конденсатор 9, обеспечить в нем дополнительный подогрев сырой воды с увеличением мощности паровой турбины 5 с промышленным и теплофикационным отборами. Второй поток сырой воды, подогретой в конденсаторе 9, через клапан рециркуляции 8 подается по трубопроводу подогретой воды 7 через встроенный пучок 6 теплофикационной паровой турбины 3, где подгревается теплотой конденсирующегося пара этой турбины, дополнительно подогревается в охладителе расширителя продувки котла 12, теплотой концентрата продувки расширителя и в сетевом подогревателе сырой воды 14, за счет теплоты пара, подводимого из теплофикационного отбора турбины 5 по паропроводу 15, и поступает на химводоочистку 17. Умягченная в ней сырая вода и затем декарбонизированная в декарбонизаторе 18 по трубопроводу декарбонизированной подпиточной воды 19 подается в вакуумный деаэратор 20, деаэрируется в нем и по трубопроводу подпиточной воды 21 направляется на подпитку теплосети. Положением клапана рециркуляции 8, устанавливающего при различных режимах работы теплоэлектроцентрали заданный расход воды сырой воды через конденсатор 9 и кратность рециркуляции, управляет регулятор рециркуляции 17, связанный с датчиками расхода и температуры сырой воды, установленными на трубопроводе сырой воды 11.

Теплоэлектроцентраль с открытой теплофикационной системой, содержащая паровой котел, главный паропровод, теплофикационную паровую турбину, турбину с промышленным и теплофикационным отборами, трубопровод холодной сырой воды, трубопровод подогретой сырой воды, установку подогрева сырой воды, химводоочистку; установка подогрева сырой воды включает встроенный пучок конденсатора теплофикационной паровой турбины, охладитель расширителя непрерывной продувки котла и подогреватель сырой воды; трубопровод холодной сырой воды связан с химводоочисткой через установку подогрева сырой воды, подогреватель сырой воды соединен паропроводом с теплофикационным отбором теплофикационной паровой турбины, отличающаяся тем, что она дополнительно снабжена системой подогрева сырой воды в конденсаторе турбины с промышленным и теплофикационным отборами, содержащей регулятор рециркуляции, клапан рециркуляции с входным и двумя выходными патрубками, линию рециркуляции с трубопроводом и насосом рециркуляции, выход конденсатора турбины с промышленным и теплофикационным отборами связан трубопроводом подогретой сырой воды через первый выходной патрубок клапана рециркуляции с установкой подогрева сырой воды, а через его второй выходной патрубок соединен трубопроводом рециркуляции с трубопроводом холодной сырой воды и с входом этого конденсатора, регулятор рециркуляции соединен импульсными линиями с клапаном рециркуляции, с датчиками расхода и температуры холодной сырой воды.



 

Похожие патенты:

Изобретение относится к области энергетики. В способе работы тепловой электрической станции осуществляют утилизацию низкопотенциальной теплоты обратной сетевой воды, при этом утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара и утилизацию низкопотенциальной теплоты обратной сетевой воды осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело.

Изобретение относится к области энергетики. В способе работы тепловой электрической станции утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара и утилизацию низкопотенциальной теплоты обратной сетевой воды осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело. Изобретение позволяет обеспечить повышение коэффициента полезного действия тепловой электрической станции, повышение ресурса и надежности работы конденсатора паровой турбины и снижение тепловых выбросов в окружающую среду.

Способ включает использование конденсационной установки, имеющей конденсатор паровой турбины с производственным отбором пара и систему маслоснабжения ее подшипников с маслоохладителем, и дополнительное осуществление утилизации высокопотенциальной теплоты пара производственного отбора, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины с производственным отбором пара.

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) при утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы.

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы.

Способ включает поступление пара отопительных параметров из отборов паровой турбины в паровое пространство верхнего и нижнего сетевых подогревателей, подачу сетевой воды от потребителей по обратному трубопроводу сетевой воды в нижний и верхний сетевые подогреватели и далее в подающий трубопровод сетевой воды, подачу отработавшего пара из паровой турбины в паровое пространство конденсатора паровой турбины для конденсации на поверхности конденсаторных трубок и направление конденсата с помощью конденсатного насоса конденсатора паровой турбины в систему регенерации.

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) при утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины для дополнительной выработки электрической энергии.

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) при утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины для дополнительной выработки электрической энергии.

Способ заключается в том, что отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, при этом конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, а пар отопительных параметров из отборов паровой турбины поступает в паровое пространство верхнего и нижнего сетевых подогревателей, конденсируется на поверхности подогреваемых трубок сетевых подогревателей, внутри которых протекает охлаждающая жидкость.

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы.

Способ включает дополнительный подогрев греющего агента перед вакуумным деаэратором в теплонасосной установке, в которой в качестве источника низкопотенциальной теплоты используют нагретую циркуляционную воду после конденсатора турбины. Теплоту нагретой циркуляционной воды утилизируют в теплонасосных установках сетевой и подпиточной воды, при этом в качестве подпиточной воды используют часть отработавшей циркуляционной воды, которую затем нагревают в теплонасосной установке, вакуумном деаэраторе и подают в подающий или обратный сетевой трубопровод, в зависимости от среднесуточной температуры наружного воздуха. Достигается увеличение выработки электроэнергии за счет максимально возможного отвода теплоты от циркуляционной воды и обратной сетевой воды. 1 ил.

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС). Дополнительно осуществляют утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, при этом утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом его сжимают в конденсатном насосе теплового двигателя, нагревают в теплообменнике-рекуператоре теплового двигателя, нагревают в маслоохладителе, нагревают и испаряют в нижнем сетевом подогревателе паровой турбины, перегревают в верхнем сетевом подогревателе паровой турбины, расширяют в турбодетандере теплового двигателя, снижают его температуру в теплообменнике-рекуператоре теплового двигателя и конденсируют в теплообменнике-конденсаторе теплового двигателя. Изобретение позволяет утилизировать низкопотенциальную теплоту системы маслоснабжения подшипников паровой турбины и низкопотенциальную теплоту пара отопительных отборов из паровой турбины для дополнительной выработки электрической энергии, которую осуществляют путем последовательного нагрева соответственно в маслоохладителе и сетевых подогревателях низкокипящего рабочего тела (сжиженного пропана) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина. 2 з.п. ф-лы, 1 ил.

Способ включает конденсацию отработавшего в турбине пара в конденсаторе. Основной конденсат турбины нагревают в подогревателях низкого давления паром регенеративных отборов, сетевую воду нагревают в сетевых подогревателях паром отопительных отборов турбины. При этом к вакуумному деаэратору подпиточной воды теплосети подключен бак-аккумулятор подпиточной воды, основной конденсат турбины после первого по ходу конденсата подогревателя низкого давления и перед подачей во второй по ходу конденсата подогреватель низкого давления охлаждают в поверхностном охладителе исходной водой перед ее подачей в вакуумный деаэратор подпиточной воды теплосети. Весь поток сетевой воды перед сетевыми подогревателями дополнительно подогревают в конденсаторе теплонасосной установки. Достигается повышение надежности и экономичности тепловой электрической станции за счет эффективного использования теплоты нагретой циркуляционной воды для нагрева сетевой воды, следствием которого является дополнительная выработка электрической энергии на тепловом потреблении. 2 ил.

Изобретение относится к области энергетики. В способе работы тепловой электрической станции, по которому отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, при этом конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара при помощи охлаждающей жидкости, причем в паровой турбине используют систему маслоснабжения подшипников паровой турбины с маслохладителем, в тепловой электрической станции используют конденсационную установку, имеющую конденсатор второй паровой турбины, и осуществляют утилизацию высокопотенциальной теплоты пара второй паровой турбины, дополнительно осуществляют утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, при этом утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара, утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизацию высокопотенциальной теплоты пара второй паровой турбины осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре. В качестве теплообменника-конденсатора теплового двигателя используют или конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения. В качестве низкокипящего рабочего тела используют сжиженный пропан C3H8. Изобретение позволяет утилизировать теплоту и осуществить дополнительную выработку электрической энергии. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях для дополнительной выработки электрической энергии за счет утилизации высокопотенциальной теплоты пара производственного отбора. Пар отопительных параметров из отборов паровой турбины поступает в паровое пространство верхнего и нижнего сетевых подогревателей, а отработавший пар поступает из паровой турбины в паровое пространство конденсатора паровой турбины и конденсируется на поверхности конденсаторных трубок, при этом конденсат направляют в систему регенерации. Утилизацию высокопотенциальной теплоты пара производственного отбора осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина. Изобретение позволяет повысить коэффициент полезного действия тепловых электрических станций за счет дополнительной выработки электрической энергии. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС). В способе работы тепловой электрической станции, по которому отработавший пар поступает из первой паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, а пар отопительных параметров из отборов паровой турбины поступает в паровое пространство нижнего и верхнего подогревателей, конденсируется на поверхности подогреваемых трубок подогревателей, внутри которых протекает охлаждающая жидкость, при этом при конденсации отработавшего пара и пара отопительных отборов осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в первой турбине пара и утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины при помощи охлаждающей жидкости, причем конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, в тепловой электрической станции используют конденсационную установку, имеющую конденсатор второй паровой турбины, и осуществляют утилизацию высокопотенциальной теплоты пара, при этом утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в первой турбине пара, утилизацию низкопотенциальной теплоты пара отопительных отборов из первой паровой турбины и утилизацию высокопотенциальной теплоты пара осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре. В качестве теплообменника-конденсатора теплового двигателя используют или конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения. В качестве низкокипящего рабочего тела используют сжиженный пропан C3H8. Изобретение позволяет утилизировать тепло и осуществить дополнительную выработку электрической энергии. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области энергетики. В способе работы тепловой электрической станции с первой паровой турбиной с охладителем масла в станции используют конденсационную установку, имеющую конденсатор второй паровой турбины и систему маслоснабжения ее подшипников с маслоохладителем, осуществляют утилизацию высокопотенциальной теплоты пара второй паровой турбины, утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников первой паровой турбины и утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников второй паровой турбины, при этом все указанные утилизации осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре. В качестве теплообменника-конденсатора теплового двигателя используют или конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения. В качестве низкокипящего рабочего тела используют сжиженный пропан C3H8. Изобретение позволяет утилизировать тепло и выработать дополнительную электроэнергию. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области энергетики. В способе работы тепловой электрической станции, по которому отработавший пар поступает из первой паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара при помощи охлаждающей жидкости, причем в паровой турбине используют систему маслоснабжения подшипников паровой турбины с охладителем масла, в тепловой электрической станции используют конденсационную установку, имеющую конденсатор второй паровой турбины и систему маслоснабжения ее подшипников с маслоохладителем, и дополнительно осуществляют утилизацию высокопотенциальной теплоты пара второй турбины, утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников второй паровой турбины, при этом все указанные утилизации осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, в качестве низкокипящего рабочего тела используют сжиженный пропан C3H8. Изобретение позволяет утилизировать тепло и осуществить дополнительную выработку электрической энергии. 2 з.п. ф-лы, 1 ил.

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы. Проводят утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды и системы маслоснабжения подшипников паровой турбины при помощи охлаждающей жидкости. Упомянутые утилизации осуществляют посредством теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина. Охлаждающую жидкость в виде низкокипящего рабочего тела сжимают в конденсатном насосе и нагревают в теплообменнике-рекуператоре теплового двигателя, нагревают в маслоохладителе, испаряют и перегревают в теплообменнике-испарителе, расширяют в турбодетандере и снижают температуру в теплообменнике-рекуператоре теплового двигателя, затем конденсируют в теплообменнике-конденсаторе теплового двигателя. Способ обеспечивает повышение коэффициента полезного действия ТЭС за счет дополнительной выработки электрической энергии при утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизации высокопотенциальной теплоты пара производственного отбора для дополнительной выработки электрической энергии. В способе утилизации отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, а конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, причем в паровой турбине используют систему маслоснабжения подшипников паровой турбины с маслоохладителем. Все указанные утилизации осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре. Использование изобретения позволяет повысить коэффициента полезного действия ТЭС за счет дополнительной выработки электрической энергии. 2 з.п. ф-лы, 1 ил.
Наверх