Теплоэлектростанция


 


Владельцы патента RU 2566100:

Оленев Евгений Александрович (RU)

Изобретение относится к энергетике и может быть использовано для выработки электрической и тепловой энергии при совместном использовании традиционного ископаемого топлива и возобновляемой энергии ветра. Ветряная теплоэлектростанция содержит ветрогенератор, на основании которого размещены ветротурбина и генератор, и электрогенератор, при этом она дополнительно содержит нагреватель, дымогарную трубу, соединенный с дымогарной трубой паровой котел с дымовыми трубами и топкой для сжигания топлива, и последовательно связанные с паровым котлом через паропровод пароперегреватель, паровую турбину, которая кинематически связана с электрогенератором, вырабатывающим электроэнергию для потребителя, при этом на дымогарной трубе закреплена платформа, на которой с возможностью поворота вокруг оси упомянутой трубы установлен ветрогенератор, генератор которого электрически соединен с нагревателем, размещенным вместе с дымовыми трубами в паровом котле. Изобретение позволяет снизить затраты на производство тепловой и электрической энергии и уменьшить выбросы вредных продуктов горения в атмосферу, а также уменьшить количество сжигаемого в топке газа на величину, обеспечивающую выделение в котле тепловой энергии, которая равна теплоте, передаваемой воде нагревателями. 5 з.п. ф-лы, 1 ил.

 

Изобретение относится к энергетике и может быть использовано для выработки электрической и тепловой энергии при совместном использовании традиционного ископаемого топлива и возобновляемой энергии ветра.

Известны теплоэлектростанции, содержащие паровой котел с топкой и газовыми горелками, дымовую трубу, соединенную с дымогарной трубой, пароперегреватель, паровую турбину и электрический генератор [Пат. РФ 2262790, МПК H02J 7/34, H02J 3/38, F03D 9/00, 2005].

Известные теплоэлектростанции при сложной технической реализации имеют ограниченный КПД и, следовательно, высокие затраты на производство тепловой и электрической энергии.

Недостатком известных технических решений также является низкая энергетическая эффективность и высокий уровень вредных выбросов продуктов горения в атмосферу.

Прототипом является теплоэлектростанция, содержащая паровой котел с топкой и газовыми горелками, дымовую трубу, соединенную с дымогарной трубой, пароперегреватель, паровую турбину и электрический генератор [Шляхин П.Н., Бершадский М.Л. Краткий справочник по паротурбинным установкам. - М.-Л., Госэнергоиздат, 1961, с. 7, рис. 1-1].

Недостатки прототипа те же.

Задачей изобретения является снижение затрат на производство тепловой и электрической энергии и уменьшение вредных выбросов продуктов горения в атмосферу.

Задача решается тем, что в теплоэлектростанцию, содержащую дымогарную трубу, паровой котел с топкой, соединенной с дымогарной трубой, и последовательно связанные с котлом пароперегреватель, паровую турбину, электрический генератор, дополнительно введены нагреватель, платформа и ветрогенератор, который электрически соединен с нагревателем, размещенным в паровом котле, и установлен с возможностью поворота на платформе, закрепленной на дымогарной трубе.

Нагреватель выполнен из углеродных волокон. Нагреватели выполнены на различные номинальные мощности. Нагреватели выполнены на различные номинальные напряжения. Телогенератор размещен в зоне движения продуктов горения топлива. Часть платформы размещена внутри дымогарной трубы.

Указанные отличительные признаки позволяют достичь следующих преимуществ по сравнению с прототипом.

Ведение в теплоэлектростанцию нагревателя, платформы и ветрогенератора, который электрически соединен с нагревателем, размещенным в паровом котле, и установлен с возможностью поворота на платформе, закрепленной на дымогарной трубе, дает возможность уменьшить количество сжигаемого ископаемого топлива, например газа. Очевидно, что кинетическая энергия воздушного потока с помощью ветрогенератора преобразуется в электрическую энергию, которая далее преобразуется в тепловую энергию с помощью нагревателей, размещенных в паровом котле. Таким образом, выработка электрической и тепловой энергии производится одновременно с использованием двух энергетических источников: кинетической энергии воздушного потока и сжигаемого топлива. Энергия источников преобразуется в паровом котле во внутреннюю энергию воды и пара, которая обеспечивает выработку тепловой и электрической энергии. Использование энергии ветра для нагрева воды и преобразования ее в пар обеспечивает снижение потребления сжигаемого топлива и, следовательно, снижение затрат на производство электрической и тепловой энергии, а также вредных выбросов в атмосферу.

Выполнение нагревателя из углеродных волокон увеличивает площадь соприкосновения его с нагреваемым телом, например паром, благодаря большой пористости волокна и возможности получения на поверхности множества мелких игл (углеродный войлок), что снижает себестоимость получаемой энергии. Выполнение нагревателей на различные номинальные мощности и напряжения позволяет в зависимости от параметров вырабатываемой ветровой установкой энергии поддерживать температуру нагревателя в определенных пределах, обеспечивая наилучшую теплопередачу (теплоотдачу) рабочему телу, а также расширить диапазон использования указанной установки. Например, при слабом ветре целесообразнее производить нагрев воды в котле нагревателями с малой мощностью, в противном случае ветровая установка из-за большой нагрузки может остановиться и приток энергии от нее полностью прекратится. Все это удешевляет выработку тепло- и электроэнергии.

Размещение телогенератора в зоне движения продуктов горения топлива позволяет использовать тепло продуктов горения. Использование тепла продуктов горения топлива в процессе преобразования кинетической энергии воздушного потока дает возможность расширить диапазон работы ветровой установки при плохих погодных условиях. При низкой температуре окружающего воздуха благодаря теплу продуктов сгорания смазка в узлах вращения (опорах) оси ветряной установки не становится очень густой и не оказывает большого сопротивления вращению. При сильном снегопаде или обледенении может сформироваться большая неуравновешенность пропеллера ветровой установки из-за налипания на его лопасти снега или намораживания льда. Периодически помещая лопасти в процессе вращения в струю (полосу) продуктов горения (дымовых газов), можно избежать возникновения дисбаланса и сохранить тем самым работоспособность ветровой установки, а также повысить ее КПД. Кроме того, в этом случае не требуется времени и средств на очистку (размораживание) лопастей, что снижает эксплуатационные затраты и увеличивает продолжительность работы ветровой установки, т.е. экономит топливо и, в конечном счете, делает выработку энергии более дешевой.

Размещение части платформы внутри дымогарной трубы позволяет использовать теплоту продуктов сгорания топлива для улучшения условий работы теплогенератера при низких температурах окружающего воздуха, в частности, уменьшит вязкость смазки в узлах трения, что, в конечном счете, повысит КПД ветрогенератора.

Изобретение поясняется чертежом.

На чертеже показана схема теплоэлектростанции.

На дымогарной трубе 1 закреплена платформа 2, на которой с возможностью поворота вокруг оси трубы установлен ветрогенератор, имеющий основание 3 с размещенными на нем ветротурбиной 4 и генератором 5, кинематически связанными между собой. Генератор электрически связан с нагревателями 6, размещенными вместе с дымовыми трубами 7 в воде 8 парового котла 9, паровое пространство 10 которого через паропровод 11 и пароперегреватель 12 сообщено с паровой турбиной 13, которая кинематически связана с генератором 14, вырабатывающим электроэнергию для потребителя. В топке 15 котла размещены горелки 16 для сжигания, например, газового топлива, продукты 17 горения которого через дымовые трубы котла и дымогарную трубу поступают в атмосферу.

Теплоэлектростанция работает следующим образом.

При отсутствии ветра производят сжигание газа посредством горелок 16 в топке 15. В результате горения продукты 17, проходя через дымовые трубы 7, отдают свое тепло воде 8 котла 9, превращая ее в пар, который поступает в паровое пространство 10 и далее по паропроводу 11 - в пароперегреватель 12. Перегретый пар посредством паровой турбины 13 вращает генератор 14, вырабатывающий электрическую энергию для потребителя. Отработавший в турбине пар для работы по замкнутому циклу поступает на конденсацию в градирню (на чертеже не показана) и может являться источником тепловой энергии для потребителя.

При возникновении ветра пропеллер 4 и генератор 5 начинают вращаться. Производимую генератором 5 электроэнергию подают на нагреватели 6 и преобразуют тем самым в паровом котле 9 исходную кинетическую энергию ветра во внутреннюю энергию воды и пара. Для экономии топлива уменьшают количество сжигаемого в топке газа на величину, обеспечивающую выделение в котле тепловой энергии, которая равна теплоте, передаваемой воде нагревателями. При этом количество вырабатываемой энергии для потребителя остается прежним. В случае уменьшения потребляемой энергии, например ночью, расход газа еще снижают, увеличивая экономию топлива. Напряжение питания нагревателей и их мощность выбирают прямо пропорционально силе ветра, чтобы обеспечить максимально возможную передачу тепла котловой воде при сложившихся в данный момент параметрах воздушного потока.

Следует заметить, что платформу 2 можно выполнить таким образом, что часть ее будет представлять собой тепловоспринимающий экран, размещенный внутри дымогарной трубы 1. Тогда помимо теплового излучения, испускаемого этой трубой, можно использовать тепло, передаваемое продуктами горения указанному экрану конвекцией. В результате приобретенного основанием тепла элементы оборудования, находящегося на платформе 3, будут эксплуатироваться в холодную погоду в более благоприятных условиях. В дождливую погоду указанные элементы оборудования будут быстрее высыхать и меньше подвергаться действию коррозии, что, в конечном счете, уменьшит эксплуатационные затраты.

Размещение ветровой турбины непосредственно на дымогарной трубе, во-первых, позволяет при плохой погоде не допускать отложения на лопастях осадков, нарушающих нормальную работу турбины. Для этого ее разворачивают так, чтобы лопасти периодически попадали в струю продуктов горения (на чертеже это положение показано пунктиром) и обогревались при этом дымовыми газами. Во-вторых, отпадает необходимость в сооружении мачты (вышки) для установки ветротурбины, что уменьшает затраты на строительство. В-третьих, дымовая струя производит подсос окружающего воздуха, увеличивая его скорость, благодаря чему повышается КПД ветротурбины.

Внедрение изобретения при вложении незначительных капитальных затрат позволит экономить топливо при производстве тепловой и электрической энергии, а также снизить вредные выбросы в атмосферу вследствие уменьшения выброса продуктов горения.

1. Ветряная теплоэлектростанция, содержащая ветрогенератор, на основании которого размещены ветротурбина и генератор, и электрогенератор, отличающаяся тем, что она дополнительно содержит нагреватель, дымогарную трубу, соединенный с дымогарной трубой паровой котел с дымовыми трубами и топкой для сжигания топлива, и последовательно связанные с паровым котлом через паропровод пароперегреватель, паровую турбину, которая кинематически связана с электрогенератором, вырабатывающим электроэнергию для потребителя, при этом на дымогарной трубе закреплена платформа, на которой с возможностью поворота вокруг оси упомянутой трубы установлен ветрогенератор, генератор которого электрически соединен с нагревателем, размещенным вместе с дымовыми трубами в паровом котле.

2. Ветряная теплоэлектростанция по п. 1, отличающаяся тем, что нагреватель выполнен из углеродных волокон.

3. Ветряная теплоэлектростанция по п. 1, отличающаяся тем, что нагреватели выполнены на различные номинальные мощности.

4. Ветряная теплоэлектростанция по п. 1, отличающаяся тем, что нагреватели выполнены на различные номинальные напряжения.

5. Ветряная теплоэлектростанция по п. 1, отличающаяся тем, что ветротурбина размещена в зоне движения продуктов горения топлива.

6. Ветряная теплоэлектростанция по п. 1, отличающаяся тем, что часть платформы выполнена в виде тепловоспринимающего экрана, размещенного внутри дымогарной трубы.



 

Похожие патенты:

Изобретение солнечно-ветряная электростанция высотного базирования относится к возобновляемым источникам энергии, в частности к энергиям солнца и ветра. Электростанция содержит: два подъемных крыла, расположенных друг над другом и имеющих аэродинамический профиль ЭСПЕРО, герметичную оболочку по форме подъемных крыльев, заполненную инертным газом, объемную алюминиевую арматуру по форме подъемного крыла; силовые алюминиевые стержни, соединяющие в единую жесткую конструкцию два подъемных крыла и усеченный с двух сторон шар, объемную алюминиевую арматуру по форме усеченного с двух сторон шара, герметичную оболочку усеченного с двух сторон шара; конфузор-диффузор, встроенный в среднюю часть внутренней полости усеченного с двух сторон шара, два лопастных ветродвигателя, расположенных внутри полого цилиндра в средней части внутренней полости усеченного с двух сторон шара; неподвижный вал лопастных ветродвигателей, обода лопастей ветродвигателей.

Изобретение относится к ветроэлектрической установке, содержащей синхронный генератор, а также к медленно вращающемуся синхронному генератору. Технический результат заключается в улучшении охлаждения генератора.

Изобретение относится к области ветроэнергетики. Вертикально-осевая ветроустановка состоит из опорных колец с приваренными к ним вертикальными лопастями, ступицы, жестко зафиксированной на мачте.

В одном варианте выполнения изобретения предложен способ подачи электроэнергии при помощи источника возобновляемой энергии, включающий: обеспечение первого источника возобновляемой энергии, причем первый источник возобновляемой энергии является непостоянным или не обеспечивает достаточного количества энергии; подачу энергии от первого источника возобновляемой энергии на электролизер с целью формирования энергоносителя посредством электролиза; избирательное реверсирование электролизера, позволяющее использовать его в качестве топливного элемента; и подачу энергоносителя на электролизер для выработки энергии, причем первый источник возобновляемой энергии, электролизер или энергоноситель получает дополнительное тепло от первого источника тепла; и первый источник тепла выбран из группы, состоящей из геотермального и солнечного источника тепла.

Изобретение относится к области ветровых электростанций. Ветровая электростанция включает полимерную аэродинамическую трубу, армированную полимерными обручами и подвешенную на тросах к воздушному шару, систему подземных туннелей, соединенных с аэродинамической трубой через диафрагму.

Изобретение относится к области ветроэнергетики, а именно к ветроэлектрогенераторам. Cтатор ветроэлектроагрегата содержит катушки, торцевой и радиальный магнитопроводы, источник возбуждения.

Изобретение относится к ветроэлектрогенераторам. Ротор сегментного ветроэлектрогенератора содержит вал и полюсообразующие элементы.

Изобретение относится к области ветроэнергетики. У статора электрогенератора, функционирующего при вращении роторных элементов на лопастях ветроколес, содержащего магнитопроводы, источник магнитного поля, катушку и крепежные элементы, согласно изобретению магнитопровод выполнен в виде трех уголков, соединенных последовательно, причем между полками первого и второго уголка установлен источник магнитного поля (постоянный магнит), а между полками второго и третьего уголков установлены рабочие катушки с магнитопроводом, при этом полки первого и третьего уголка расположены в зоне соответственно осевого и радиального зазоров.

Изобретение относится к системе преобразования механической энергии в электрическую, которая, в частности, подходит для использования в системах преобразования ветровой энергии.

Электрическая станция относится к области малой энергетики, а именно к установкам по использованию энергии стока рек. Электрическая станция содержит корпус, установленный в нем гидродвигатель 27 с рабочим органом, электрогенератор 18, установленный над гидродвигателем 27.

Изобретение относится к опреснительным установкам и возобновляемым источникам энергии. Солнечно-ветровая опреснительная установка содержит трубопроводы для подвода опресняемой воды 35, патрубок с краном для слива рассола, циркуляционный насос 26, теплоэлектронагреватель (ТЭН) 30, круговой конусообразный солнечный коллектор 42, внешний полусферический купол 1, фотоэлектрические модули (ФЭМ) 2, внутренний полусферический купол 3, конфузор-диффузор 4, ветроэлектрическую установку 5, внешний вращающийся ротор 9, внутренний неподвижный ротор 6, полость 11, расположенную между внешним полусферическим куполом 1 и внутренним полусферическим куполом 3, круговой лоток 12, датчик температуры (ДТ) 13, датчик давления (разрежения) (ДЦ) 10, вакуумный насос 16, электроклапан 15, коллектор теплонагревателя 31, параболический круговой отражатель солнечной радиации 17, бак 19 теплообменника 18, предназначенного для опресненной воды, окна для забора воздуха 43, круговой завихритель 48, цилиндрический испарительный бассейн 27, решетку 34 коллектора теплонагревателя 31, сферическое дно 32, инвертор 36, электронный пульт управления (ЭПУ) 37, контроллер заряда-разряда (КРЗ) 38, теплоизоляцию, круглый лоток 29 для сбора рассола. Круговой конусообразный солнечный коллектор 42 включает трубчатый спиральный теплоприемник 45, конусообразную опору 46, прозрачную теплоизоляцию 47, нижнюю кольцевую крышку 39 и прозрачную конусообразную крышку 49. Теплоаккумулирующее средство выполнено в виде алюминиевой стружки 41, а теплообменник 18 предназначен для опресненной воды. Изобретение позволяет повысить надежность работы и эффективность использования энергии ветра и Солнца. 2 з.п. ф-лы, 4 ил.

Изобретение относится к электротехнике. Технический результат состоит в уменьшении габаритов, количества компонентов и повышении скорости вращения. Устройство (10) содержит турбину (22, 34), имеющую лопастное колесо (22), и электрический генератор (12, 24), имеющий статор (12) с обмотками, распределенными по цилиндрической поверхности (X), коаксиальной лопастному колесу (22), постоянный магнит (24) выполнен с возможностью вращения относительно статора (12) и соединен с лопастным колесом (22) с возможностью передачи приводного усилия для вращения. Лопастное колесо (22) расположено внутри постоянного магнита (24). Сборка, образованная лопастным колесом (22) и постоянным магнитом (24), расположена внутри статора (12). Постоянный магнит (24) выполнен в виде единого полого цилиндрического тела из материала с высокой магнитной плотностью с диаметральной намагниченностью. 7 з.п. ф-лы, 5 ил.

Изобретение относится к гидроэнергетике и может быть использовано при выработке электроэнергии, а также для обеспечения защиты береговой линии от волнового разрушения. Самонапорная ветроволновая гидроэлектростанция включает погружные платформы 1 в виде резервуаров. На одной из платформ 1 установлены гидротурбина 2, генератор 3. На платформах 1, имеющих водооткачивающие устройства, размещена заполненная сжатым воздухом герметичная камера с напорной колонной, во внутреннюю полость которой насосами с приводами от ветровых и волновых энергоустановок закачивается и откачивается вода. При этом открытая верхняя часть колонны соединена с внутренним объемом герметичной камеры, а нижняя соединена напорным трубопроводом 5 с расходным резервуаром 4 гидротурбины 2. Герметичная камера через регулятор давления и пневмопроводы 11 соединена с ресивером 6 для сжатого воздуха, используемым для создания давления на воду, поступающую в колонну. Над поверхностью воды в колонне и резервуаре 4 размещен сжатый воздух с регулируемым давлением, обеспечивающий заданный напор при работе гидротурбины 1. Изобретение направлено на усовершенствование погружной гидроэлектростанции с использованием возобновляемых источников энергии, в которой напор на гидротурбину регулируется и не зависит от глубины ее погружения. 2 з.п. ф-лы, 4 ил.

Изобретение относится к области ветроэнергетики, в частности к ветроэлектрогенераторам сегментного типа. Технический результат заключается в повышении технологичности изготовления ротора. Ротор индукторного генератора содержит вал, ступицу, П-образные магнитопроводы. При этом ротор снабжен основанием, на котором закреплен отрезок в виде полого квадратного профиля. К каждой стороне упомянутого профиля прикреплены перемычки П-образных магнитопроводов, торцы которых направлены в сторону воздушного зазора. 3 ил.

Изобретение относится к области ветроэнергетики, в частности к статорам электрогенератора, входящего в состав ветроагрегата. Cтатор электрогенератора содержит магнитопроводы, перемычки, установленные между ними, рабочие и возбуждающие катушки и крепежные элементы. Магнитопроводы выполнены в виде треугольных пластин, одна из коротких сторон которых выполнена вертикально, а другая - горизонтально. Перемычки выполнены в виде призм с непараллельными плоскими гранями. Вертикальные стороны магнитопровода установлены в зоне осевых роторных элементов, а горизонтальные стороны - в зоне торцевых роторных элементов. Изобретение направлено на повышение производительности. 7 ил.

Изобретение относится к области ветроэнергетики, в частности к ветроэлектрогенераторам сегментного типа. Технический результат заключается в повышении технологичности изготовления ротора. Ротор сегментного ветроэлектрогенератора содержит вал, ступицу, основание, П-образные магнитопроводы. При этом основание снабжено шпильками, установленными по окружности основания ротора. На каждую пару шпилек надеты П-образные магнитопроводы, которые обращены торцами в сторону зазора. 3 ил.

Изобретение относится к области ветроэнергетики и может быть использовано для преобразования энергии ветра в электрическую энергию. Статор сегментного генератора содержит электромеханические модули и крепежные элементы. Электромеханические модули установлены на внутренней стороне дугообразного основания. Один конец основания установлен на подшипниковом узле. Другой конец основания прикреплен к выходному звену микропривода. Подшипниковый узел и микропривод установлены на общем кронштейне. Изобретение направленно на повышение надежности систем возбуждения с постоянными магнитами. 1 ил.

Изобретение относится к ветроэнергетическим установкам. Контрроторный поливиндротор включает в себя несущую мачту и поворотный узел, на котором закреплен опорный каркас с ветроколесами вертикально-осевого вращения, размещенными в двух ярусах и выставленными клином на ветер. Между ярусами каркаса имеется разрыв, содержащий контрроторные генераторы, ветроколеса разных ярусов, будучи соосными, имеют встречные вращения. Валы ветроколес с меньшей площадью ометания, относящиеся к нижнему ярусу, соединены с роторами, а валы ветроколес с большей площадью ометания, встроенные в верхний ярус, - с контрроторами тех же генераторов, эти последние валы ветроколес, что более остальных удалены в подветренную сторону от несущей мачты, выступают вверх за пределы опорного каркаса, где на их концы дополнительно надеты ортогональные лопасти крыловидного профиля. Изобретение направлено на достижение больших электрических мощностей при надежной ориентации установки на ветер. 2 ил.

Изобретение относится к ветроэнергетическим установкам. Аэроплавательный виндротор содержит ортогональную турбину из лопастей крыловидного профиля и совмещенный с ней генератор, поднятые над землей плоско-выпуклой аэростатной оболочкой положительной плавучести, имеющей жесткое горизонтальное днище и гибкие тросовые связи с наземной лебедкой. Днище аэростатной оболочки выполнено овальным, большая продольная ось которого совпадает с направлением ветра. Гибкие тросовые связи при неизменном центрально-осевом положении трос-кабеля отходят вверх веером через разъемы от полки Т-образного кронштейна, соединенного шарнирно с вертикальным валом, свободно вращающимся внутри причальной тумбы. Верхние концы всех гибких связей прикреплены к овальному днищу аэростатной оболочки равномерно по линии, перпендикулярной большой продольной оси овального днища, и ближе к его наветренной кромке. Крепление трос-кабеля совпадает с упомянутой осью. Наземная лебедка установлена на тележке, передвигаемой вокруг причальной тумбы. Изобретение направлено на уменьшение потерь мощности. 3 ил.

Изобретение относится к группе двухроторных ветроэнергетических установок. Каждая из двухроторных ветроэнергетических установок включает размещенные на башне ветротурбину с двумя соосными роторами на поворотной платформе, трансмиссию, системы управления углами установки лопастей и положения платформы, электрогенератор. При этом каждый ротор ветротурбины имеет число лопастей более 3-х, которые спроектированы как вращающиеся крылья, суммарная лобовая площадь лопастей на номинальном режиме работы составляет 0,3÷0,5 от площади, ометаемой лопастями поверхности. Лопасти во втулке установлены на подшипниках скольжения, в которых применяется твердая смазка на основе дихалькогенидов металлов в сочетании с керамической втулкой. Электрогенератор с вертикальной осью вращения ротора размещен в верхней части неподвижной башни, статор генератора закреплен к башне, ось ротора электрогенератора расположена вертикально и совпадает с осью вращения поворотной платформы. Привод от ветротурбины к генератору выполнен с помощью конической зубчатой передачи. Мультипликатор представляет собой двухконтурный зубчатый механизм, размещенный в одном корпусе, каждый контур которого передает движение и крутящий момент от одного из роторов ветротурбины независимо от движения другого контура, а кинематическая схема контура представляет собой планетарный редуктор и зубчатый одноступенчатый перебор. Трехвальный соосный зубчатый редуктор установлен между мультипликатором и ротором электрогенератора, кинематическая схема которого выполнена по условиям Δω1=К·Δω2, где Δω1 - изменение угловой скорости входного внутреннего вала; Δω2 - изменение угловой скорости входного внешнего вала; К - постоянный коэффициент, который зависит только от кинематической схемы редуктора; число лопастей ветротурбины выбрано по условию: число лопастей одного ротора - Z, число лопастей другого ротора - (Z+1). На внешнем валу ветротурбины выполнена удлиняющая проставка, в конце которой установлен передний подшипник внутреннего вала. Алгоритм управления углами поворота лопастей одного ротора β1=f(υ), т.е. угол установки лопасти есть функция только скорости ветра, а другого ротора nген=const, β2=υar, т.е. обороты генератора поддерживаются постоянными за счет изменения углов установки лопастей другого ротора, где β1 - угол установки одного ротора; υ - скорость ветра; nген - обороты электрогенератора; β2 - угол установки другого ротора; υar - переменная величина. Изобретение направлено на расширение арсенала двухроторных ветроэнергетических установок. 9 н.п. ф-лы, 12 ил., 3 табл.
Наверх