Спиральный корпус осевого компрессора высокого давления



Спиральный корпус осевого компрессора высокого давления
Спиральный корпус осевого компрессора высокого давления

 


Владельцы патента RU 2566361:

Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (МИНПРОМТОРГ РОССИИ) (RU)

Изобретение относится к конструкции полости отбора воздуха в корпусе осевого компрессора газотурбинного двигателя. Спиральный корпус осевого компрессора высокого давления выполнен в форме «улитки» со спиральным диффузорным каналом, кольцевой щелью забора воздуха и выходным фланцем перепуска воздуха диффузорного канала. Корпус дополнительно содержит выходной фланец подвода воздуха на внутридвигательные нужды и выходной фланец подвода воздуха на самолетные нужды. Два дополнтельных фланца выполнены расширяющимися к выходу и расположенные друг за другом по окружности корпуса. Ось выходного фланца подвода воздуха на внутридвигательные нужды и ось фланца подвода воздуха на самолетные нужды расположены под углом β1=25-50° относительно вертикальной оси. Ось выходного фланца перепуска воздуха расположена под углом β2=5-10° относительно горизонтальной оси. Площади проходных сечений фланцев на выходе и угловое расположение их по окружности корпуса определяют расчетным путем в зависимости от величин расходов и скоростей прохода воздуха через указанные фланцы, исходя из соблюдения определенных условий. Корпус выполнен из двух частей, в местах крепления которых установлены ребра жесткости. Достигается повышение газодинамических и прочностных характеристик компрессора, снижение веса корпуса и трудозатрат на его изготовление. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к области авиадвигателестроения, а именно к конструкциям корпусов осевых компрессоров высокого давления современных газотурбинных двигателей.

Известна конструкция спирального корпуса радиальной вихревой турбомашины, в которой имеется вращающееся рабочее центробежное колесо, предназначенное для нагнетания воздуха (Патент RU №2430274, F04D 29/22, F04D 29/28, опубл. 27.09.2011 г.).

Однако известная конструкция не предназначена для использования в осевых компрессорах, обеспечивающих подвод воздуха на самолетные и внутридвигательные нужды.

Наиболее близким к заявляемому является спиральный корпус осевого компрессора высокого давления, выполненный в форме «улитки» со спиральным диффузорным каналом, кольцевой щелью забора воздуха и выходным фланцем перепуска воздуха диффузорного канала (Патент RU №2118463, F01D 9/02, F04D 29/42, опубл. 27.08.1998 г.).

Известный корпус содержит один диффузорный канал с прямой осью, что не обеспечивает необходимую пропускную способность воздуха при заданных габаритах спирального корпуса, имеет низкие газодинамические и прочностные характеристики из-за высоких потерь полного давления. Корпус выполнен цельным, трудоемок и затратен при изготовлении, а также имеет большой вес.

Техническим результатом заявленного изобретения является повышение газодинамических и прочностных характеристик компрессора, а также снижение веса корпуса и трудозатрат на его изготовление.

Указанный технический результат обеспечивается тем, что спиральный корпус осевого компрессора высокого давления, выполненный в форме «улитки» со спиральным диффузорным каналом, кольцевой щелью забора воздуха и выходным фланцем перепуска воздуха диффузорного канала, согласно изобретению дополнительно содержит выходной фланец подвода воздуха на внутридвигательные нужды и выходной фланец подвода воздуха на самолетные нужды, выполненные расширяющимися к выходу и расположенные друг за другом по окружности корпуса, при этом ось выходного фланца подвода воздуха на внутридвигательные нужды и ось фланца подвода воздуха на самолетные нужды расположены под углом β1=25-50° относительно вертикальной оси, а ось выходного фланца перепуска воздуха расположена под углом β2=5-10° относительно горизонтальной оси, причем

F1/F2=1,30-1,35,

F1/F5=F1/F4=1,3-1,7,

F1/F3=2,0-2,5,

где F1 - площадь кольцевой щели забора воздуха,

F2 - максимальная площадь сечения спирального диффузорного канала перед фланцем перепуска воздуха,

F3 - площадь проходного сечения выходного фланца подвода воздуха на внутридвигательные нужды,

F4 - площадь проходного сечения выходного фланца подвода воздуха на самолетные нужды,

F5 - площадь проходного сечения выходного фланца перепуска воздуха, а корпус выполнен из двух частей, в местах крепления которых установлены ребра жесткости.

При этом угол между осями фланца перепуска воздуха и фланца подвода воздуха на внутридвигательные нужды β3=76°, угол между осями фланца подвода воздуха на внутридвигательные нужды и фланца подвода воздуха на самолетные нужды β4=160 и угол между осями фланца подвода воздуха на самолетные нужды и фланца перепуска воздуха β5=124°.

Повышение газодинамических и прочностных характеристик компрессора достигается за счет снижения потерь полного давления в спиральном корпусе, обеспечения равномерности воздушного потока в окружном и радиальном направлениях и обеспечения стабильности внутреннего диаметра корпуса в зоне подвода воздуха. При этом заявляемая конструкция спирального корпуса осевого компрессора высокого давления обладает меньшим весом (по сравнению с известными аналогами) и обеспечивает минимальные трудозатраты при его изготовлении.

Конструкция корпуса проиллюстрирована на чертежах:

на фиг. 1 показано продольное сечение;

на фиг. 2 показан вид А-А на фиг. 1.

Спиральный корпус, имеющий форму «улитки», включает кольцевую щель 1 забора воздуха, предназначенную для забора воздуха из проточной части компрессора (не показан) в кольцевую спиральную полость 2 и имеющую площадь F1, выходной фланец 3 перепуска воздуха. Спиральный диффузорный канал перед выходным фланцем 3 имеет максимальную площадь F2 сечения перепуска воздуха. Корпус содержит два дополнительных выходных фланца: выходной фланец 4 подвода воздуха на самолетные нужды и выходной фланец 5 подвода воздуха на внутридвигательные нужды. Выходные фланцы 4 и 5 выполнены расширяющимися к выходу и расположены друг за другом по окружности корпуса. Оси выходных фланцев 4 и 5 расположены под углом β1=25-50° относительно вертикальной оси, а ось выходного фланца 3 перепуска воздуха - под углом β2=5-10° относительно горизонтальной оси.

Площади F3, F4, F5 проходных сечений фланцев 5, 4, 3 на выходе и угловое (β3, β4, β5) расположение их по окружности корпуса определяют расчетным путем в зависимости от величин расходов и скоростей прохода воздуха через указанные фланцы, исходя из соблюдения следующих условий:

F1/F2=1,30-1,35,

F1/F5=F1/F4=1,3-1,7,

F1/F3=2,0-2,5,

где F1 - площадь кольцевой щели 1 забора воздуха,

F2 - максимальная площадь сечения спирального диффузорного канала перед фланцем 3 перепуска воздуха,

F3 - площадь проходного сечения выходного фланца 5 подвода воздуха на внутридвигательные нужды,

F4 - площадь проходного сечения выходного фланца 4 подвода воздуха на самолетные нужды,

F5 - площадь проходного сечения выходного фланца 3 перепуска воздуха.

Оптимальными величинами углов β3, β4, β5 являются: β3=76°, β4=160° и β5=124°.

Спиральный корпус осевого компрессора получен методом литья и выполнен разъемным, состоящим из двух частей 6 и 7, в местах крепления которых установлены ребра жесткости 8. Наклонная перегородка 9 служит для разграничения области начала подачи воздуха из кольцевой щели 1 и потока воздуха, идущего непосредственно на перепуск. Также перегородка 9 обеспечивает дополнительное жесткое крепление корпуса и стабильность внутреннего диаметра корпуса в зоне подвода воздуха.

Во время работы спирального корпуса на него действуют осевые силы до 20 тонн со стороны ротора компрессора. Были проведены трехмерные прочностные и газодинамические расчеты с помощью пакета ANSYS 14.0 и ANSYSCFX 14.0, результаты которых подтверждают эффективность использования заявляемой конструкции корпуса. А также при проектировании корпуса были проанализированы теоретические и аналитические зависимости относительных величин потерь энергии в диффузорных каналах (Ю.С. Подобуев, К.П. Селезнев, «Теория расчета осевых и центробежных компрессоров», 1957).

Заявляемая конструкция спирального корпуса осевого компрессора работает следующим образом.

Во время работы компрессора высокого давления через кольцевую щель 1, расположенную за направляющим аппаратом средней ступени, отбирается воздух, который поступает в кольцевую спиральную полость 2. По спиральной траектории воздух движется к местам его выхода. Часть воздуха через выходной фланец 4 поступает на самолетные нужды на низких режимах работы двигателя, причем заслонка фланца 5 закрыта. При высоких режимах работы двигателя часть воздуха через выходной фланец 5 поступает на внутридвигательные нужды, причем заслонка фланца 4 закрыта. Через фланец 3 осуществляется перепуск воздуха в каналах наружного контура на всех режимах.

Спиральный корпус работает на протяжении всего рабочего цикла компрессора, обеспечивая при этом постоянный отбор воздуха в зависимости от режима, диапазон которого меняется от 4 до 18% от расхода воздуха на входе в компрессор высокого давления.

Предложенную конструкцию корпуса осевого компрессора высокого давления планируется использовать на современных газотурбинных двигателях.

1. Спиральный корпус осевого компрессора высокого давления, выполненный в форме «улитки» со спиральным диффузорным каналом, кольцевой щелью забора воздуха и выходным фланцем перепуска воздуха диффузорного канала, отличающийся тем, что дополнительно содержит выходной фланец подвода воздуха на внутридвигательные нужды и выходной фланец подвода воздуха на самолетные нужды, выполненные расширяющимися к выходу и расположенные друг за другом по окружности корпуса, при этом ось выходного фланца подвода воздуха на внутридвигательные нужды и ось фланца подвода воздуха на самолетные нужды расположены под углом β1=25-50° относительно вертикальной оси, а ось выходного фланца перепуска воздуха расположена под углом β2=5-10° относительно горизонтальной оси, причем
F1/F2=1,30-1,35,
F1/F5=F1/F4=1,3-1,7,
F1/F3=2,0-2,5,
где F1 - площадь кольцевой щели забора воздуха,
F2 - максимальная площадь сечения спирального диффузорного канала перед фланцем перепуска воздуха,
F3 - площадь проходного сечения выходного фланца подвода воздуха на внутридвигательные нужды,
F4 - площадь проходного сечения выходного фланца подвода воздуха на самолетные нужды,
F5 - площадь проходного сечения выходного фланца перепуска воздуха, а корпус выполнен из двух частей, в местах крепления которых установлены ребра жесткости.

2. Спиральный корпус осевого компрессора высокого давления по п. 1, отличающийся тем, что угол между осями фланца перепуска воздуха и фланца подвода воздуха на внутридвигательные нужды β3=76, угол между осями фланца подвода воздуха на внутридвигательные нужды и фланца подвода воздуха на самолетные нужды β4=160° и угол между осями фланца подвода воздуха на самолетные нужды и фланца перепуска воздуха β5=124°.



 

Похожие патенты:

Компрессор (1) турбореактивного двигателя летательного аппарата содержит решетку (2) неподвижных лопаток и систему для отбора воздуха на уровне проходов (5) между двумя лопатками (3) через щели (6), выполненные в упомянутой стенке (4).

Осевой компрессор имеет двухступенчатый каскад (8) направляющих лопаток на конце (5) вала ротора (4) со стороны выхода. Направляющие лопатки (11) второй ступени каскада смещены относительно направляющих лопаток (10) в окружном направлении таким образом, что вихревые хвосты, производимые направляющими лопатками (10) первой ступени направляющих лопаток, не могут попадать на направляющие лопатки (11) второй ступени.

Крепежная конструкция для прикрепления направляющей лопасти к раме или кожуху вентилятора двигателя воздушного судна. Направляющая лопасть образована из композитного материала.

Лопаточный кольцевой сектор статора турбомашины летательного аппарата содержит сектор внутренней обечайки, множество лопаток и сборку, образующую сектор наружной обечайки.

Кольцо статора модуля турбинного двигателя летательного аппарата имеет множество сквозных отверстий, предназначенных для расположения лопатки статора. Каждое отверстие определяет среднюю линию, проходящую между первым краем, предназначенным для расположения задней кромки лопатки, и вторым краем, предназначенным для расположения передней кромки лопатки.

Изобретение относится к области соединения компрессора и камеры сгорания газотурбинных двигателей авиационного и наземного применения. Статор компрессора газотурбинного двигателя включает внутренний (3) и наружный (2) корпусы, связанные между собой упругими элементами (6, 7).

Компрессор для турбомашины содержит кожух (4), по меньшей мере, одну ступень компрессора и полости (5), выполненные в упомянутом кожухе по пути хода подвижных лопаток (1).

Система осевой турбинной машины содержит проточный канал, ограниченный наружной и внутренней стенками, и решетку направляющих лопаток. Ниже по потоку решетки направляющих лопаток расположен кольцевой диффузор, имеющий наружную и внутреннюю стенки.

Изобретение относится к компрессору газотурбинного двигателя, оборудованного системой отбора воздуха, а также к газотурбинному двигателю, такому как авиационный турбореактивный или турбовинтовой двигатель, оборудованному компрессором этого типа.

Изобретение относится к кольцевому диффузору для осевой турбинной машины, содержащему круговую наружную стенку и коаксиальную ей круговую внутреннюю стенку, между которыми кольцеобразно проходит канал диффузора в осевом направлении от расположенного на стороне входа потока конца к расположенному на стороне выхода потока конца, при этом внутренняя стенка и наружная стенка содержат каждая ограничивающую канал диффузора поверхность стенки.

Диффузор (20), в частности, для осевого компрессора, предпочтительно стационарной газотурбинной установки. В диффузоре (20) кольцевой канал (17), имеющий первую площадь поперечного сечения, переходит в выходное пространство (21), имеющее вторую, большую площадь поперечного сечения вдоль оси (31) машины. Переход осуществлен в несколько ступеней (22а-с). Диффузор (20a) содержит внешний корпус (23) и внутренний корпус (24), между которыми через диффузор (20a) перемещается рабочая среда. Ступени (22a-c) в площади поперечного сечения образованы ступенями диаметра внутреннего корпуса (24) Достигается улучшенная эффективность диффузора и повышение общего КПД газотурбинной установки. 5 з.п. ф-лы, 5 ил.

Изобретение относится к механическому сборочному узлу (1) для авиации, содержащему: деталь (3), содержащую присоединяемый конец; углубление, предназначенное для посадки в него детали (3), причем указанное углубление (2) имеет стенку, содержащую композитный материал с органической матрицей; фиксирующий композитный материал (4), содержащий термопластичный или термореактивный материал с содержанием наполнителя от 0 до 70 весовых процентов и образующий механическую и/или физико-химическую связь между указанной деталью (3) и углублением (2) со стенкой из композитного материала с органической матрицей. Достигаются уменьшенная масса, уменьшенные производственные затраты, более простой и менее затратный ремонт, изготовление готовых деталей без доработки после формования. 3 н. и 12 з.п. ф-лы, 2 ил.

Настоящее изобретение относится к узлу (2) с лопатками (1), в частности, спрямляющего аппарата для компрессора турбомашины. Узел (2) с лопатками (1) содержит множество индивидуальных устройств (14А), воздействующих на поток, которые сформированы таким образом, чтобы создавать завихрения (16). Каждое из упомянутых индивидуальных устройств (14А) предусмотрено на входе упомянутого узла (2) с лопатками (1) так, чтобы одновременно воздействовать на основной поток (Е) и на рециркуляционный поток (G). Уменьшение отрывов, полученное благодаря изобретению, позволяет улучшить кпд компрессора (3) и способствует увеличению диапазона стабильности. 3 н. и 9 з.п. ф-лы, 8 ил.

Настоящее изобретение относится к статору компрессора осевой турбомашины. Статор содержит кольцевой ряд основных лопаток (26) статора и дополнительные лопатки (34), каждая из которых связана с основной лопаткой (26). Дополнительные лопатки (34) расположены у задних кромок (38) основных лопаток (26) и вблизи сторон (40) высокого давления основных лопаток (26). Дополнительные лопатки (34) выровнены для создания области (56) низкого давления у задних кромок (38) основных лопаток (26). Таким образом, поток, обходящий основную лопатку (26), всасывается стороной (42) низкого давления посредством области (56) низкого давления, когда он приближается к задней кромке (38) основной лопатки (26). Таким образом предотвращается снижение скорости и повышается эффективность машины. 2 н. и 18 з.п. ф-лы, 5 ил.
Наверх