Способ магнитной дефектоскопии

Изобретение относится к области неразрушающего контроля и может быть использовано для магнитной дефектоскопии как плоских изделий, так и изделий сложной формы (шестерни, болты, ступенчатые и коленчатые валы, галтельные переходы и др.). Технический результат - повышение селективной чувствительности к дефектам сплошности и расширение области применения. Способ магнитной дефектоскопии заключается в том, что намагничивают контролируемый объект, устанавливают индукционный преобразователь над его поверхностью, ориентируя ось витков индукционного преобразователя параллельно поверхности контролируемого объекта, перемещают индукционный преобразователь относительно поверхности контролируемого объекта и по выходному напряжению индукционного преобразователя судят о наличии и параметрах дефектов сплошности, при этом в процессе сканирования создают виброперемещение индукционного преобразователя вдоль оси его витков в направлении перемещения, выделяют из выходного напряжения индукционного преобразователя гармоническую составляющую с частотой, равной удвоенной частоте виброперемещения, регистрируют ее максимальную величину и по ней судят о местоположении и параметрах дефекта. 1 з.п. ф-лы, 6 ил.

 

Изобретение относится к области неразрушающего контроля и может быть использовано для магнитной дефектоскопии как плоских изделий, так и изделий сложной формы (шестерни, болты, ступенчатые и коленчатые валы, галтельные переходы и др.).

Известен способ магнитной дефектоскопии, используемый для дефектоскопии рельс, уложенных в путь, и заключающийся в том, что намагничивают линейно-протяженный контролируемый объект, перемещают над его поверхностью индукционный преобразователь, регистрируют его выходное напряжение и по его изменению судят о наличии дефектов [1]. Преимущество регистрации дефектов с помощью индукционных преобразователей состоит в их лучшей селективной чувствительности к дефектам, по сравнению с феррозондами или датчиками Холла. Это связано с тем, что выходной сигнал индукционных преобразователей определяется скоростью изменения магнитного потока, сцепленного с его витками. За счет этого подавляется влияние мешающих факторов, приводящих к большим, но плавно изменяющимся магнитным полям над поверхностью контролируемого объекта.

Недостаток известного способа состоит в необходимости обеспечения для получения приемлемой абсолютной чувствительности высокой скорости перемещения. Из-за этого, в частности, невозможен контроль миниатюрных объектов, а также сложнопрофильных и труднодоступных участков. Известный способ не обладает и потенциально достижимой при использовании индукционных преобразователей селективной чувствительностью к дефектам, так как здесь в качестве информативного параметра используется амплитуда регистрируемых импульсов напряжения. Импульсы напряжения возникают как под влиянием магнитных потоков рассеяния над дефектами, так и под воздействием мешающих факторов, например магнитной неоднородности металла, вариации рабочего зазора, неровности сканируемой поверхности.

Известен способ магнитной дефектоскопии, заключающийся в том, что намагничивают линейно-протяженный контролируемый объект, перемещают над его поверхностью феррозондовый и индукционный преобразователи, измеряют скорость перемещения и в зависимости от ее величины регистрируют сигналы феррозондового или индукционного преобразователей, по которым судят о наличии и параметрам дефектов [2]. Известный способ позволяет проводить контроль при широком диапазоне изменения скорости сканирования, сочетая приемлемую чувствительность к дефектам как на низких скоростях, за счет использования феррозондового преобразователя, так и на высоких скоростях, за счет использования индукционного преобразователя.

Недостаток известного способа состоит в низкой эффективности контроля сложнопрофильных участков, так как используемый в этом случае феррозондовый преобразователь оказывается весьма чувствителен к магнитным неоднородностям металла, вариации рабочего зазора при сканировании и краевым эффектам. Известный способ не обладает и потенциально достижимой при использовании индукционных преобразователей селективной чувствительностью к дефектам, так как и здесь в качестве информативного параметра используется амплитуда регистрируемых импульсов напряжения.

Наиболее близок по технической сущности к заявляемому способу магнитного контроля принятый за прототип способ, заключающийся в том, что контролируемый участок намагничивают П-образным электромагнитом и сканируют поверхность контролируемого объекта индукционным преобразователем, установленным на размещенном в межполюсном пространстве электромагнита вращающемся диске, перемещаемом одновременно вдоль контролируемого участка. Сигналы с выхода индукционного преобразователя передают на электронный блок через индукционный токосъем, где по изменению амплитуды регистрируемых сигналов судят о наличии и параметрах дефектов [3].

Однако и данный способ не позволяет проводить контроль сложнопрофильных и труднодоступных участков, как из-за значительных габаритов сканирующей системы, так и из-за недостаточной селективной чувствительности к дефектам сплошности. Недостаточная селективная чувствительность к дефектам сплошности определяется тем, что и здесь о наличии дефекта судят по превышению амплитуды регистрируемых импульсов напряжения. Таким образом, в известном способе отсутствует информативный признак, характерный только для воздействия дефекта сплошности.

Цель изобретения - повышение селективной чувствительности к дефектам сплошности и расширение области применения.

Поставленная цель в способе магнитной дефектоскопии, заключающемся в том, что намагничивают контролируемый объект, устанавливают индукционный преобразователь над его поверхностью, ориентируя ось витков индукционного преобразователя параллельно поверхности контролируемого объекта, перемещают индукционный преобразователь относительно поверхности контролируемого объекта и по выходному напряжению индукционного преобразователя судят о наличии и параметрах дефектов сплошности, достигается благодаря тому, что в процессе сканирования создают виброперемещение индукционного преобразователя вдоль оси его витков в направлении перемещения, выделяют из выходного напряжения индукционного преобразователя гармоническую составляющую с частотой, равной удвоенной частоте виброперемещения, регистрируют ее максимальную величину и по ней судят о местоположении и параметрах дефекта.

Дополнительно, поставленная цель достигается благодаря тому, что амплитуду и частоту виброперемещений предварительно выбирают с помощью контрольных образцов с характерными дефектами сплошности из условия обеспечения максимальной селективной чувствительности.

На фиг. 1 показана схема установки и направление виброперемещения индукционного преобразователя, выполненного в виде индуктивной катушки 1, механически связанной с приводом 2 виброперемещения посредством рычага 3 относительно сканируемой поверхности контролируемого объекта 4, намагниченной постоянным магнитным полем В. Контролируемый объект 4 содержит дефект 5, выходящий на сканируемую поверхность, и дефект 6, выходящий на тыльную поверхность. Привод 2 и рычаг 3 рекомендуется выполнять из немагнитного материала для исключения искажений намагничивающего магнитного поля. В качестве исполнительного элемента привода 2 рекомендуется выбирать биморфный пьезоэлемент. Области магнитных потоков рассеяния, созданных дефектами, показаны жирными линиями. Штриховыми линиями показаны фоновые поля рассеяния намагничивающего поля.

На фиг. 2 показан график 7 производной тангенциальной составляющей напряженности магнитного поля дефекта dH(x)/dx вдоль направления сканирования по координате х.

На фиг. 3 показан временной график 8x(t)=asinω0t виброперемещения катушки с частотой ω0 и амплитудным значением a, соизмеримым с расстоянием между нулевыми точками графика dH(x)/dx (x1, 0; 0, x2), а также график 9 изменения наводимой в катушке ЭДС e(t) при расположении плоскости ее центрального сечения по центру поля рассеяния дефекта x=0.

На фиг. 4 показан вид экспериментально полученного графика 10 ЭДС e(t) на выходе катушки индукционного преобразователя 1 при ее смещении на расстояние l=±10 мкм относительно центра поверхностного дефекта глубиной 1 мм и шириной 5 мкм при рабочем зазоре 1 мм.

На фиг. 5 показан график 11 изменения фонового сигнала при перемещении катушки над бездефектным участком поверхности.

На фиг. 6 показан вид сверху траектории сканирования контролируемой поверхности объекта 4 в режиме виброперемещения катушки при определении расположения дефектов 5 и 6 относительно линий магнитной индукции В. Траектория сканирования показана пунктирной линией, а направления виброперемещения - сплошной линией.

Заявляемый способ реализуется следующим образом.

Намагничивают с помощью системы намагничивания (не показана) контролируемый объект 4, устанавливают индукционный преобразователь 1 над его поверхностью, ориентируя ось витков индукционного преобразователя 1 параллельно поверхности контролируемого объекта 4. Перемещают индукционный преобразователь 1 относительно поверхности контролируемого объекта 4 и в процессе сканирования создают с помощью привода 2 виброперемещение индукционного преобразователя 1 по гармоническому закону вдоль оси витков индукционного преобразователя 1. Выделяют из выходного напряжения индукционного преобразователя 1 гармоническую составляющую с частотой, равной удвоенной частоте виброперемещения, регистрируют ее максимальную величину и по ней судят о местоположении и параметрах дефекта.

Амплитуду и частоту виброперемещений целесообразно предварительно выбирать с помощью контрольных образцов с характерными дефектами сплошности при соблюдении рабочего зазора. Характерный диапазон изменения амплитуды а виброперемещения составляет 0,1…0,4 мм и определяется протяженностью зоны над дефектом в которой dH(x)/dx изменяет знак. Эта зона расширяется при увеличении рабочего зазора между поверхностью контролируемого объекта 4 и витками индукционного преобразователя 1. При рабочем зазоре до 0,5 мм для поверхностных дефектов рекомендуется устанавливать а не более 0,1…0,2 мм, а для выявления подповерхностных дефектов и дефектов, выходящих на тыльную относительно сканируемой сторону - 0,3…0,4 мм. Величину а рекомендуется увеличивать и при возрастании рабочего зазора, но не более, чем до 0,5 мм.

Частота виброперемещений f=ω/2π выбирается из обеспечения необходимой абсолютной чувствительности и зависит, в том числе, и от размеров и числа витков катушки индукционного преобразователя. Рекомендуемый диапазон изменения f составляет 0,5…10 КГц.

Обоснование предлагаемого способа можно провести путем анализа выражения для ЭДС индуктивной катушки 1, возникающей при ее перемещении в постоянном магнитном поле вдоль координаты x:

где A - коэффициент, зависящий от магнитной проницаемости среды, числа витков и площади сечения катушки.

В случае виброперемещения катушки по гармоническому закону с амплитудой а и круговой частотой ω0, расположенной на расстоянии l от центра дефекта, выражение для ЭДС принимает вид

Из приведенного выражения следует, что с учетом показанной на фиг. 1 схемы установки индуктивной катушки 1 и заданных значений параметров виброперемещения эффективное значение индуцированной ЭДС будет зависеть от скорости возрастания или убывания тангенциальной составляющей напряженности магнитного поля в пределах области, ограниченной размерами катушки и диапазоном ее виброперемещения. В частности, если в данной области поле однородно, ЭДС в катушке не наводится.

Магнитное поле, обусловленное наличием дефекта типа трещины неоднородно, причем производная тангенциальной составляющей напряженности вдоль оси x, как известно [2, с. 43], является знакопеременной функцией с участками возрастания и убывания (фиг. 2). Если плоскость центрального сечения катушки 1 располагается по центру дефекта (х=0), то за один период колебаний катушки 1 с амплитудой, превышающей координаты точек экстремумов функции dH(x)/dx (график 7), возникает двухполярный симметричный индуцированный сигнал e(t) (фиг. 3, график 9) удвоенной частоты по отношению к частоте виброперемещения (фиг. 3, график 8). При этом в спектре индуцированного сигнала e(t) составляющая с частотой ω0 отсутствует; доминирующей по амплитуде является гармоника с частотой 2ω0.

При незначительном смещении катушки относительно центра поля рассеяния дефекта на расстояние l симметрия индуцированного сигнала с частотой 2ω0 нарушается (фиг. 4, график 10). В спектре индуцированного сигнала появляется составляющая с частотой ω0, а составляющая с частотой 2ω0 уменьшается по амплитуде. При дальнейшем смещении катушки амплитуда гармоники с частотой ω0 возрастает, а амплитуда гармоники с частотой 2ω0 исчезающе убывает.

При расположении катушки вблизи бездефектных участков контролируемой поверхности фоновый сигнал будет минимальным в связи с квазиоднородностью напряженности магнитного поля в ограниченной области виброперемещения катушки. В этом случае доминирующая гармоника фонового сигнала имеет частоту ω0 (фиг. 5, график 11).

Таким образом, по предлагаемому способу информативным параметром электрического сигнала катушки является амплитуда гармоники частотой 2ω0, которая выделяется избирательным фильтром при обработке сигнала. Важно отметить, что гармоники частотой 2ω0 принципиально возникают при искажениях магнитного поля, характерных для дефектов.

Технология контроля по предложенному способу сводится к следующему.

После намагничивания контролируемого объекта постоянным магнитным полем (рекомендации по точкам приложения полюсных магнитов или электромагнитов применительно к деталям сложной формы приведены в [3]) перпендикулярно предполагаемому направлению расположения дефекта производят сканирование по поверхности вдоль линий намагничивающего поля вибрирующей катушкой 1 (фиг. 6), причем плоскость катушки ориентируют перпендикулярно магнитным линиям намагничивающего поля. При появлении информативного сигнала с частотой 2ω0 рекомендуется выполнить возвратно-поступательно перемещение катушки, добиваясь максимального значения амплитуды второй гармоники. Затем смещают катушку в перпендикулярном направлении по отношению к линиям намагничивающего поля и производят возвратно-поступательное сканирование, добиваясь максимального значения амплитуды сигнала с частотой 2ω0. Процедуру повторяют в двух противоположных направлениях, определяя линию центров и границы дефекта по его длине. Фиксируя среднее смещение линии центров по всей длине дефекта, определяют угол α между вектором магнитной индукции и направлением дефекта, используя данные измеренных смещений m и n (фиг. 6). Для оценки глубины дефекта используют результаты предварительной калибровки преобразователя, полученные с помощью контрольных образцов с искусственными дефектами.

По экспериментальным данным описанная технология контроля применима для значений угла α в пределах до 60° в связи с высокой чувствительностью к полям рассеяния дефекта и низким уровнем шума.

В случае произвольной ориентации дефектов намагничивание и вибросканирование следует производить в ортогональных направлениях.

Техническими преимуществами предлагаемого способа магнитного контроля являются:

1. Высокая достоверность выявления дефектов с малой глубиной и шириной раскрытия. По экспериментальным данным при вибросканировании дефекта шириной раскрытия 3,5 мкм и глубиной 0,2 мм с частотой 500 Гц и амплитудой ±0,2 мм амплитуда выходного сигнала не менее 35 мВ удвоенной частоты при шумовом уровне фона 5 мВ основной частоты ω0, который отсекается при фильтрации.

2. Высокая локальность определения местоположения дефекта. Погрешность определения центрального сечения поля рассеяния дефекта типа трещины не превышает ±0,01 мм.

3. Исключение необходимости применения компенсационных магниточувствительных элементов.

4. Возможность выявления поверхностных дефектов в труднодоступных местах на расстоянии до 5 мм от контролируемой поверхности.

5. Надежное выявление подповерхностных дефектов, расположенных на глубине до 5 мм.

Приведенные экспериментальные данные получены с помощью контрольных образцов дефектов на экспериментальной установке, обеспечивающей относительное перемещение контрольного образца и индукционного преобразователя по трем координатам с разрешающей способностью 5 мкм, а также относительное изменение угловых положений преобразователя и контролируемого образца.

Источники информации

1. Сборник статей «Состояние и направления развития средств дефектоскопии рельсов в условиях реформирования путевого хозяйства» МПС РФ. - Санкт-Петербург, 2002, С. 54.

2. Патент РФ №2310836, G01N 27/83, 2007 г.

3. Неразрушающий контроль: Справочник: В 7 т. Под общ. ред. В.В. Клюева. Т. 6: В 3 кн. Кн. 1: Магнитные методы контроля. / В.В. Клюев, В.Ф. Мужицкий, Э.С. Горкунов, В.Е. Щербинин - М.: Машиностроение, 2004. - С. 93-95 (прототип).

1. Способ магнитной дефектоскопии, заключающийся в том, что намагничивают контролируемый объект, устанавливают индукционный преобразователь над его поверхностью, ориентируя ось витков индукционного преобразователя параллельно поверхности контролируемого объекта, перемещают индукционный преобразователь относительно поверхности контролируемого объекта и по выходному напряжению индукционного преобразователя судят о наличии и параметрах дефектов сплошности, отличающийся тем, что в процессе сканирования создают виброперемещение индукционного преобразователя вдоль оси его витков в направлении перемещения, выделяют из выходного напряжения индукционного преобразователя гармоническую составляющую с частотой, равной удвоенной частоте виброперемещения, регистрируют ее максимальную величину и по ней судят о местоположении и параметрах дефекта.

2. Способ по п. 1, отличающийся тем, что амплитуду и частоту виброперемещений предварительно выбирают с помощью контрольных образцов с характерными дефектами сплошности из условия обеспечения максимальной селективной чувствительности.



 

Похожие патенты:

Изобретение относится к измерительной технике, представляет собой устройство для вихретоковой дефектоскопии и может быть использовано для выявления и определения параметров подповерхностных дефектов в ферромагнитных объектах.

Изобретение относится к измерительной технике и предназначено для наружного неразрушающего контроля стенок труб (обнаружение дефектов, потери металла и растрескиваний в стенках труб) непосредственно во время проведения ремонтных работ, замены изоляции труб трубопроводов, транспортирующих природный и промышленный газы, нефть и нефтепродукты.

Изобретение относится к измерительной технике, в частности средствам бесконтактной диагностики, представляет собой устройство для диагностики технического состояния металлических трубопроводов и может быть использовано при дефектоскопическом контроле состояния, например напряженно-деформированного состояния металла трубопровода, нарушения целостности трубопровода и изоляционного покрытия и т.п., подводных и/или подземных нефте- и газопроводов и других металлических трубопроводов.

Изобретение относится к области магнитной дефектоскопии в промышленности и на транспорте. Сущность: протяженные конструкции в процессе их эксплуатации, изготовленные из однородного ферромагнитного материала и имеющие сечение профиля простой симметричной формы, намагничивают с образованием полюсов симметричного магнитного поля на оси симметрии сечения профиля по всей длине объекта наблюдения.

Изобретение относится к способам и средствам неразрушающего контроля материалов и может быть использовано для диагностики рельсов и других протяженных объектов.

Предлагаемое техническое решение относится к области дефектоскопического контроля состояния трубопровода и может быть использовано для обнаружения и оконтуривания зон напряженно-деформированного состояния металла трубопровода, нарушения целостности трубопровода и его изоляционного покрытия, выявления несанкционированных врезок, а также диагностики технического состояния других подземных металлических трубопроводов и металлоконструкций.

Изобретение относится к производственной промышленности и может быть использовано для обнаружения и локализации металлических предметов в готовой продукции или в сырье.

Изобретение относится к бесконтактной диагностике металлических труб в процессе эксплуатации. Сущность: способ включает определение места и глубины залегания трубопровода на исследуемом участке, установку вдоль оси трубопровода, по крайней мере, двух идентичных датчиков для измерения напряженности (тангенциальной составляющей) магнитного поля, синхронную запись изменения напряженности магнитного поля, вызванного блуждающими токами, сравнительную обработку информации от всех датчиков и диагностическое заключение.

Изобретение относится к внутритрубной дефектоскопии и может быть использовано для обнаружения отверстий в трубопроводах. Сущность: инструмент содержит соединенные между собой блок питания (1), позиционирующий и управляющий блок (2) и блок магнитных датчиков (3).

Изобретение относится к способам бесконтактной внетрубной диагностики стальных нефтяных труб, применяемых при транспортировке нефти трубопроводным способом, в том числе малого и среднего диаметра (100-500 мм), а также при дефектоскопии стальных и чугунных металлоконструкций.

Предложенный комплекс внутритрубной дефектоскопии с тросовой протяжкой относится к средствам для проверки технического состояния коротких прямолинейных или изгибных отрезков трубопровода. Данный комплекс содержит внутритрубный магнитный дефектоскоп, первую и вторую лебедку, вытяжной трос, силовой трос, кроулер, компьютер, подвижный маркирующий модуль с краскопультом, радиопередающее устройство, радиоприемное устройство, направляющий трос, первый и второй держатель направляющего троса, промежуточный держатель направляющего троса, идентификатор кольцевого шва. Первый держатель направляющего троса установлен на поверхности грунта над трубой около рва над входом в контролируемую трубу, второй держатель направляющего троса установлен на поверхности грунта над трубой около рва над выходом из контролируемой трубы, а направляющий трос укреплен одним концом к первому держателю направляющего троса, вторым концом - ко второму держателю направляющего троса, а на повороте трубы в горизонтальной плоскости направляющий трос крепится к промежуточному держателю направляющего троса с помощью эластичных растяжек. Направляющий трос введен в канавки первого и второго направляющих шкивов подвижного маркирующего модуля, магнитный датчик установлен в геометрическом центре тележки подвижного маркирующего модуля, радиопередающее устройство и его антенна установлены в кормовой части внутритрубного снаряда-дефектоскопа, а к входам модулятора радиопередатчика подключен выход идентификатора кольцевого шва, на множественные входы которого подключены выходы магнитных датчиков снаряда дефектоскопа. Данное изобретение обеспечивает повышение точности наземной привязки обнаруженных в трубопроводе дефектов относительно положения известных точек трубки. 5 ил.

Использование: для магнитной дефектоскопии. Сущность изобретения заключается в том, что магнитная дефектоскопия трубопровода проводится с учетом различных магнитных свойств материалов, связанных с применением при строительстве трубопроводов труб из различных марок стали и влиянием направления намагничивания относительно направления проката листа. Учет различных магнитных свойств материалов возможен с применением в устройстве магнитного дефектоскопа специального датчика, сигнал которого примерно пропорционален относительной дифференциальной проницаемости материала трубы в точке поля намагничивания относительно направления проката листа. Вводится информационный параметр «P», который примерно пропорционален дифференциальной относительной магнитной проницаемости материала, а также амплитуде поля рассеяния дефекта. Информационный параметр «P» используется как поправка к измеренным полям рассеяния в условиях, когда сегменты трубопровода выполнены из материалов с различными магнитными свойствами. Технический результат: уменьшение погрешности определения размеров дефектов трубопровода. 2 н. и 3 з.п. ф-лы, 2 табл., 6 ил.

Изобретение относится к области неразрушающего контроля качества изделий методом магнитных потоков рассеяния и предназначено, прежде всего, для дефектоскопического контроля канатов из стальной ферромагнитной проволоки и устройству для осуществления способа. Способ контроля технического состояния каната заключается в том, что для обнаружения обрывов проволок одновременно с помощью датчиков Холла и индуктивных катушек осуществляют измерение сигнала по каналу локальных дефектов и по каналу потери сечения каналов, после чего полученные сигналы датчиков обрабатываются совместно с добавлением вблизи обнаруженного обрыва зоны нечувствительности, чтобы исключить таким образом двойной учет одного и того же обрыва, в том числе при наличии смещения сигнала от обрыва по разным каналам. Также предложена конструкция дефектоскопа для осуществления описанного выше способа, которая включает магнитную головку, состоящую из намагничивающей системы в виде двух полуцилиндров и измерительной системы с расположенными в двух плоскостях по окружности датчиками Холла и двумя седлообразными индуктивными катушками, соединенную кабелем с блоком управления и индикации, выполненным с возможностью автоматической обработки и отображения интегрального результата контроля на цветовом индикаторе (красный/желтый/зеленый) и дополнительной информации на алфавитно-цифровом дисплее. Изобретение обеспечивает высокую достоверность определения плотности обрывов проволок и повышение точности диагностики за счет корректного суммирования обрывов, обнаруженных по каналу датчиков Холла и каналу индуктивных катушек. 2 н. и 2 з.п. ф-лы, 8 ил.

Использование: для контроля технического состояния нефтегазовых скважин. Сущность изобретения заключается в том, что способ определения коррозии обсадных колонн в эксплуатационных скважинах включает измерение толщины обсадной колонны по стволу скважины импульсной электромагнитной дефектоскопией, дополнительно регистрируют амплитуды низкочастотных акустических шумов, по которым выделяют интервалы заколонных перетоков жидкости, в выявленных интервалах перетоков по пониженным значениям суммарной ЭДС импульсов магнитной проницаемости и электропроводимости обсадной колонны определяют ее толщину и путем сравнения ее с толщиной соседнего беспереточного интервала, определяемого по отсутствию акустических шумов, в котором толщина обсадной колонны понижена только за счет коррозии ее внутренней стенки, по разности этих толщин судят о коррозии наружной стороны колонны. Технический результат: обеспечение возможности определения наружной коррозии. 2 ил.

Изобретение относится к средствам механизации и автоматизации технологических операций при проведении неразрушающего контроля объектов промышленного производства или транспорта, например сварных швов ЖД цистерн и их креплений (хомутов). Сущность: устройство имеет две стержневые опоры - левую и правую. Опоры соединены системой двойных планок (верхней и нижней), образуя в исходном состоянии прямоугольник с шарнирными углами. Снизу каждой опоры имеется башмак в виде электромагнита. Верхняя часть цилиндрического башмака является зубчатым венцом. Выше каждого башмака жестко со стержнем опоры крепятся приводы, в состав которых входят электродвигатель, червячный редуктор и шестерня. На верхних планках симметрично друг другу установлены два тяговых электромагнита. На нижних планках установлен вертикальный якорь из магнитомягкой стали. Верхняя часть якоря находится между полюсами тяговых электромагнитов с одинаковым зазором с двух сторон. Снизу нижних планок крепится индукционный или другой датчик, используемый для сканирования контролируемой поверхности объекта. Технический результат: повышение ходовых качеств устройства. 2 ил.

Использование: для неразрушающего контроля труб риформера из аустенитной стали. Сущность изобретения заключается в том, что способ испытания трубы риформера из аустенитной стали, содержащий этапы, на которых: обеспечивают образец трубы риформера из аустенитной стали, которая должна быть проверена; выбирают одно или более мест испытания на упомянутой трубе риформера из аустенитной стали; передают два синусоидальных электромагнитных сигнала, имеющих различные частоты F1 и F2, в место испытания на трубе риформера из аустенитной стали; принимают ответный сигнал из упомянутого места испытания; и анализируют основную частоту и частоты интермодуляции упомянутого принятого ответного сигнала, чтобы определить состояние трубы риформера из аустенитной стали в упомянутом месте испытания. Технический результат: обеспечение возможности обнаружения очень ранних изменений в трубном сплаве. 19 з.п. ф-лы, 6 ил.

Изобретение относится к неразрушающему выявлению отклонений от нормы в электропроводных материалах. Сущность изобретения заключается в том, что дифференциальный датчик для выявления отклонений от нормы в электропроводных материалах содержит постоянный магнит; первую катушку с одной или более первыми обмотками, навитыми вокруг постоянного магнита и определяющими первую ось катушек, и вторую катушку с одной или более вторыми обмотками, навитыми вокруг постоянного магнита и определяющими вторую ось катушек, идущей поперечно первой оси катушек. Технический результат – повышение точности выявления отклонений от нормы в электропроводных материалах. 3 н. и 10 з.п. ф-лы, 8 ил.

Изобретение относится к устройствам для выявления и характеристики дефектов и зон концентрации напряжений в инженерных сооружениях из стальных трубных сталей, включая резьбовые трубы нефтегазового сортамента, используемые при бурении и извлечении нефтепродуктов. Технический результат – расширение функциональных возможностей устройства. Сущность изобретения заключается в том, что в устройстве диагностики дефектов в сооружениях из трубных сталей, включающем ГМР магнитные датчики и блок обработки информации, ГМР датчики размещены на платах в форме дисков, закрепленных на едином стержне параллельно друг другу, причем на каждой плате размещено не менее чем по 8 двухкомпонентных ГМР датчиков, размещенных по внешней окружности платы на равном расстоянии друг от друга, платы образуют не менее чем две группы, по две платы в каждой. Причем горизонтальные оси всех двухкомпонентных ГМР датчиков на каждой из плат расположены перпендикулярно оси НКТ, соосны и направлены для каждой пары противоположно лежащих датчиков навстречу друг другу, вертикальные оси всех датчиков параллельны оси НКТ и параллельны друг другу, вертикальные оси расположенных друг под другом датчиков для обеспечения необходимой точности соосны. На конце стержня размещен блок обработки информации с выходным разъемом для подключения к управляющему и записывающему устройствам. 6 з.п. ф-лы, 8 ил.

Использование: для бесконтактного электромагнитного неразрушающего контроля листовых алюминиевых сплавов. Сущность изобретения заключается в том, что способ включает установку плоского емкостного датчика вблизи потенциально опасного участка поверхности (концентратора напряжения) металла, деформирование его путем приложения внешнего усилия с помощью нагружающего устройства, формирование сигнала ЭМИ в результате развития механической неустойчивости в виде распространяющихся деформационных полос, преобразование сигнала ЭМИ с помощью емкостного датчика ЭМИ и его регистрацию, в качестве источника ЭМИ используется электрически активная окисная пленка Аl2O3 на поверхности алюминиевого сплава, при этом сигнал ЭМИ возникает при смещении двойного электрического слоя, связанного с окисной пленкой относительно неподвижного датчика ЭМИ в ходе зарождения и распространения полосы локализованной пластической деформации в виде бегающей шейки или в ходе распространения трещины. Технический результат: обеспечение возможности бесконтактного электромагнитного метода, когда ледяная корка на поверхности металла отсутствует. 6 ил.

Изобретение относится к области бесконтактной внутритрубной диагностики технического состояния подземных ферромагнитных нефтяных и газовых труб. Сущность изобретения заключается в том, что способ диагностики технического состояния подземного трубопровода основан на измерении 36 сумм компонент поля и 36 градиентов постоянного магнитного поля, используя 8 трехкомпонентных датчиков постоянного магнитного поля, расположенных в вершинах куба околотрубного пространства, с использованием системы не менее чем из четырех преобразователей магнитной индукции, каждый из которых состоит из двух трехкомпонентных соосных датчиков постоянного поля с осевой симметрией. В состав системы входят также два трехкомпонентных датчика переменного магнитного поля. Технический результат – повышение точности и чувствительности способа диагностики технического состояния подземных трубопроводов, повышение точности привязки результатов измерений к положению трубопровода, а также повышение надежности и точности разделения полей дефектов и полей помех. 3 з.п. ф-лы, 2 ил.
Наверх