Способ вибродиагностики печатных узлов



Способ вибродиагностики печатных узлов
Способ вибродиагностики печатных узлов
G01H1/06 - Измерение механических колебаний или ультразвуковых, звуковых или инфразвуковых колебаний (генерирование механических колебаний без измерений B06B,G10K; определение местоположения, направления или измерение скорости объекта G01C,G01S; измерение медленно меняющегося давления жидкости G01L 7/00; измерение дисбаланса G01M 1/14; определение свойств материалов с помощью звуковых или ультразвуковых колебаний, пропускаемых через эти материалы G01N; системы с использованием отражения или переизлучения акустических волн, например формирование акустических изображений G01S 15/00; сейсмология, сейсмическая разведка, акустическая разведка G01V 1/00; акустооптические устройства как таковые G02F; получение

Владельцы патента RU 2566611:

Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт гидротехники и мелиорации имени А.Н. Костякова" (ФГБНУ "ВНИИГиМ им. А.Н. Костякова" (RU)

Изобретение относится к вибрационной метрологии, в частности к средствам вибродиагностики печатных узлов. Способ вибродиагностики предполагает жесткое крепление печатного узла в месте его размещения, встраивание вибродатчика и излучателя гармонических синусоидальных колебаний (виброэмулятора) непосредственно в печатный узел на стадии его разработки, вибровоздействие на печатный узел подачей гармонических синусоидальных колебаний на виброэмулятор, снятие амплитудно-частотных характеристик (АХЧ) с вибродатчика, определение резонансных частот и соответствующих им дефектов. При этом диагностика осуществляется в процессе эксплуатации печатного узла. При выполнении измерений в блоке предварительной обработки программного комплекса цифровой обработки сигналов (ЦОС) полученные значения АХЧ интерполируют и приводят к единой частотной сетке. Технический результат - сокращение времени диагностики. 2 ил.

 

Предлагаемое изобретение относится к способам диагностики посредством гармонических вибрационных воздействий.

При проведении диагностики конструкций печатных узлов (ПУ) одной из задач является выявление механических дефектов, которые могут привести к потере работоспособности системы.

Для выявление латентных механических дефектов в ПУ применяются визуальные, тепловизионные, рентгеновские и вибрационные способы (ГОСТ 20417-75. Техническая диагностика. Общие положения о порядке разработки систем диагностирования. - М., 1975).

Вибрационный способ является наиболее широко применяемым ввиду его наиболее полного соответствия реальным условиям эксплуатации печатных узлов, относительно низкими затратами. Он включает следующие операции: размещение ПУ на вибрационном стенде, установку вибродатчиков на ПУ с использованием клея или жесткого механического крепления (стальная шпилька), формирование гармонических синусоидальных колебаний на вибростенде (тряска, удары), снятие амплитудно-частотных характеристик (АЧХ) с вибродатчиков и определение резонансных частот и соответствующих им дефектов.

Такой способ реализуется в вибростендах ВЭДС-10, ВЭДС-20, ВЭДС-100, ВЭДС-200, ВЭДС-400, ВЭДС-1500, ВЭДС-3000, Typhoon 1.5 компании Qualmark Corporation.

Недостатком известного способа является то, что при диагностике конструкций ПУ печатную плату необходимо изымать из рабочего процесса и помещать в специальную вибрационную камеру, что создает неудобства в процессе выходного контроля. Кроме того, использование вибростенда увеличивает временные и экономические затраты.

Известно устройство, реализующее способ вибродиагностики, включающий жесткое крепление печатного узла в месте его размещения, встраивание вибродатчика и излучателя гармонических синусоидальных колебаний (виброэмулятора) непосредственно в печатный узел на стадии его разработки, вибровоздействие на печатный узел подачей гармонических синусоидальных колебаний на виброэмулятор, снятие амплитудно-частотных характеристик (АХЧ) с вибродатчика, определение резонансных частот и соответствующих им деффектов, диагностируя печатный узел в процессе выходного контроля и эксплуатации (Экспериментальные исследования возможности вибродиагностики аппаратуры встроенными источниками колебаний // Инновации на основе информационных и коммуникационных технологий: Материалы международной научно-практической конференции. / Лышов С.М. и др. Под ред., С.У. Увайсова, М.: МИЭМ НИУ ВШЭ, 2012, стр. 272-274). Этот способ взят в качестве прототипа.

Недостатком известного способа является необходимость для диагностики печатного узла снимать все значения характеристики для построения полной АХЧ, а также анализировать и сравнивать несколько графиков с различными частотными сетками, что значительно увеличивает время диагностики.

Устранить указанный недостаток позволяет предлагаемый способ вибродиагностики печатных узлов, включающий жесткое крепление печатного узла в месте его размещения, встраивание вибродатчика и излучателя гармонических синусоидальных колебаний (виброэмулятора) непосредственно в печатный узел на стадии его разработки, вибровоздействие на печатный узел подачей гармонических синусоидальных колебаний на виброэмулятор, снятие амплитудно-частотных характеристик (АХЧ) с вибродатчика, определение резонансных частот и соответствующих им деффектов, диагностируя печатный узел в процессе эксплуатации, при котором, согласно предлагаемому изобретению, снимают лишь несколько значений АХЧ, в блоке предварительной обработки программного комплекса цифровой обработки сигналов (ЦОС) полученные значения АХЧ интерполируют и приводят к единой частотной сетке.

Техническим результатом от использования предлагаемого способа является сокращение времени диагностики, так как интерполяция обеспечивает возможность построения по дискретным точкам полной АХЧ и оценку значения неизвестной величины, находящейся между двумя точками ряда известных величин, то есть позволяет снять лишь часть показаний, восстановив остальные. Приведение к единой частотной сетке позволяет оценивать дефекты (резонансные частоты) на одном графике, следовательно нет необходимости траты времени на анализ и сравнение нескольких графиков с различными частотными сетками.

Предлагаемое изобретение поясняется чертежами, где на фиг. 1 представлена структурная схема с интегрированными в печатный узел виброэмулятором и вибродатчиком; на фиг. 2 представлены возможные варианты АЧХ с вибродатчика, полученные с использованием предлагаемого способа.

Предлагаемый способ осуществляют следующим образом:

На стадии разработки ПУ виброэмулятор и вибродатчик интегрируют непосредственно в ПУ с жестким креплением ПУ в месте его размещения.

При диагностике ПУ на виброэмулятор генерируют гармонические синусоидальные колебания, оказывая тем самым вибровоздействие на ПУ. В месте крепления вибродатчика в ПУ с помощью программного комплекса цифровой обработки сигналов (ЦОС), например VIRTINS Multi-Instrument 3.2 для звуковой карты или осциллографа, регистрируют несколько значений АХЧ. В блоке предварительной обработки ЦОС полученные АЧХ интерполируют и приводят к единой частотной сетке, затем определяют резонансные частоты и соответствующие им дефекты.

Среднее время диагностики составляет около 6 минут, что существенно ниже временных затрат при проведении диагностики ПУ по способу-прототипу.

Таким образом, предлагаемый способ вибродиагностики печатных узлов, обеспечивающий их самодиагностирование в процессе неразрушающего выходного контроля и прогнозирование латентных механических дефектов, возникающих непосредственно в процессе их производства и эксплуатации, позволяет существенно сократить временные затраты.

Способ вибродиагностики печатных узлов, включающий жесткое крепление печатного узла в месте его размещения, встраивание вибродатчика и излучателя гармонических синусоидальных колебаний (виброэмулятора) непосредственно в печатный узел на стадии его разработки, вибровоздействие на печатный узел подачей гармонических синусоидальных колебаний на виброэмулятор, снятие амплитудно-частотных характеристик (АХЧ) с вибродатчика, определение резонансных частот и соответствующих им дефектов, диагностируя печатный узел в процессе эксплуатации, отличающийся тем, что снимают значения АХЧ, в блоке предварительной обработки программного комплекса цифровой обработки сигналов (ЦОС) полученные значения АХЧ интерполируют и приводят к единой частотной сетке.



 

Похожие патенты:

Изобретение относится к метрологии, в частности в способам измерений амплитуды колебаний в твердых телах путем непосредственного контакта с детектором. Способ проверки адресности стыковки трубопроводов системы наддува баков жидкостных ракет шахтного базирования включает создание колебательного сигнала в части трубопровода, находящейся в аппаратурном отсеке, прием его в части трубопровода, находящейся в шахтной пусковой установке.

Группа изобретений относится к измерительной технике, в частности к средствам измерений крутильных колебаний. Способ содержит этапы, на которых получают колебательный сигнал ускорения от акселерометра, расположенного на неподвижной детали турбинного двигателя, оценивают частотный спектр колебательного сигнала, ищут пару спектральных линий с амплитудами, превышающими, по меньшей мере, первый порог.

Изобретение относится к способу и устройству для анализа акустической эмиссии. Способ анализа колебаний или акустического анализа детали, заготовки и/или инструмента для определения надежности работы и/или качества обработки, при котором регистрируют и обрабатывают колебания, возникающие во время использования и/или при контроле детали, заготовки и/или инструмента.

В примерных вариантах выполнения поверхность вращающегося элемента снабжена опорной фазовой меткой и несколькими дополнительными метками. Бесконтактный датчик приближения обнаруживает прохождение как опорной фазовой метки, так и дополнительных меток по мере их прохождения через зону обнаружения.

Использование: для определения форм и частот собственных колебаний рабочих лопаток газотурбинных двигателей. Сущность изобретения заключается в том, что каждую окончательно изготовленную лопатку (поставляемую на двигатель) закрепляют в зажиме за хвостовик в горизонтальном положении, наносят на ее поверхность тонким слоем песок и возбуждают колебания лопатки возмущающей силой, приложенной к свободному концу лопатки, до возникновения резонансных колебаний, когда песок будет сброшен со всех вибрирующих мест, кроме неподвижных линий-узлов, что свидетельствует о совпадении частоты возбуждения с частотой собственных колебаний лопатки (fвоз=fсоб) при соответствующей форме колебаний лопатки, зафиксированной по виду песочных фигур, значение которой (fсоб) и записывают в дело двигателя, при этом для лопаток, имеющих на своей поверхности перфорационные охлаждающие отверстия, определяют экспериментальным путем формы и частоты собственных колебаний 15-20 лопаток до и после изготовления перфорационных отверстий (репрезентативная выборка), определяют для этих выборок средние и среднеквадратические отклонения частот и вычисляют поправку Δf, которую прибавляют к частоте собственных колебаний каждой лопатки, (поставляемой на двигатель), полученной до изготовления перфораций на поверхности лопатки, и записывают суммарную величину частоты в дело двигателя.

Изобретение относится к области динамических испытаний упругих систем и может быть использовано для определения демпфирующей способности упругого элемента механической колебательной системы.

Изобретение относится к области измерительной техники и решает задачу поиска источников общего акустического поля в условиях нелинейности механического тракта распространения колебательных процессов.

Изобретение относится к вращающимся механизмам, а более конкретно к установкам для мониторинга вибраций обмотки статора. Установка для мониторинга вибрации обмотки статора вращающегося электрического механизма (100) содержит по меньшей мере один датчик (102), содержащий по меньшей мере одну токопроводящую сенсорную антенну (122), нанесенную на лицевую сторону по меньшей мере одного слоя подложки печатной платы и обращенную к обмотке статора, а также непроводящий экран (126), установленный на обратной стороне указанной подложки (124) и обращенный в сторону от обмотки статора.
Изобретение относится к способам, предназначенным для контроля и фиксации параметров колебаний. Техническим результатом заявленного изобретения является возможность контроля и записи на запоминающее устройство параметров колебаний во всех координатах.

Изобретение касается устройства для измерения вибраций подшипников для турбомашины и турбомашины, которая снабжена устройством для измерения вибрации подшипников.

Изобретение относится к способу формирования последовательности импульсных сигналов, используя процессор, в частности, для системы калибровки системы измерения синхронизации венцов в турбомашине или другом вращающемся оборудовании. Техническим результатом является обеспечение возможности калибровки системы измерения синхронизации венцов в турбомашине. Способ содержит этапы, на которых: сохраняют множество элементов времени ожидания в блоке памяти, создают импульсный сигнал в блоке вывода сигнала во время по меньшей мере одного цикла процессора, считывают элемент времени ожидания из упомянутого блока памяти, создают нулевой сигнал в упомянутом блоке вывода сигнала для множества циклов процессора, полученных из упомянутого считанного элемента времени ожидания, подают сигналы, созданные в упомянутом блоке выходного сигнала для каждого цикла, в цифроаналоговый преобразователь и повторяют этапы создания импульсного сигнала, считывания элемента времени ожидания и создания нулевого сигнала для каждого импульсного сигнала в последовательности импульсных сигналов. 2 н. и 3 з.п. ф-лы, 5 ил.

Изобретение относится к области контрольных устройств для контроля роторов турбин. Заявлены контрольное устройство для контроля ротора турбины, способ контроля ротора турбины, ступень турбины, турбинный двигатель. Заявленное контрольное устройство содержит акустический датчик и звуковой волновод для связи упомянутого акустического датчика с точкой считывания, близкой к упомянутому ротору турбины; акустический датчик выполнен с возможностью обнаружения, в качестве звуковых волн, колебаний давления, обусловленных разницами давления между сторонами низкого и высокого давления лопаток ротора, по мере того как они перемещаются мимо, вблизи от упомянутой точки считывания. Техническим результатом является обеспечение контроля роторов турбины, которые имеют большое число лопаток. 4 н. и 6 з.п. ф-лы, 8 ил.

Изобретение относится к метрологии, в частности к средствам контроля лопаток турбин компрессора. Устройство содержит емкостный датчик, установленный на корпусе перпендикулярно к траектории прохождения вершин лопаток подвижного рабочего колеса. Датчик представляет собой продолговатый электрод, закрепленный на внутренней стороне корпуса и ориентированный по диагонали относительно траектории вершин лопаток таким образом, чтобы проходить вдоль оси вращения рабочего колеса поперек траекториям кромок лопаток. При этом расположенный ниже по потоку конец электрода смещен по окружности относительно его расположенного выше по потоку конца в том же направлении, что и задние кромки лопаток относительно передних кромок лопаток. На основе изменения электрической емкости во времени и соответствующего сигнала определяют время прохождения лопаток. Технический результат - повышение точности контроля. 3 н. и 7 з.п. ф-лы, 12 ил.

Изобретение относится к области волочения трубы в холодном состоянии. Технический результат - повышение качества трубы. Способ включает: этап измерения усилия, прилагаемого к стержню для удерживания оправки в направлении волочения и этап обнаружения предшествующего признака скачкообразного движения на этапе перед возникновением скачкообразного движения на основе величин измерения усилия, полученных на этапе измерения усилия. Причем этап обнаружения предшествующего признака включает этап частотного анализа величин измерения усилия, полученных на этапе изменения усилия в заданной полосе частот, и этап оценки возникновения предшествующего признака скачкообразного движения, когда пиковая интенсивность частотного спектра, полученного посредством частотного анализа, превышает заданное опорное значение. 3 н.п. ф-лы, 6 ил.

Многофункциональное устройство для контроля параметров состояния оборудования содержит корпус, органы взаимодействия, управляющий процессор, разъем питания, соединенный с аккумулятором, RFID считыватель, Bluetooth модуль, тепловизор, соединенный с видеокамерой, и виброметр. Управляющий процессор выполнен с возможностью инициирования операций считывания RFID метки оборудования, извлечения информации из RFID метки, передачи информации на мобильное устройство обходчика, активации тепловизора или виброметра, получения параметров состояния проверяемого оборудования, передачи информации о полученных параметрах состояния оборудования на мобильное устройство обходчика. Обеспечиваются снижение времени, затрачиваемого для получения показателей единицы оборудования, и централизованный электронный контроль за состоянием оборудования. 2 н. и 12 з.п. ф-лы, 4 ил.

Изобретение относится к метрологии, в частности к устройствам вибрационной диагностики двигателей. Устройство содержит датчики вибрации и скорости вращения вала двигателя, cхему приема вибрационного сигнала и величины скорости вращения. Также устройство содержит средство дискретизации для дискретизации в реальном времени вибрационного сигнала с сигналом дискретизации. Сигнал дискретизации синхронизирован с одной текущей скоростью вращения, генерируя таким образом соответствующий синхронный вибрационный сигнал. При этом сигнал дискретизации вычисляется на основе величин отношения максимальной гармоники, отношения дискретизации и скорости вращения вала двигателя. Устройство также содержит средство буферизации выборки, временная длина буфера выбирается в зависимости от отношения минимальной гармоники. Устройство выполнено с возможностью выделения из буферизированной выборки частотных сигналов гармоник, кратных минимальной гармонике, с частотами, пропорциональными соответствующей текущей скорости вращения путем перемножения буферизированной выборки с коэффициентами Фурье. Технический результат – сокращение объемов требуемой памяти, снижение вычислительных затрат. 3 н. и 6 з.п. ф-лы, 5 ил.

Предложен способ измерения силы, приложенной к преобразователю переменной силы, для его последующей калибровки. При этом переменная сила, возбужденная возбудителем переменной силы 8, преобразовывается посредством упругого элемента 4 в упругую деформацию, которая измеряется при помощи лазерного интерферометра 1. 2 ил.

Изобретение относится к метрологии, в частности, к способам измерения добротности механической колебательной системы. Способ определения добротности механической колебательной системы, снабженной датчиком положения, заключается в том, что экспериментально определяют частоту собственных колебаний механической колебательной системы ω0 из условия сдвига фазы между вынуждающей силой и выходным сигналом датчика положения, равного π/2, экспериментально устанавливают частоту ω1 вынуждающей силы из условия сдвига фазы между вынуждающей силой и выходным сигналом датчика положения, равного π/2+ϕ1, при этом модуль фазового сдвига |ϕ1|<π/2, и добротность Q механической колебательной системы определяют по известной формуле, учитывающей тангенс сдвига фаз, частоту собственных колебаний механической системы, частоту вынуждающей силы. Технические результаты – повышение точности, упрощение и ускорение процедуры определения добротности.

Изобретение относится к области приборостроения и может быть использовано в системах контроля технологических процессов. Система датчиков содержит технологический измерительный преобразователь, вибродатчик без внешнего питания и технологический трансмиттер. Технологический измерительный преобразователь расположен внутри термокармана и выполнен с возможностью выработки первого сигнала датчика. Вибродатчик без внешнего питания выполнен с возможностью выработки второго сигнала датчика, отражающего вибрацию термокармана. Технологический трансмиттер выполнен с возможностью приема, обработки и передачи первого и второго сигналов датчиков. Технический результат – повышение эффективности контроля технологического процесса за счет исключения повреждения термокармана, в котором установлен технологический измерительный преобразователь. 2 н. и 22 з.п. ф-лы, 3 ил.
Наверх