Кожухотрубный реактор для получения ангидрида малеиновой кислоты


 

B01J19/00 - Химические, физические или физико-химические способы общего назначения (физическая обработка волокон, нитей, пряжи, тканей, пера или волокнистых изделий, изготовленных из этих материалов, отнесена к соответствующим рубрикам для такого вида обработки, например D06M 10/00); устройства для их проведения (насадки, прокладки или решетки, специально предназначенные для биологической обработки воды, промышленных и бытовых сточных вод или отстоя сточных вод C02F 3/10; разбрызгивающие планки или решетки, специально предназначенные для оросительных холодильников F28F 25/08)

Владельцы патента RU 2566749:

БАСФ СЕ (DE)

Изобретение относится к установке для получения ангидрида малеиновой кислоты путем гетерогенно-каталитического газофазного окисления исходного потока, содержащего углеводороды, по меньшей мере, с 4 углеродными атомами на молекулу, включающей реактор с пучком реакционных труб, в которых размещен твердофазный катализатор, на котором происходит экзотермическое взаимодействие исходного потока с кислородсодержащим газовым потоком, один или несколько насосов и один или несколько установленных вне реактора теплообменников, через которые протекает теплоноситель, представляющий собой солевой расплав, который протекает через промежуточное пространство между реакционными трубами, воспринимая теплоту реакции, причем температура солевого расплава лежит в диапазоне между 350 и 480°C. А реакционные трубы выполнены из легированной термостойкой стали, содержащей, по меньшей мере, 0,25 вес. % молибдена или, по меньшей мере, 0,5 вес. % хрома и, по меньшей мере, 0,25 вес. % молибдена. Установка отличается повышенной устойчивостью. 4 з.п. ф-лы, 4 пр.

 

Изобретение относится к установке, включающей кожухотрубный реактор для получения ангидрида малеиновой кислоты (далее АМК) путем гетерогенно-каталитического газофазного окисления углеводородов, по меньшей мере, с четырьмя атомами углерода с использованием содержащих кислород газов в присутствии летучего фосфорного соединения на катализаторе, содержащем ванадий, фосфор и кислород.

АМК используют прежде всего при получении ненасыщенных полиэфирных смол, которые используют в качестве многослойных материалов в строительной и автомобильной промышленности. Кроме того, АМК представляет собой важный промежуточный продукт при синтезе гамма-бутиролактона, тетрагидрофурана и 1,4-бутан-диола, которые со своей стороны используются в качестве растворителей или подвергаются дальнейшей переработке в полимеры, такие как политетрагидрофуран или поливинилпирролидон.

Получение АМК путем гетерогенно-каталитического газофазного окисления углеводородов, по меньшей мере, с четырьмя углеродными атомами с использованием кислорода в кожухотрубном реакторе на твердофазном катализаторе в общем известно и описано, например, в публикации "Ullmann's Encyclopedia of Industrial Chemistry" ["Энциклопедия Ульманна по промышленной химии"], 6-е издание, 1999 г., электронная публикация, глава "MALEIC AND FUMARIC ACID - Maleic Anhydride" ["Малеиновая и фумаровая кислоты - ангидрид малеиновой кислоты"]. В общем для этого используют бензол или С4-углеводороды, такие как 1,3-бутадиен, н-бутены или н-бутан.

Предпочтительно используют твердофазные катализаторы, которые в качестве активной массы содержат ванадий, фосфор и кислород.

Содержащие ванадий, фосфор и кислород катализаторы, которые в дальнейшем обозначаются как "катализаторы ВФК", используют в непромотированном или в промотированном виде.

Реакция углеводородов с получением АМК на таких катализаторах ВФК проходит сильно экзотермически.

Обычно такие газофазные реакции осуществляют при температуре реакции между 390 и 500°С.

Реакторы, пригодные для осуществления таких сильноэкзотермических гетерогенно-каталитических газофазных реакций в технических масштабах, описаны, например, в документе ЕР 1882518 А2.

Они представляют собой кожухотрубные реакторы, в которых заполненные катализатором ВФК реакционные трубы расположены вертикально друг к другу, и наружные стороны реакционных труб омываются теплоносителем.

Для регулирования температуры сильно экзотермической газофазной реакции в реакционных трубах используют теплоносители, представляющие собой, например, жидкие солевые расплавы. Особенно пригодными оказались смеси нитратов и нитритов щелочных металлов, предпочтительно эвтектического состава, например, нитрата калия, нитрита натрия и нитрата натрия.

Несмотря на то, что возможно применение таких солевых расплавов при температурах до 620°С, температуру солевого расплава ограничивают на примерно 450-480°С. Это обеспечивает термическую стабильность солевой смеси и удовлетворяет специфические требования относительно осуществления реакции газофазного окисления углеводородов для получения АМК.

Ввиду необходимости обеспечения в процессах получения АМК постоянной температуры солевого расплава в диапазоне 350-480°С имеются особые требования к материалам, используемым для конструкции кожухотрубного реактора и его периферийных аппаратов, таких как теплообменники и насосы.

До сих пор реакционные трубы кожухотрубных реакторов, используемые для получения АМК, изготавливают из термостойких нелегированных сталей, т.е. из сталей, содержащих лишь железо и углерод и, кроме того, обычные компоненты из процесса получения стали, в частности, фосфор, серу и кремний, однако не содержащих специально добавленных легирующих элементов. В качестве материала для реакционных труб кожухотрубных реакторов для получения АМК часто используют термостойкие нелегированные стали №St 35.8 или St 37.8, согласно стандартам EN 10216-2 и EN 10217-2, допущенные для рабочих температур до 480°С. Таким образом, можно исходить из того, что данные материалы можно без проблем и без ухудшения их механических характеристик использовать при обычных температурах солевых расплавов в реакторах для получения АМК, находящихся в диапазоне примерно 350-480°С, предпочтительно примерно 380-440°С, особенно предпочтительно примерно 390-430°С.

Однако при эксплуатации реакторов для получения АМК реакционные трубы которых изготовлены из вышеприведенных термостойких нелегированных сталей, наблюдались зависимые от температуры и времени повреждения, приводящие к существенному ухудшению значений стойкости, в частности, предела ползучести, которые не могут быть связаны с повреждениями от усталости от срока службы.

Таким образом, задача изобретения заключается в разработке установки для получения АМК, включающей кожухотрубный реактор, не обладающей вышеприведенными недостатками и характеризующейся, в частности, повышенной устойчивостью.

Указанная задача решается в установке для получения АМК путем газофазного окисления исходного потока, содержащего углеводороды, по меньшей мере, с 4 атомами углерода на молекулу, включающей реактор с группой реакционных труб, в которых размещен твердофазный катализатор, на котором происходит экзотермическое взаимодействие исходного потока с содержащим кислород газовым потоком, один или несколько насосов и один или несколько установленных вне реактора теплообменников, по которым теплоноситель, представляющий собой солевой расплав, протекает по промежуточному пространству между реакционными трубами, воспринимая теплоту реакции, причем температура солевого расплава лежит в диапазоне между 350 и 480°С, которая отличается тем, что реакционные трубы изготовлены из термостойкой легированной стали, содержащей, по меньшей мере, 0,5 вес.% хрома, или, по меньшей мере, 0,25 вес.% молибдена, или, по меньшей мере, 0,5 вес.% хрома и, по меньшей мере, 0,25 вес.% молибдена.

В отношении указанного температурного диапазона между 350 и 480°С было обнаружено, что благодаря добавлению хрома как легирующего элемента в количестве, по меньшей мере, 0,5 вес.%, т.е. в количестве 0,5 вес.% или больше, и/или благодаря добавлению молибдена как легирующего элемента в количестве, по меньшей мере, 0,25 вес.%, т.е. в количестве 0,25 вес.% или больше, может быть предотвращено наблюдаемое существенное, зависимое от времени и температуры ухудшение механических характеристик, в частности, предела ползучести.

Если реакционные трубы выполнены из легированной термостойкой стали, по меньшей мере, с 0,5 вес.% хрома и/или, по меньшей мере, 0,25 вес.% молибдена, как правило, обеспечен достаточный срок службы установки, в частности, тогда, если остальные конструктивные элементы установки, приходящие в контакт с теплоносителем, состоящим из солевого расплава, предпочтительно содержащего нитраты и нитриты щелочных металлов, в частности, тарелки реакционных труб, на которых закреплены, в частности, к которым приварены, контактные трубы, а также один или несколько установленных вне реактора теплообменников, выполнены из термостойкой стали, содержащей, по меньшей мере, 0,25 вес.% молибдена. Пригодным является, например, материал 16 Мо3.

Согласно предпочтительной форме выполнения дополнительно к реакционным трубам и все остальные конструктивные элементы установки, приходящие в контакт с теплоносителем, представляющим собой солевой расплав, изготовлены из легированной термостойкой стали, содержащей, по меньшей мере, 0,5 вес.% хрома, или, по меньшей мере, 0,25 вес.% молибдена, или, по меньшей мере, 0,5 вес.% хрома и, по меньшей мере, 0,25 вес.% молибдена.

Температура солевого расплава, протекающего через промежуточное пространство между реакционными трубами реактора и воспринимающего теплоту реакции, лежит в диапазоне между 350 и 480°С, предпочтительно между 380 и 440°С, особенно предпочтительно между 390 и 430°С.

Размещенный в реакционных трубах твердофазный катализатор, на котором происходит гетерогенно-каталитическое газофазное окисление исходного потока, содержащего углеводороды, по меньшей мере, с 4 атомами углерода на молекулу, путем его взаимодействия с кислородсодержащим газовым потоком, предпочтительно содержит в качестве активной массы ванадий, фосфор и кислород (так называемый катализатор ВФК). В случае применения катализатора ВФК исходный поток содержит, как правило, летучее фосфорное соединение.

В качестве солевого расплава, который в качестве теплоносителя пропускается через промежуточное пространство между реакционными трубами, предпочтительно используют солевой расплав, содержащий нитраты или нитриты щелочных металлов. Особенно предпочтительно используют солевой расплав с эвтектическим составом, содержащий, например, 53 вес.% нитрата калия, 40 вес.% нитрита натрия и дополнительно 7 вес.% нитрата натрия.

Предлагаемая установка может включать, в частности, прочные на гидравлический удар реакторы без предохранительных дисков.

Несмотря на то, что механизм возникновения повреждений подробно не известен, было установлено, что использование легированной термостойкой стали, которая должна содержать, по меньшей мере, 0,5 вес.% хрома, или, по меньшей мере, 0,25 вес.% молибдена, или, по меньшей мере, 0,5 вес.% хрома и, по меньшей мере, 0,25 вес.% молибдена, позволяет предотвратить наблюдаемое существенное ухудшение механических характеристик реакционных труб, приводящее к необходимости преждевременной замены используемых для получения АМК кожухотрубных реакторов.

Изобретение не ограничено относительно конкретного выполнения установки для получения АМК, а его можно применять для любых установок для получения АМК, в которых АМК получают в кожухотрубном реакторе с группой реакционных труб, причем в реакционных трубах размещен твердофазный катализатор, предпочтительно катализатор ВФК, по которому направляется исходный поток, содержащий углеводороды, по меньшей мере, с 4 атомами углерода на молекулу и предпочтительно летучее фосфорное соединение и содержащий молекулярный кислород газовый поток, или прямотоком, или противотоком по отношению к направлению потока солевого расплава.

По окружному пространству, т.е. промежуточному пространству между реакционными трубами, для отвода теплоты сильно экзотермической реакции подается теплоноситель, представляющий собой солевой расплав. Особенно пригодными оказались в этой связи смеси нитратов и нитритов щелочных металлов.

Солевой расплав подается по окружному пространству кожухотрубного реактора и по одному или нескольким установленным вне реактора теплообменникам, в частности, охладителю с соляной ванной, пароперегревателю и электронагревателю, с помощью одного или несколько насосов.

В предлагаемой установке предпочтительно все ее конструктивные элементы, которые приходят в контакт с солевым расплавом, в частности, реакционные трубы, кожух реактора, тарелки реактора, к которым приварены реакционные трубы, а также один или несколько насосов, которые перекачивают солевой расплав, и один или несколько установленных вне реактора теплообменников, по которым подается солевой расплав, в частности, охладители с соляной ванной, пароперегреватели и электронагреватели, выполнены из материала, который содержит, по меньшей мере, 0,5 вес.% хрома, или, по меньшей мере, 0,25 вес.% молибдена, или, по меньшей мере, 0,5 вес.% хрома и, по меньшей мере, 0,25 вес.% молибдена.

Предпочтительно можно использовать легированную термостойкую сталь, дополнительно содержащую, по меньшей мере, 0,5 вес.% хрома, или, по меньшей мере, 0,25 вес.% молибдена, или, по меньшей мере, 0,5 вес.% хрома и, по меньшей мере, 0,25 вес.% молибдена и один или нескольких других элементов из группы, включающей титан, ниобий и ванадий, в качестве легирующих элементов.

Данные стали предпочтительно представляют собой, например, материалы, в соответствии с нормой EN 10217-2 для сварных труб из термостойкой стали, соответственно с нормой EN 10216-2 для бесшовных труб из термостойкой стали, обозначаемые сокращенными наименованиями 16Мо3, 13СrМо4-5, 10СrМо9-10 или X6CrNiTi18-10 и соответствующими номерами EN 1.5415, 1.7335, 1.7380 соответственно 1.4541.

Установка предпочтительно включает реактор, выход которого по объему и времени оптимизирован в результате многозонной конструкции, т.е. реактор с двумя или более размещенными последовательно реакционными зонами с катализаторами разной активности и/или разными температурами состоящего из солевого расплава теплоносителя.

Подобная установка известна, например, из документа DE-A 100 11 309. Она включает кожухотрубный реакторный узел, по меньшей мере, с двумя последовательно размещенными охлажденными реакционными зонами, причем температура в первой реакционной зоне составляет от 350 до 450°С, а температура во второй и, в случае необходимости, еще дальнейших реакционных зонах составляет от 350 до 480°С, и причем разница температур между самой теплой и самой холодной зонами составляет, по меньшей мере, 2°С.

При этом под кожухотрубным реакторным узлом следует понимать узел, состоящий, по меньшей мере, из одного кожухотрубного реактора.

Под понятием "реакционная зона" следует понимать зону внутри кожухотрубного реактора, которая содержит катализатор и внутри которой температура удерживается на единой величине. Если температура не является точно одинаковой на всех сторонах, то понятие относится к среднечисленному значению температуры по длине реакционной зоны. Под понятием "первая", "вторая", соответственно "дальнейшая" зона реакции понимается первая, вторая, соответственно дальнейшая реакционная зона по направлению пропускания газа.

Как принято в способе получения АМК, в качестве углеводородов используют алифатические и ароматические, насыщенные и ненасыщенные углеводороды, по меньшей мере, с четырьмя атомами углерода, например, 1,3-бутадиен, 1-бутен, 2-циз-бутен, 2-транс-бутен, н-бутан, смесь углеводородов с 4 атомами углерода, 1,3-пентадиен, 1,4-пентадиен, 1-пентен, 2-циз-пентен, 2-транс-пентен, н-пентан, циклопентадиен, дициклопентадиен, циклопентен, циклопентан, смесь углеводородов с 5 атомами углерода, гексен, гексан, циклогексан и бензол. Предпочтительно используют 1-бутен, 2-циз-бутен, 2-транс-бутен, н-бутан, бензол или их смеси. Особенно предпочтительным является использование н-бутана, например, в виде чистого н-бутана или в виде компонента в содержащих н-бутан газах и жидкостях. Используемый н-бутан может происходить, например, от природного газа, из установки парового крекинга или установки флюид-каталитического крекинга.

В качестве окислительного средства используют содержащие молекулярный кислород газы, как, например, воздух, синтетический воздух, насыщенный кислородом газ или так называемый "чистый" кислород, т.е., например, кислород, происходящий от разложения воздуха.

Для обеспечения продолжительного срока службы катализатора и дальнейшего повышения конверсии, избирательности, выхода, нагрузки катализатора и выхода по объему и времени к реакционному газу добавляют обычно отрегулированное количество летучего фосфорного соединения. Предпочтительно используют три-(С14-алкил)-фосфаты. Требуемое количество фосфорного соединения зависит от разных параметров, например, от вида и количества катализатора или, например, от температуры в установке, и его необходимо приспосабливать к конкретной системе. Предпочтительно его количество составляет от 0,2 до 20 объемн. млн. частей, особенно предпочтительно от 0,5 до 5 объемн. млн. частей.

В качестве катализаторов в предлагаемом способе предпочтительно используют катализаторы, активная масса которых включает ванадий, фосфор и кислород. Можно использовать, например, катализаторы, которые не содержат промоторов, описанные, например, в документах US 5275996, US 5641722, US 5137860, US 5095125, US 4933312 или EP-A-0 056 901.

В отношении использования катализатора в способе согласно изобретению возможны разные варианты. В самом простом случае все реакционные зоны узла кожухотрубного реактора заполняют одним и тем же каталитическим материалом. Под "каталитическим материалом" следует понимать материал, на объемную единицу в среднем обладающий одинаковыми составом и активностью. Каталитический материал может состоять из профильных элементов одного и того же катализатора, из профильных элементов из смеси разных катализаторов или из профильных элементов (одного единственного катализатора или смеси разных катализаторов), которые смешаны с инертным материалом, т.е. "разбавлены" инертным материалом. Согласно другому варианту в разных реакционных зонах используют различные каталитические материалы. Таким образом, в случае необходимости является предпочтительным использование в первой зоне или в одной или нескольких из передних реакционных зон менее активного каталитического материала, причем в одной или нескольких из задних реакционных зон используют более активный каталитический материал. Далее, возможно также использование внутри одной и той же реакционной зоны разных каталитических материалов. И согласно этому варианту может быть предпочтительным использование менее активного каталитического материала вблизи входа реактора и более активного каталитического материала после этого по направлению прохода.

Отдельные реакционные зоны могут быть реализованы или в одном кожухотрубном реакторе, выполненном в данном случае в качестве так называемого многозонного кожухотрубного реактора, или же в нескольких последовательно подключенных кожухотрубных реакторах, которые со своей стороны могут содержать одну или несколько реакционных зон. Под понятием "многозонный кожухотрубный реактор" следует понимать кожухотрубный реактор, который содержит, по меньшей мере, два контура для теплоносителя и позволяет нацеленную регулировку различных температур в отдельных реакционных зонах.

Изобретение более подробно поясняется ниже с помощью примеров его выполнения.

Примеры:

Пример Срок службы [ч] Рабочая температура (соляной ванны) [°С] Материал реакционной трубы Нижние пределы механических показателей по стандарту DIN Состояние конструкции
А(сравнение) примерно 76.000 400-435 St 37.8 достигнуты повреждение
Б(согласно изобретению) примерно 50.000 400-435 16Мо3 достигнуты без повреждений
В(сравнение) примерно 47.000 400-435 St 37.8 не достигнуты повреждение
Г(согласно изобретению) примерно 68.000 400-435 1.4541 достигнуты без повреждений

Описание примеров

При дежурном исследовании труб из материала St 37.8 из реактора для получения АМК, который находится в эксплуатации около 76.000 часов, было установлено, что механические показатели, измеренные посредством испытания на растяжение, находились ниже требуемого нормой нижнего предела. Исследования структуры показывают, что причиной такой потери устойчивости являлось связанное с температурой микроструктурное изменение материала, которое не является повреждением от усталости в связи со сроком службы. Ввиду этого из различных мест реактора извлекли трубы, которые исследовали тем же методом. Описанное изменение материала установили во всех исследованных трубах.

Ввиду данных результатов исследование распространили на трубы других реакторов, эксплуатируемых в том же температурном диапазоне, имеющих, однако, другой срок эксплуатации. Далее исследовали пилотные реакторы, работающие в указанном температурном диапазоне, в которых трубы выполнены из других материалов. При этом можно было установить, с одной стороны, что описанное изменение материала зависит не только от температуры, но и от времени и что из этого следует далее прогрессирующее по времени повреждение материала St 37.8. С другой стороны, можно было установить, что описанное отрицательное изменение материала имеет место в указанном температурном диапазоне лишь в случае нелегированных сталей, однако не в случае сталей, содержащих, по меньшей мере, 0,5 вес.% хрома и/или, по меньшей мере, 0,25 вес.% молибдена. Исходя из результатов исследований можно констатировать, что нелегированные стали не пригодны для применения в реакторах для получения АМК, при обычно имеющихся в них рабочих температурах выше 400°С. Пригодными являются, однако, легированные стали, содержащие, по меньшей мере, 0,5% хрома и/или, по меньшей мере, 0,25% молибдена.

1. Установка для получения ангидрида малеиновой кислоты путем гетерогенно-каталитического газофазного окисления исходного потока, содержащего углеводороды, по меньшей мере, с 4 углеродными атомами на молекулу, включающая реактор с пучком реакционных труб, в которых размещен твердофазный катализатор, на котором происходит экзотермическое взаимодействие исходного потока с кислородсодержащим газовым потоком, один или несколько насосов и один или несколько установленных вне реактора теплообменников, через которые протекает теплоноситель, представляющий собой солевой расплав, который протекает через промежуточное пространство между реакционными трубами, воспринимая теплоту реакции, причем температура солевого расплава лежит в диапазоне между 350 и 480°C, отличающаяся тем, что реакционные трубы выполнены из легированной термостойкой стали, содержащей, по меньшей мере, 0,25 вес. % молибдена или, по меньшей мере, 0,5 вес. % хрома и, по меньшей мере, 0,25 вес. % молибдена.

2. Установка по п. 1, отличающаяся тем, что дополнительно к реакционным трубам и все остальные конструктивные элементы установки, вступающие в контакт с солевым расплавом в качестве теплоносителя, выполнены из легированной термостойкой стали, содержащей, по меньшей мере, 0,25 вес. % молибдена или, по меньшей мере, 0,5 вес. % хрома и, по меньшей мере, 0,25 вес. % молибдена.

3. Установка по п. 1 или 2, отличающаяся тем, что легированная термостойкая сталь дополнительно содержит один или несколько элементов из группы, включающей титан, ниобий и ванадий, как легирующие элементы.

4. Установка по п. 1 или 2, отличающаяся тем, что кожухотрубный реактор имеет две или более последовательно размещенных реакционных зон с разной активностью твердофазного катализатора и/или разными температурами теплоносителя, образованного солевым расплавом.

5. Установка по п. 1 или 2, отличающаяся тем, что реакционные трубы и в случае необходимости также, дополнительно к реакционным трубам, все остальные конструктивные элементы установки, вступающие в контакт с солевым расплавом в качестве теплоносителя, выполнены из нижеприведенных легированных термостойких сталей: 16Мо3, соответствует материалу номера EN 1.5415, 13CrMo4-5, соответствует материалу номера EN 1.7335, 10CrMo9-10, соответствует материалу номера EN 1.7380.



 

Похожие патенты:

Изобретение относится к способу уменьшения образования отложений фумаровой кислоты при получении ангидрида малеиновой кислоты путем гетерогенного каталитического окисления молекулярным кислородом углеводорода, выбираемого из группы бензола, н-бутана, н-бутена и 1,3-бутадиена, в присутствии катализатора, содержащего ванадий, фосфор и кислород, включающему: (а) абсорбцию ангидрида малеиновой кислоты из неочищенной смеси продуктов абсорбирующим агентом, содержащим органический растворитель, в абсорбционной колонне; (b) десорбцию ангидрида малеиновой кислоты из абсорбирующего агента, получаемого на стадии (а), обогащенного ангидридом малеиновой кислоты, в десорбционной колонне; а также (с) полный или частичный возврат на стадию (а) абсорбирующего агента, обедненного на стадии (b) по содержанию ангидрида малеиновой кислоты, отличающемуся тем, что (d) полное или частичное количество абсорбирующего агента, обедненного на стадии (b) по содержанию ангидрида малеиновой кислоты, для необходимого осаждения фумаровой кислоты охлаждают и/или подвергают концентрированию путем упаривания части абсорбирующего агента в такой степени, что разность между концентрацией фумаровой кислоты в обратном потоке на выходе из десорбционной колонны с (ФК, на выходе из десорбционной колонны) при имеющихся там условиях, выраженной в массовых ч./млн, и равновесной концентрацией фумаровой кислоты, соответствующей кривой растворимости, после охлаждения и/или упаривания части абсорбирующего агента с (ФК, равновесная, после охлаждения/упаривания), выраженной в массовых ч./млн, составляет величину больше или равную 250 масс.ч./млн, а для осаждения и отделения фумаровой кислоты используют резервуар со встроенными насадочными элементами, причем среднее время пребывания в резервуаре со встроенными насадочными элементами составляет от 0,05 до 6 часов; (е) фумаровая кислота, осажденная в виде твердого вещества благодаря операциям на стадии (d), полностью или частично, в непрерывном или периодическом режиме удаляется из обратного потока абсорбирующего агента; а также (f) обедненный по содержанию фумаровой кислоты абсорбирующий агент со стадии (е) полностью или частично возвращается на стадию (а).
Изобретение относится к усовершенствованному способу предотвращения осаждений фумаровой кислоты при получении ангидрида малеиновой кислоты со следующими стадиями: а) поглощение ангидрида малеиновой кислоты из смеси продуктов, полученной в результате частичного окисления бензола, олефинов, имеющих 4 атома углерода или н-бутана, в органическом растворителе или воде в качестве поглотителя, b) отделение ангидрида малеиновой кислоты от поглотителя, содержащего фумаровую кислоту, причем регенерированный таким образом поглотитель, содержащий фумаровую кислоту, полностью или частично каталитически гидрируют и полностью или частично возвращают на стадию поглощения (а), при этом фумаровая кислота подвергается гидрированию до янтарной кислоты.
Изобретение относится к способу получения малеинового ангидрида в кипящем слое окислением сырья, содержащего углеводороды С4, молекулярным кислородом или кислородсодержащим газом в реакторе с кипящим слоем при температуре реактора 325-500°С в присутствии способного работать в кипящем слое катализатора, содержащего смешанные оксиды ванадия и фосфора, причем катализатор готовят следующим образом: (а) приготовление предшественника катализатора, содержащего смешанный оксид ванадия и фосфора; (b) уплотнение предшественника катализатора; (с) дробление предшественника катализатора до частиц среднего размера менее одного микрона в диаметре; (d) формирование частиц, способных работать в кипящем слое, с объемной плотностью больше или равной 0.75 г/см3 из уплотненного раздробленного предшественника катализатора; и (е) прокаливание в кипящем режиме частиц, способных работать в кипящем слое, в котором выход малеинового ангидрида повышают путем добавления компенсирующего катализатора в реактор с кипящим слоем, причем данный компенсирующий катализатор содержит алкиловый эфир ортофосфорной кислоты формулы (RO)3Р=O, где R является водородом или алкилом C1-C4 и по меньшей мере один R является алкилом C1-C4 , причем компенсирующий катализатор готовят путем пропитывания катализатора, полученного в соответствии со стадиями от (а) до (е), алкиловым эфиром ортофосфорной кислоты.
Изобретение относится к усовершенствованному способу очистки малеинового ангидрида, заключающийся в том, что расплав исходного неочищенного продукта нагревают до 60-65°С, после чего охлаждают до 53-54°С и отфильтровывают при температуре 51,5-53°С.

Изобретение относится к химической промышленности, в частности к автоматическим системам регулирования, и может быть использовано для поддержания температуры реакционной смеси химических реакторов.

Изобретение относится к способу получения циклического ангидрида или нитрида из углеводорода и кислородсодержащего газа в присутствии соответствующего катализатора, в частности к способу снижения или устранения риска взрыва или воспламенения в парофазной реакторной системе, в котоpой происходит образование ангидрида или нитрила из углеводорода и кислорода.

Изобретение относится к способу по- лучения янтарного ангидрида, применяемого в производстве лекарственных средств, инсектицидов, в качестве отвердителя эпоксидных смол, в аналитической химии.

Изобретение относится к автомат тическому управлению процессом получения малеинового/ангидрида, позволяет снизить расход бензола и может быть использовано в химической промьшшенности.

Способ приготовления катализатора для окисления пентадиенов до малринового ангидрида1' .- •изобе^етение относится к способам приготовления катализаторов для окисления диеновых углеводородов, в частности пентадиенов до малеинового ангидрида.известен способ приготовления ванадий-фосфорного катализатора для парофазного окисления углеводородов до малеинового ангидрида путем смешения двуокиси титана с раствором ванадия-оксалата и фосфорной кислоты с последующей формовкой смеси и гранулы," сушкой и прокалкой.катализаторы, полученные таким способом, достаточно селективны,по малеиновому ?нгйдр]аду при.^окис^чении над ними ненасыщенных углеводородовflj.ci нормального строенияоднако они обладают относительно низкой ^зёлектйвностью'| при окислении над ними пентадиенов в м.алёйновглй ангидрид. при окислении пентадиенов на ванадий- молибденовых катализаторах выход малеинового андйгррада составляет не более 47 вес. %.наиболее близким к предлагаемому является способ приготовления катализатора для окисления непредельных yглeвpдoj)oдoв до малеиновьр^ ангид-' рида, заключающийся в пропитке" двуокиси титана водными растворами, содержащими соединения фосфора v** , v^ и растворимые в воде .хромово-- кислые соли. полученную смесь•упаривают д9 пастообразного состояния и формуют в гранулы г21. выход малеинового ангидрида при окислении пентадиенов над известным катализатором не превышает 69 вес. %. при этом образуются значительные (до 10 вес. %) количества побочного продукта - фталевого андигрида.-цель изобретения - получение катализатора с повышенной селективностью в отношении малеинового ангидрида.указанная цель достигается приготовлением катализатора для окисления пентадиенов до малеинового ан-20 гидрида на основе окислов ванадия, фосфора и 'титана, заключающимся в обработке пористого носителя раствором четыреххлористого титана в метаноле, • этаноле или ледяной уксусной кислоте25 с последующей сушкой при 50-.300°с в течение 3-4 ч. затем его пропитывают раствором, полученным из пятиокиси ванадия и фосфорной кислоты, сушат и ': прокаливают' при 460-4во*'с в .те-30 чение 4-6 ч.1015 // 825139

Настоящее изобретение относится к оксидному катализатору в форме частиц для использования в газофазной реакции каталитического окисления или газофазной реакции каталитического аммоксидирования пропана или изобутана.
Наверх