Способ высокоскоростной газовой диффузии

Изобретение относится к высокоскоростной аэрации для упрощения добавления газа в поток жидкости и касается способа высокоскоростной газовой диффузии. Включает стадии: расположение по меньшей мере одного диффузора в верхней части резервуара; заполнение верхней части резервуара газом для создания газовой зоны; пропускание необработанной жидкости по меньшей мере через один диффузор для создания по меньшей мере двух потоков жидкости, которые сталкиваются друг с другом в газовой зоне в сдвигающем действии, которое заставляет жидкость взаимодействовать с газом; сбор и удаление аэрированной жидкости из нижней части резервуара. Изобретение повышает эффективность высокоскоростного процесса аэрации. 3 з.п. ф-лы, 2 ил.

 

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Описан способ высокоскоростной аэрации для упрощения добавления газа в поток жидкости.

УРОВЕНЬ ТЕХНИКИ

Патент США № 7137620 представляет собой патент предшествующего уровня техники фирмы Seair Inc., в котором описано устройство для аэрации, где пузырьки воздуха вводят в поток движущейся жидкости, и затем поток движущейся жидкости проходит через диффузор, который разделяет жидкость на сталкивающиеся потоки. Хотя получены положительные результаты за счет использования устройства, описанного в патенте, были обнаружены ограничения, из которых наиболее значительное представляет собой скорость потока через диффузор.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Согласно аспекту, предложен способ высокоскоростной газовой диффузии, который включает следующие стадии. Во-первых, расположение, по меньшей мере, одного диффузора в верхней части резервуара. Во-вторых, заполнение верхней части резервуара газом для создания газовой зоны. В-третьих, пропускание жидкости, по меньшей мере, через один диффузор для создания, по меньшей мере, двух потоков жидкости, которые сталкиваются друг с другом в газовой зоне в сдвигающем действии, которое заставляет жидкость взаимодействовать с газом. В-четвертых, сбор и удаление аэрированной жидкости из нижней части резервуара.

Согласно еще одному аспекту, газ можно вводить в верхнюю часть резервуара при положительном давлении.

Согласно еще одному аспекту, возможно существование трех или более потоков жидкости, которые сталкиваются друг с другом в общей точке. Общая точка может представлять собой двух- или трехмерную линию в верхней части.

Согласно еще одному аспекту, предложено устройство для высокоскоростной газовой диффузии, включающее резервуар, содержащий верхнюю часть, нижнюю часть, впуск газа в верхней части и выпуск жидкости в нижней части, и, по меньшей мере, один диффузор, расположенный в верхней части резервуара, по меньшей мере, один диффузор, имеющий, по меньшей мере, два отверстия для потока, выпуски которых направлены в общую точку. Насос впрыскивает жидкость под давлением вверх по восходящей трубе в диффузор. Первое соединение присоединяет насос к источнику жидкости. Второе соединение присоединяет впуск газа к источнику сжатого газа. Третье соединение присоединяет выпуск жидкости к трубопроводу для потока.

Согласно еще одному аспекту, возможно существование трех или более отверстий для потока, выпуски которых направлены в общую точку, и общая точка представляет собой двух- или трехмерную линию в верхней части.

Как будет подробно описано далее в настоящем документе, предложенный выше способ упрощает повышение скорости потока и обеспечивает другие важные преимущества.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Эти и другие отличительные особенности станут более очевидными из следующего описания, в котором сделаны ссылки на сопровождающие чертежи, причем эти чертежи приведены исключительно в иллюстративных целях и никаким образом не предназначены в качестве ограничительных, где:

Фиг.1 вертикальный вид сбоку устройства для газовой диффузии, сооруженного в соответствии с описанием настоящего способа.

Фиг.2 подробный вертикальный вид сбоку в сечении резервуара устройства для газовой диффузии, проиллюстрированного на фиг.1.

ПОДРОБНОЕ ОПИСАНИЕ

Далее способ высокоскоростного введения газа в текучую среду будет описан со ссылкой на фиг.1 и 2.

Структура и соотношение деталей

Сначала со ссылкой на фиг.2 будет представлено устройство для газовой диффузии, разработанное в соответствии с описанием данного способа и обозначенное в целом ссылочной позицией 10.

Устройство для газовой диффузии можно использовать для введения воздуха или кислорода в жидкость, такую как вода, которая подлежит обработке. В таких обстоятельствах данное устройство можно называть устройством для аэрации. Однако следует также понимать, что устройство 10 для газовой диффузии можно также использовать для введения других газов или смесей газов в различные жидкости, в зависимости от предпочтений пользователя и обстоятельств его применения. Соответственно, когда термин «газ» используется в настоящем документе, он предназначен для распространения на разнообразные газы или смеси газов, которые можно использовать, и термин «жидкость» предназначен для распространения на разнообразные жидкости или смеси жидкостей, в которые может быть введен газ.

Устройство 10 для газовой диффузии включает резервуар 12, который содержит верхнюю часть 14, нижнюю часть 16, впуск 18 газа в верхней части 14 и выпуск 20 жидкости в нижней части 16. Диффузор 22 расположен в верхней части 14 резервуара 12. Диффузор 22 представлен с тремя отверстиями 24, 26 и 28 для потока, выпуски которых направлены в общую точку, показанную ссылочной позицией 30. Общая точка 30 может представлять собой не единичную точку, но вместо этого может быть двух- или трехмерной линией, которая проходит через верхнюю часть 14. Диффузор 22, который изображен на чертеже, представляет собой ранее разработанный диффузор, описанный в патенте США № 7137620. Понимая описанный способ, можно определить, что необязательно использовать три отверстия для потока, что полезные результаты можно получить, используя только два отверстия или используя более чем три отверстия. Также следует отметить, что можно использовать отдельный диффузор для каждого потока при том условии, что каждый поток направлен в общую фокальную точку 30. Также следует отметить, что можно также использовать несколько фокальных точек с несколькими диффузорами. Как показано на фиг.1, предусмотрен насос 32. Как показано на фиг.2, насос 32 используют для впрыскивания жидкости под давлением вверх по восходящей трубе 34 в диффузор 22. Как показано на фиг.1, первое соединение в виде соединительного фланца 36 предусмотрено для присоединения насоса 32 к трубопроводу 38, присоединенному к источнику жидкости (не показан), которая, как правило, является необработанной. Трубопровод 38 предпочтительно содержит стопорный клапан 40, который пропускает поток только в одном направлении через насос 32 в восходящую трубу 34. Второе соединение, обычно обозначенное ссылочной позицией 42, предусмотрено для присоединения впуска газа 18 к источнику сжатого газа (не показан). Второе соединение 42 может включать манометр 44 для измерения давления на впуске, стопорный клапан 46 для ограничения потока в одном направлении, т.е. в резервуар 12, и игольчатый клапан 48 для пропускания газа, имеющего переменное давление и скорость потока, в резервуар 12, а также для отделения резервуара 12 от источника сжатого газа. Третье соединение в виде соединительного фланца 50 предназначено для присоединения выпуска жидкости 20 к выходному трубопроводу 52. Предпочтительно устанавливать манометр 54 выше по потоку относительно соединительного фланца 50, чтобы измерять уровни давления в резервуаре 12.

Работа

Первая стадия включает установку устройства 10 для газовой диффузии при подготовке к работе, как описано выше, где диффузор 22 располагается в верхней части 14 резервуара 12. Вторая стадия включает заполнение верхней части 14 резервуара 12 газом для создания газовой зоны, обычно обозначенной ссылочной позицией 56. Это осуществляют, присоединяя источник сжатого газа (не показан) ко второму соединению 42. Для аэрации воды аэрирующий газ представляет собой воздух или кислород. Для обработки других жидкостей можно использовать другие газы или смеси газов. Манометр 44 показывает положительное давление, которое создается на впуске 18 газа источником сжатого газа. Третья стадия включает пропускание жидкости, которая обычно не подлежит обработке, через диффузор 22 для создания трех потоков 24А, 26А и 28А жидкости, проходящих через отверстия 24, 26 и 28 для потока, которые направлены в общую фокальную точку 30. Потоки жидкости 24A, 26A и 28A сталкиваются друг с другом в фокальной точке 30 в газовой зоне 56 в сдвигающем действии, которое заставляет жидкость взаимодействовать с газом. Четвертая стадия включает сбор и удаление обработанной жидкости из нижней части 16 резервуара 12. Это происходит путем слива через выпуск 20 жидкости в выпускной трубопровод 52.

Преимущества

Обнаружено, что описанный способ обладает следующими преимуществами по сравнению с устройством для аэрации, описанным в патенте США № 7137620.

Скорость потока - возможно достижение большей скорости потока путем пропускания жидкости через диффузор. На предшествующем уровне техники при увеличении скорости потока инжектор создавал ограничение потока при введении газа выше по потоку относительно диффузора. Также следует отметить, что возможно и уменьшение скорости потока.

Интервалы давления - данный способ позволяет работать при меньшем давлении, составляющем всего 1 или 2 фунта на кв. дюйм (6,9-13,8 кПа). В предшествующем уровне техники для аэрации через диффузор требовался перепад давлений, составляющий 20 фунтов на кв. дюйм (138 кПа) или более. При давлении ниже 20 фунтов на кв. дюйм (138 кПа) устройство для аэрации предшествующего уровня техники переставало работать вследствие недостаточного всасывания через трубку Вентури (Venturi). Следует отметить, что данный способ может также работать при повышенных давлениях, когда этого требует данное применение.

Непрерывная рециркуляция - за счет повторяющейся рециркуляции жидкости из источника жидкости настоящий способ позволяет обрабатывать жидкость на уровнях, повышающихся с течением времени. На предшествующем уровне техники диффузор служил для дегазации потока жидкости и блокировал введение кислорода на повышенных уровнях.

Повышенная эффективность - работа при повышенных скоростях потока и пониженных давлениях является значительно более эффективной, чем было возможно на предшествующем уровне техники.

Упрощение - тот факт, что в настоящем способе требуется поток, но не такая степень перепада давлений, упрощает устройство и сокращает требования к его обслуживанию.

В настоящем патентном документе слово «включающий» использовано в своем неограничительном смысле и означает включение предметов, перечисленных после данного слова, но не означает исключения предметов, которые не упомянуты особо. Использование неопределенного артикля перед названием предмета не исключает возможности того, что данный элемент присутствует более чем в единственном числе, если не требуется, согласно контексту, чтобы данный элемент был одним и единственным.

Следующую формулу изобретения следует понимать как включающую то, что конкретно проиллюстрировано и описано выше, то, что представляет собой концептуальный эквивалент, и то, что можно очевидно замещать. Специалисты в данной области техники оценят, что можно создавать разнообразные приспособления и модификации желательных вариантов осуществления без выхода за пределы объема формулы изобретения. Проиллюстрированные варианты осуществления представлены исключительно в качестве примеров, и их не следует рассматривать как ограничивающие настоящее изобретение. Следует понимать, что в пределах объема следующей формулы настоящее изобретение можно практически осуществлять другими способами, помимо тех, которые конкретно проиллюстрированы и описаны.

1. Способ высокоскоростной газовой диффузии, включающий стадии, на которых
располагают, по меньшей мере, один диффузор в верхней части резервуара;
заполняют верхнюю часть резервуара газом для создания газовой зоны;
пропускают необработанную жидкость через, по меньшей мере, один диффузор для создания, по меньшей мере, двух потоков жидкости, которые сталкиваются друг с другом в газовой зоне в сдвигающем действии, которое заставляет жидкость взаимодействовать с газом;
собирают и удаляют упомянутую аэрированную жидкость из нижней части резервуара.

2. Способ по п.1, в котором газ вводят в верхнюю часть резервуара при положительном давлении.

3. Способ по п.1, включающий три или более потоков жидкости, которые сталкиваются друг с другом.

4. Способ по п.3, в котором потоки жидкости сталкиваются друг с другом более чем в одной точке столкновения.



 

Похожие патенты:

Изобретение относится к устройствам для смешения жидкостей и газов с получением пены и может быть использовано в нефтегазодобывающей промышленности для приготовления пены с целью пенокислотной обработки пласта.

Изобретение относится к устройству для ввода жидкой среды в выхлопные газы, выходящие из двигателя внутреннего сгорания. Устройство (1) для ввода жидкой среды в выхлопные газы, выходящие из двигателя внутреннего сгорания, содержит смесительную камеру (3), которая предназначена для того, чтобы через нее проходил поток выхлопных газов, и которая имеет на своем выходном конце (5) торцевую стенку (7) из теплопроводного материала, которая служит в качестве торцевой поверхности смесительной камеры (3), средство (12) ввода под давлением, предназначенное для ввода жидкой среды под давлением в виде распыленной струи в смесительную камеру (3) или в выхлопные газы, которые направляются в смесительную камеру (3), выхлопной канал (13), который расположен рядом со смесительной камерой (3), предназначен для того, чтобы по нему проходил поток выхлопных газов, и отделен от смесительной камеры (3) указанной торцевой стенкой (7).

Изобретение относится к промышленной обработке питьевой воды озонированием. Диспергатор озоно-воздушной смеси для обработки питьевой воды в барботажном контактном резервуаре включает корпус 1 тарельчатой формы, выполненный из титана, с перфорированной лазером крышкой 2, обращенной при установке в контактном резервуаре вверх в сторону горизонта свободной поверхности воды, штуцер 4 для приема озоно-воздушной смеси внутрь полости диспергатора, пристыкованный к основанию диспергатора.

Аэратор // 2559494
Изобретение относится к технике очистки сточных вод и может быть использовано при биологической очистке сточных вод в аэротенках с активным илом. В аэраторе противоположно расположенные продольные неперфорированные участки эластичного рукава частично соединены между собой с образованием двухслойной горизонтальной полосы с продольной осью симметрии, совпадающей с продольными осями симметрии продольных неперфорированных участков, и сжаты с помощью крепежных элементов между элементами продольной жесткости, с образованием по обе стороны от двухслойной горизонтальной полосы рукава двух одинаковых параллельных трубчатых перфорированных эластичных мембран с горизонтально расположенными параллельными осями.

Изобретение относится к области насыщения воды кислородом и может быть использовано в системах пневматической аэрации природных и производственных сточных вод при их биологической очистке и в системах флотации.

Изобретение относится к устройствам для перемешивания, эмульгирования, гомогенизации жидких сред и может быть использовано для проведения и интенсификации различных физико-химических, тепломассообменных процессов в системах "жидкость-жидкость" и "газ-жидкость".
Изобретение относится к нефтяной и газовой промышленности и, в частности, к геолого-техническим мероприятиям при капитальном ремонте скважин - очистке каналов перфорации и пористой среды призабойной зоны пласта, а также к глушению и освоению скважин после подземного и капитального ремонта с помощью газо-жидкостных смесей.

Изобретение относится к водоочистке. Способ очистки водного потока, поступающего из реакции Фишера-Тропша, включает подачу части указанного водного потока в сатуратор, подачу части указанного водного потока в дистилляционную и/или отпарную колонну и подачу водного потока, выходящего из головной части указанной дистилляционной и/или отпарной колонны, в указанный сатуратор.

Изобретение относится к области обеззараживания и консервации воды и предназначено для использования в установках для получения аэрозольно-газовой смеси, смешения образующейся аэрозольно-газовой смеси с водой с целью получения водных дезинфицирующих и консервирующих растворов.

Изобретение предназначено для распределения текучей среды. Распределительная тарелка включает полотно, которое образует первую сторону, которая адаптирована для приема в нее жидкости, и вторую сторону, и в котором сформирован ряд отверстий; переточное устройство, простирающееся через полотно, при этом первая часть расположена с первой стороны, а вторая часть расположена со второй стороны, и адаптированное для обеспечения возможности прохождения через него текучей среды; и вставку, размещенную внутри переточного устройства для образования сужения, а затем расширения канала для прохода через него текучей среды, причем вставка образует сужение и на ней сформированы одна или несколько прорезей и на переточном устройстве сформирован ряд отверстий ниже сужения и ряд отверстий выше сужения.

Изобретение относится к области конструкций массообменных аппаратов для газожидкостных систем, применяемых в химической, горнорудной, микробиологической промышленностях и других отраслях, и может быть использовано для биологической очистки природных, сточных и промышленных вод, газификации питьевых вод, флотации различных пульп посредством аэрации жидких сред различными газами. Массообменный аппарат содержит цилиндрический корпус, магистраль подачи жидкой среды в корпус, выполненную в виде кольцевого коллектора, смонтированного во внутренней полости корпуса в нижней его части, узел ввода газа, охватывающий корпус с наружной стороны и патрубки вывода отработанных газа и жидкой среды. При этом коллектор снабжен двумя вихревыми аэраторами, установленными радиально противоположно друг другу и тангенциально к круговой оси коллектора, а также патрубками ввода жидкой среды в корпуса аэраторов, а узел ввода газа снабжен патрубками подачи газа, проходящими через стенку корпуса и подсоединенными к аэраторам. Изобретение обеспечивает интенсификацию массообменных процессов между жидкой средой и газом и снижение энергозатрат. 1 з.п. ф-лы, 3 ил.

Изобретение относится к дезинфицирующему устройству общего характера с использованием озона, более конкретно изобретение относится к дезинфицирующему устройству с использованием озона, которое подходит для обработки пищи, хотя может быть применено и в других областях. Дезинфицирующее устройство с использованием озона включает смеситель, имеющий в общем полый корпус с входом для воды под давлением, распылительную форсунку для создания в общем конического факела распыла воды, подводимой через вход для воды, камеру контакта, сообщающуюся с входом для газов, обогащенных озоном, и выходное отверстие из камеры контакта, которое соосно распылительной форсунке и отделено от нее на некоторое расстояние. Электронное устройство отслеживания расхода отслеживает величину расхода воды через распылительную форсунку по вибрации, вызываемой водой, протекающей через смеситель. Электронное устройство отслеживания расхода предпочтительно расположено в кармане, выполненном в смесителе, и предпочтительно включает пьезоэлектрический датчик, введенный по меньшей мере по его периметру в затвердевающий материал. Изобретение обеспечивает устройство, которое при использовании распыляет воду с эффективным и подходящим количеством озона в ней. 13 з.п. ф-лы, 8 ил.

Изобретение относится к устройствам для перемешивания, эмульгирования, гомогенизации жидких сред и может быть использовано для проведения и интенсификации гидродинамических физико-химических, тепломассообменных процессов в системах «жидкость-жидкость» и жидкость-газ». Устройство содержит корпус с передней торцовой крышкой, консольно закрепленные упругие заостренные пластины, расположенные напротив горизонтальных осей щелевидных участков конических сопел с возможностью осевого смещения. Предусмотрен радиальный патрубок ввода основного компонента. Входной патрубок основного компонента, имеющий цилиндрический участок может перемещаться в осевом направлении. Смесительный элемент представляет собой цилиндрический корпус с внутренней конической поверхностью, на которой выполнены не менее двух радиальных проточек. В торцовой перегородке корпуса, где находится четное количество сквозных пересекающихся каналов, закреплена ступенчатая цилиндрическо-коническая вставка. На ее цилиндрическом конце, находящемся напротив щелевидного сопла, выполнена лыска, на которой жестко закреплена упругая пластина одной толщины. Пластина имеет П-образную форму с пластинами-ножками разной длины. Средняя ступень, значительно большего диаметрального размера, имеет коническую поверхность и находится внутри корпуса смесительного элемента. На другой цилиндрической поверхности ступенчатой вставки закреплены стержни с консольной частью разной длины, расположенные по окружностям в несколько рядов вдоль оси. В каждом последующем ряду оси стержней смещены по длине окружности относительно осей стержней предыдущего ряда на одинаковое расстояние. Внутренняя часть задней торцовой крышки, по оси которой находится выходной патрубок, выполнена в виде поверхности, близкой к сферической. Разность длин консольных пластин-ножек П-образной упругой пластины выбирается таким образом, чтобы разность частот, генерируемая этими элементами, не превышала 5%. Оси входа и выхода пересекающихся сквозных каналов находятся на одном диаметре и располагаются друг напротив друга на боковых поверхностях торцовой перегородки таким образом, что в каждой паре соседних каналов вход первого канала находится напротив выхода второго канала, а вход второго канала находится напротив выхода первого канала. Длина консольной части стержней в каждом ряду одинакова, но в каждом следующем ряду уменьшается таким образом, чтобы коническая поверхность, прилегающая к наружной поверхности торцов стержней была эквидистантна внутренней конической поверхности корпуса смесительного элемента. Форма поперечного сечения консольной части стержней может быть любой (круг, треугольник, многоугольник и др.). На боковой поверхности стержней выполнены не менее одной продольной канавки с округлой формой поперечного сечения, имеющих длину не менее чем 3/4 длины консольной части стержня. Стержни установлены с произвольной ориентацией боковых поверхностей. Диаметр, на котором находятся оси выхода сквозных пересекающихся каналов, должен быть больше внутреннего диаметра выходного патрубка в 1,4…1,6 раза. В устройстве осуществляется комплексное воздействие на обрабатываемую среду: акустических колебаний, кавитации, турбулентных пульсаций, сдвиговых напряжений, вихревых потоков. Технический результат изобретения - интенсификация гидродинамических, физико-химических и тепломассообменных процессов. 5 з.п. ф-лы, 6 ил.

Изобретение относится к системам очистки воды и может быть использовано для очистки нефтесодержащих и сточных вод. Установка для очистки нефтесодержащих и сточных вод содержит по меньшей мере две ступени очистки, соединенные последовательно вдоль потока очищаемой воды и разделенные между собой посредством перегородок 7. Каждая ступень очистки состоит из флотореактора 1, 2, 3 и флоторазделителя 4, 5, 6, разделенных посредством перегородки 8. Аэрирующий узел 10 первой ступени очистки сообщен через насос 9 с придонной частью флоторазделителя 6 последней ступени очистки. Выход трубопровода подвода очищаемой воды 11 сообщен с придонной частью 16 флотореактора 1 первой ступени очистки. Первый выход аэрирующего узла 10 сообщен через дросселирующий клапан 26 с входом в флотореактор 1 первой ступени очистки. Вторая и последующая ступени очистки снабжены деаэрирующими узлами 31, 32. Выход каждого из деаэрирующих узлов 31, 32 расположен в днище 33, 34 и сообщен через дросселирующий клапан 26 с входом в соответствующий флотореактор 2, 3 и через регулятор давления 35 с входом в верхнюю часть деаэрирующего узла 36, 37 следующей ступени очистки. Второй выход аэрирующего узла 10 сообщен через регулятор давления 35 с входом в верхнюю часть 36 деаэрирующего узла второй ступени очистки. Выход каждого дросселирующего клапана 26 размещен у входа в соответствующий флотореактор 1, 2, 3. Площадь поперечного сечения днища каждого флотореактора 1, 2, 3 равномерно уменьшается по направлению сверху вниз. Площадь поперечного сечения флоторазделителя 4, 5, 6 не меньше площади поперечного сечения соответствующего флотореактора. Перегородки 8, отделяющие флотореакторы 1, 2, 3 от флоторазделителей 4, 5, 6, выполнены с возможностью свободного перемещения потока очищаемой воды в верхних частях флотореакторов 1, 2, 3 и флоторазделителей 4, 5, 6 одной ступени очистки. Перегородки 7, разделяющие ступени очистки, выполнены с возможностью свободного перемещения потока очищаемой воды в придонных частях флоторазделителей 4, 5, 6 и флотореакторов 1, 2, 3 различных ступеней очистки. Аэрирующий узел 10 выполнен с возможностью поддержания давления насыщения 0,3-0,6 МПа. Деаэрирующие узлы 31, 32 выполнены с возможностью поддержания давления насыщения 0,1-0,3 МПа. Изобретение позволяет повысить эффективность очистки нефтесодержащих и сточных вод. 6 з.п. ф-лы, 1 ил.

Изобретение относится к системам очистки воды и может быть использовано для очистки нефтесодержащих и сточных вод. Устройство для очистки нефтесодержащих и сточных вод содержит ступени очистки, соединенные последовательно вдоль потока очищаемой воды и отделенные между собой посредством перегородок 7, насос, аэрирующие узлы 12, 13, 14, трубопровод подвода очищаемой 15 и трубопровод отвода очищенной 16 воды. Каждая ступень очистки состоит из флотореактора 1, 2, 3 и флоторазделителя 4, 5, 6, разделенных посредством перегородки 8. Количество насосов 9, 10, 11 и количество аэрирующих узлов 12, 13, 14 соответствует количеству ступеней очистки. Выход трубопровода подвода очищаемой воды 15 сообщен с придонной частью 20 флотореактора 1 первой ступени очистки и через насос 9 первой ступени очистки с входом аэрирующего узла 12 первой ступени очистки. Входы аэрирующих узлов 13, 14 второй и последующих ступеней очистки сообщены через соответствующие насосы 10, 11 с придонными частями 26, 27 флоторазделителей 4, 5 предыдущей ступени очистки. Выход каждого из аэрирующих узлов 12, 13, 14 сообщен через дросселирующий клапан 30 с входом в соответствующий флотореактор 1, 2, 3, расположенным в нижней точке его днища 31, 32, 33. Площадь поперечного сечения днища 31, 32, 33 каждого флотореактора 1, 2, 3 равномерно уменьшается по направлению сверху вниз. Площадь поперечного сечения флоторазделителя 4, 5, 6 не меньше площади поперечного сечения соответствующего флотореактора 1, 2, 3. Перегородки 8 выполнены с возможностью свободного перемещения потока очищаемой воды в верхних частях флотореакторов 1, 2, 3 и флоторазделителей 4, 5, 6 одной ступени очистки. Перегородки 7 выполнены с возможностью свободного перемещения потока очищаемой воды в придонных частях флоторазделителей 4, 5, 6 и флотореакторов 1, 2, 3 различных ступеней очистки. Аэрирующие узлы 12, 13, 14 выполнены с возможностью поддержания давления насыщения 0,4 МПа, 0,3 МПа и 0,2 МПа в первой, второй и третьей ступенях очистки соответственно. Изобретение позволяет повысить эффективность очистки нефтесодержащих и сточных вод. 3 з.п. ф-лы, 1 ил.

Изобретение относится к очистке сточных вод и может быть использовано для аэрации воды, сбрасываемой промышленными предприятиями в окружающую среду, например в природные водоемы. Устройство для аэрации воды содержит насадок, снабженный запорной головкой, гибкими щетками, осью, к которой закреплена турбина винтолопастная с лопастями, установленную коаксиально внутри цилиндрического насадка с возможностью вращения относительно оси отводящей смесительной камеры. Выходная часть насадка подключена к конфузору и сообщена с диффузором через смесительную камеру, а воздухоподающая трубка с вентилем сообщена с атмосферой. Технический результат: существенное увеличение степени аэрации воды, уменьшение себестоимости очистки воды и уменьшение необходимого количества отверстий в насадке. 1 ил.

Изобретение относится к водоочистке. Флотационная установка для очистки сточных вод содержит корпус 1 с перегородками 12, 14, 16, камеру очищенной воды 21, устройство для насыщения исходной воды пузырьками воздуха, состоящее из насоса 24, эжектора 27 и пневмогидравлического диспергатора. Эжекторы 27 выполнены цилиндроконическими. Пеносъемное устройство представлено в виде самовсасывающего блока 4, внутри которого установлен шнек 5 с соотношением диаметра к длине соответственно от 1 до 3÷9. На внешней стороне корпуса 1 расположен пенный желоб 10, установленный с наклоном от 5 до 30° по отношению к горизонтали. Изобретение позволяет повысить эффективность очистки сточных вод. 7 з.п. ф-лы, 1 ил.

Изобретение относится к кольцевому скрубберу. Кольцевой скруббер с продольной осью, проточным каналом, образованным конфузором, диффузором и образующим кольцевой зазор телом, причем это тело образует с диффузором и с конфузором кольцевой зазор проточного канала, и с форсунками для впрыска промывочной жидкости в проточный канал, при этом в кольцевом зазоре оканчиваются форсунки, которые расположены друг за другом в двух или в четырех плоскостях, при этом форсунки расположены на периферии кольцевого зазора со смещением по отношению друг к другу. Технический результат - повышение степени сепарации скруббера. 2 н. и 3 з.п. ф-лы, 5 ил.

Изобретение относится к диспергирующей форсунке для диспергирования жидкости и флотационной установке. Диспергирующая форсунка для диспергирования жидкости, в частности суспензии, содержащей по меньшей мере один газ, включает газоподводящее сопло и трубообразное смесительное устройство, которое имеет совместный входной участок по меньшей мере для одного газа и жидкости, и выходной участок для газо-жидкостной смеси, образованной по меньшей мере из одного газа и жидкости. Смесительное устройство присоединено к газоподводящему соплу. Газоподводящее сопло сужается по направлению к смесительному устройству и открывается в его входной участок. Смесительное устройство на входном участке имеет, по меньшей мере, количество N≥3 всасывающих отверстий для жидкости. Всасывающие отверстия размещены перпендикулярно или под углом к продольной центральной оси диспергирующей форсунки. Соотношение диаметра DG газовыпускного отверстия газоподводящего сопла и внутреннего диаметра DM смесительного устройства на входном участке составляет величину в диапазоне от 1:3 до 1:5. Газоподводящее сопло оснащено по меньшей мере одним газорегулировочным клапаном для дозирования количества подводимого в жидкость по меньшей мере одного газа. При эксплуатации диспергирующей форсунки подача газа через газоподводящее сопло производится таким образом, что по меньшей мере один газ на газовыпускном отверстии газоподводящего сопла имеет плотность пульсирующего потока в диапазоне от 5·103 до 5·104 кг/ (м·с2). Технический результат - повышение диспергирования суспензии и газа. 5 н. и 18 з.п. ф-лы, 5 ил.

Изобретение относится к способам и устройствам улучшенного газораспределения в реакторе. Более конкретно, различные варианты осуществления настоящего изобретения относятся к рассеивателям, обеспечивающим усовершенствованное газораспределение в барботажных колонных реакторах. Барботажный колонный реактор включает реакционную зону, рассеиватель, расположенный в реакционной зоне для введения текучей среды в реакционную зону. Рассеиватель содержит, по меньшей мере, три радиально проходящих трубы распределения текучей среды, при этом в каждой трубе распределения текучей среды имеется, по меньшей мере, три отверстия выпуска текучей среды. Радиальный интервал между отверстиями выпуска текучей среды каждой из труб распределения текучей среды уменьшается наружу. Максимальный диаметр рассеивателя составляет, по меньшей мере, 90 процентов диаметра реакционной зоны на той высоте, где расположен указанный рассеиватель. Рассеиватель выполнен таким образом, что перемешивание реакционной среды происходит, главным образом, посредством восходящего движения пузырьков газа, выпускаемых из указанных, по меньшей мере, трех отверстий выпуска текучей среды через реакционную среду так, что менее 5 процентов перемешивания реакционной среды обеспечивается за счет механического перемешивания. Изобретение обеспечивает улучшенное перемешивание реакционной среды. 4 н. и 26 з.п. ф-лы, 1 табл., 7 ил.
Наверх