Способ определения угловой ориентации скважины

Изобретение относится к области геофизических исследований скважин, в частности к инклинометрическим измерениям в процессе бурения. Техническим результатом является повышение точности определения параметров скважины при значительном уровне вибраций и наличии постороннего влияния магнитных масс. Предложен способ определения угловой ориентации скважины, включающий измерение с помощью трех взаимоперпендикулярных феррозондов компонентов полного вектора геомагнитного поля, определение по показателям трех взаимоперпендикулярных акселерометров компонентов полного вектора силы тяжести и вычисление по полученным данным промежуточных значений азимутального и зенитного углов, определение поправок и вычисление окончательных значений азимутального и зенитного углов скважины для каждой точки измерения. При этом перед началом измерений в скважине определяют систематические погрешности феррозондов и акселерометров, определяют ожидаемую скорость изменения азимутального и зенитного углов в процессе бурения и определяют компоненты геомагнитного поля и величину силы тяжести в районе проведения буровых работ. Кроме того в процессе измерения в скважине дополнительно измеряют уровень вибраций с помощью акселерометров. При низком уровне вибраций накапливают данные для расчета поправки на постороннее магнитное влияние и рассчитывают азимутальный, зенитный углы и угол установки отклонителя с учетом определенных ранее систематических погрешностей, ожидаемых показаний геомагнитного поля в районе бурения и ожидаемой скорости изменения углов скважины в процессе бурения. При высоком уровне вибраций преимущественно рассчитывают уточненное значение угла установки отклонителя, ориентируясь на текущие показания феррозондов. Причем измерение вибраций ведут с помощью второго трехосевого акселерометра с повышенной, по сравнению с первым, чувствительностью к вибрациям. 1 з.п. ф-лы.

 

Решение относится к области геофизических исследований скважин. Предпочтительная область: техника инклинометрических измерений в процессе бурения.

Известен способ корректировки зенитного и азимутального углов отклонения при магнитометрических замерах в скважине, при котором используют систему измерительных преобразователей в составе магнитных и гравитационных датчиков. В определенных точках ствола разбуриваемых скважин измеряют по три компонента гравитационного и магнитного полей, а также определяют систематическую погрешность магнитного поля. При дальнейшей обработке учитывают начальную величину погрешности векторов напряженности магнитного поля и устанавливают критерий сходимости для каждого откорректированного вектора магнитного поля (Пат. США №5623407, Ε21B 47/022).

Известен способ обработки сигналов инклинометрических преобразователей при магнитометрических измерениях в скважине, при котором определяют систематические погрешности преобразователей, на основе выходных сигналов преобразователей формируют поправки в виде непрерывных функций, аппроксимирующих зависимости систематических погрешностей преобразователей от заданных значений параметров, представленных измеренными значениями параметров, и вычитают полученные поправки из измеренных значений (Пат. РФ №2102596, Ε21B 47/02).

Известен способ определения направления скважины во время бурения с помощью трехосевого блока акселерометр - магнитометр, при котором по показаниям датчиков и по известным местному ускорению силы тяжести и по местному магнитному полю Земли определяют азимут, зенитный угол и положение отклонителя в скважине, проводя измерения по крайней мере на двух глубинах (Заявка РФ №95116643/03, Ε21B 47/022).

Известен способ измерения зенитных и азимутальных углов посредством магнитогравитационного инклинометра, при котором определяют с помощью феррозондов компоненты полного вектора геомагнитного поля, определяют по показаниям акселерометров компоненты полного вектора силы тяжести и сравнивают полученные значения со средним значением четырех предыдущих замеров относительно допуска (Пат. РФ №2231638, Ε21B 47/02 - прототип).

Всем известным способам присущи одинаковые недостатки: известные решения не осуществляют обработки измерений магнитного поля и поля силы тяжести по единому алгоритму, т.е. ошибка измерения поля силы тяжести, например, при вибрациях может повлиять на точность расчета зенитного, азимутального углов и угла установки отклонителя. Кроме того, при расчете не используются известные сведения о характере движения датчиков в процессе бурения, а также компоненты геомагнитного поля и величину поля тяжести в районе проведения буровых работ и отсутствует возможность одновременного автоматического определения магнитной поправки и коррекции вибрационного воздействия.

Цель предлагаемого решения - повышение точности определения параметров скважины при значительном уровне вибраций и наличии постороннего влияния магнитных масс.

Способ определения угловой ориентации скважины предусматривает в процессе скважинных измерений измерение с помощью трех взаимоперпендикулярных феррозондов компонентов полного вектора геомагнитного поля, определение по показателям трех взаимоперпендикулярных акселерометров компонентов полного вектора силы тяжести и вычисление по полученным данным промежуточных значений азимутального и зенитного углов, определение поправок и вычисление окончательных значений азимутального и зенитного углов скважины для каждой точки измерения. Перед началом скважинных измерений определяют систематические погрешности феррозондов и акселерометров, ожидаемую скорость изменения азимутального и зенитного углов в процессе бурения, компоненты геомагнитного поля и величину силы тяжести в районе проведения буровых работ, запоминают данные в вычислительном устройстве телесистемы, в процессе измерения в скважине дополнительно измеряют уровень вибраций с помощью акселерометров, при низком уровне вибраций накапливают данные для расчета поправки на постороннее магнитное влияние и рассчитывают азимутальный, зенитный углы и угол установки отклонителя с учетом определенных ранее систематических погрешностей, ожидаемых показаний геомагнитного поля в районе бурения и ожидаемой скорости изменения углов скважины в процессе бурения, при высоком уровне вибраций преимущественно рассчитывают уточненное значение угла установки отклонителя, ориентируясь на текущие показания феррозондов.

Для повышения точности измерения вибраций устанавливают второй трехосевой акселерометр с повышенной, по сравнению с первым, чувствительностью к вибрациям.

Перед началом измерений проводят калибровку датчиков, заключающуюся в определении систематических ошибок измерения компонент магнитного поля и поля силы тяжести, например ошибки измерения, связанные с неточностью установки магнитометра и акселерометра на каркасе датчика, запоминают полученные калибровочные коэффициенты в вычислительном устройстве телесистемы. Определяют ожидаемую скорость изменения азимутального и зенитного углов в процессе бурения скважины по техническим ограничениям способа бурения, запоминают. Определяют компоненты геомагнитного поля и величину силы тяжести в районе проведения буровых работ, запоминают эти данные.

Опускают датчики в составе телесистемы в скважину. Помимо непрерывных магнитогравитационных измерений в процессе бурения проводят измерение уровня вибраций с помощью трехосевого акселерометра.

Если позволяет конструкция телесистемы, можно установить второй трехосевой акселерометр с повышенной, по сравнению с первым акселерометром, чувствительностью к вибрациям, что значительно повысит точность измерения вибраций. При необходимости измеряют температуру в скважине, внося необходимые изменения в полученные ранее калибровочные коэффициенты. Используют калибровочные коэффициенты для коррекции систематических ошибок измерения компонентов геомагнитного поля и поля силы тяжести в скважине.

При низком уровне вибраций накапливают данные для расчета поправки на постороннее магнитное влияние, рассчитывают эту поправку. Одновременно по результатам скважинных измерений определяют азимутальный и зенитный углы ориентации продольной оси скважины с учетом поправки на постороннее магнитное влияние, а также рассчитывают угол установки отклонителя, используя данные района бурения и условий бурения, определенных и запомненных телесистемой до начала бурения. Передают полученные значения углов на поверхность либо сохраняют их в скважинной телесистеме.

При высоком уровне вибраций не обновляют значения азимутального и зенитного углов, но используют величины предыдущего и текущего измерения для уточнения угла установки отклонителя, при этом в роли основного измерения автоматически используют магнитометрические измерения, на значение которых влияние вибраций минимально.

Непрерывно передают рассчитанные значения азимутального, зенитного углов и угла установки отклонителя для передачи на поверхность, помимо этих величин можно передавать и другие параметры, а именно: величину поправки на постороннее магнитное влияние, неоткорректированные результаты магнитометрических измерений, уровень вибрации и т.п.

Для расчета значений углов используют, как минимум, 2 измерения геомагнитного поля и поля силы тяжести с установленными уровнями доверия, зависящими от уровня вибраций. Для каждого измерения геомагнитного поля или поля силы тяжести в вычислительном устройстве телесистемы используются данные о истинном значении соответствующего поля, характерном для района бурения, и данные измерений с учетом калибровочных коэффициентов. Расчет ведут по известным формулам, например, приведенным в статье (Shuster M.D., Oh S.D. Three-axis attitude determination from veetor observations //Journal of Guidanse, Control, and Dynamics, vol. 4, № 1. 1981. pp. 70-77).

Возможность определения угловой ориентации скважины с учетом сведений о характере движения телесистемы по скважине, уровня вибраций во время измерений, обработки измерений геомагнитного поля и поля силы тяжести по единому алгоритму значительно повышает точность измерений. Также появляется возможность получать при необходимости дополнительные сведения о ходе и условиях бурения.

1. Способ определения угловой ориентации скважины, включающий измерение с помощью трех взаимоперпендикулярных феррозондов компонентов полного вектора геомагнитного поля, определение по показателям трех взаимоперпендикулярных акселерометров компонентов полного вектора силы тяжести и вычисление по полученным данным промежуточных значений азимутального и зенитного углов, определение поправок и вычисление окончательных значений азимутального и зенитного углов скважины для каждой точки измерения, отличающийся тем, что перед началом измерений в скважине определяют систематические погрешности феррозондов и акселерометров, определяют ожидаемую скорость изменения азимутального и зенитного углов в процессе бурения, определяют компоненты геомагнитного поля и величину силы тяжести в районе проведения буровых работ, в процессе измерения в скважине дополнительно измеряют уровень вибраций с помощью акселерометров, при низком уровне вибраций накапливают данные для расчета поправки на постороннее магнитное влияние и рассчитывают азимутальный, зенитный углы и угол установки отклонителя с учетом определенных ранее систематических погрешностей, ожидаемых показаний геомагнитного поля в районе бурения и ожидаемой скорости изменения углов скважины в процессе бурения, при высоком уровне вибраций преимущественно рассчитывают уточненное значение угла установки отклонителя, ориентируясь на текущие показания феррозондов.

2. Способ по п. 1, отличающийся тем, что измерение вибраций ведут с помощью второго трехосевого акселерометра с повышенной, по сравнению с первым, чувствительностью к вибрациям.



 

Похожие патенты:

Изобретение относится к картированию и бурению скважин. Техническим результатом является повышение точности определения траектории скважины между пунктами инклинометрии и расчета положения скважины.

Изобретение относится к области бурения наклонно-направленных скважин, преимущественно кустовым способом с использованием телеметрической системы. Техническим результатом является повышение точности определения относительного положения забоя бурящейся скважины (БС) относительно неограниченного количества эксплуатационных колонн (ЭК) ранее пробуренных скважин (ПС) с идентификацией номеров этих скважин.

Изобретение относится к устройствам для выверки и, в частности, к устройствам, которые могут быть использованы для выверки буровых установок с обеспечением правильного азимута бурения.

Изобретение относится к области геофизики и может быть использовано при проведении акустического каротажа при бурении подземных формаций. Способ проведения измерений акустического каротажа включает группирование полученных форм акустических сигналов в одну из множества групп.

Изобретение относится внутрискважинной калибровке инструментов. Техническим результатом является устранение ограничений при калибровке скважинной аппаратуры температурного дрейфа и других ошибок датчика.

Предложенное изобретение относится к области бурения направленных скважин, в частности к методам управления направлением бурения скважин. Техническим результатом является повышение точности управления траекторией бурения и выравнивания одной скважины относительно другой скважины.

Изобретение относится к исследованию нефтяных и газовых скважин, в частности к определению углов наклона и траектории ствола скважины. Техническим результатом является повышение точности определения траектории протяженных наклонных и горизонтальных скважин.

Изобретение относится к измерительной навигационной аппаратуре, предназначенной для контроля пространственного положения траектории ствола скважин. Техническим результатом расширение функциональных возможностей способа за счет проведения измерений в обсаженной и не обсаженной скважинах, повышение точности реализующего его устройства за счет совместного применения феррозондов и гироскопов, а также компенсации дрейфа последних.

Изобретение относится к способу и системе коррекции траектории ствола скважины. Техническим результатом является использование данных, полученных в режиме реального времени, для уточнения модели напряжений для данного региона, так что траекторию можно непрерывно корректировать для достижения оптимального соотношения с измеренными характеристиками напряжений данного региона.

Изобретение относится к буровой технике и предназначено для контроля положения ствола горизонтальной скважины между кровлей и подошвой пласта - коллектора, а также для литологического расчленения разреза в процессе бурения.

Изобретение относится к средствам для геонавигации в процессе бурения наклонно-направленных или горизонтальных скважин для разведки нефти и газа. Техническим результатом является повышение точности определения направления скважин в процессе бурения по заданной траектории наклонно-направленных или горизонтальных скважин. Предложен способ геонавигации буровой скважины, содержащий: управление активированием передающего датчика на структуре инструмента, расположенной относительно бурового долота в скважине; прием сигнала в принимающем датчике структуры инструмента в ответ на активирование передающего датчика; обработку сигнала в реальном времени, включающую в себя формирование данных, соответствующих свойствам пласта впереди бурового долота. При этом принимающий датчик установлен отдельно от передающего датчика на расстоянии разделения, достаточно большом для обеспечения обработки сигнала в режиме реального времени, до достижения граничной поверхности целевой зоны. Кроме того обработка данных включает проведение операции инвертирования в отношении принятого сигнала и проверку точности результатов операции инвертирования перед использованием результатов операции инвертирования для геонавигации скважины. Причем геонавигация скважины основана на мониторинге формируемых данных так, что скважина подходит к цели в целевой зоне с минимальным выходом или без выхода за установленные пределы целевой зоны. При этом расстояние разделения является достаточно большим для обнаружения впереди бурового долота на расстоянии более чем от 10 до 200 футов (3-61 м) перед буровым долотом. Кроме того предложены также машиночитаемое запоминающее устройство, система и устройство для осуществления указанного способа, с использованием упомянутого машиночитаемого устройства. 5 н. и 21 з.п. ф-лы, 13 ил.

Изобретение относится к направленному бурению скважин. Техническим результатом является повышение точности проводки ствола скважины в пределах продуктивного пласта. Предложен способ управления направлением движения буровой компоновки внутри продуктивного пласта, включающий размещение буровой компоновки внутри продуктивного пласта между верхним электропроводящим пластом, обладающим магнитным полем постоянного тока, и нижним электропроводящим пластом, обладающим магнитным полем постоянного тока; использование датчика для измерения магнитного поля в продуктивном пласте, складывающегося из магнитного поля постоянного тока верхнего электропроводящего пласта и магнитного поля постоянного тока нижнего электропроводящего пласта; и управление направлением движения буровой компоновки внутри продуктивного пласта с использованием результатов измерения магнитного поля. Предложены также устройство и буровая компоновка для реализации указанного способа. 3 н. и 17 з.п. ф-лы, 3 ил.

Изобретение относится к ориентирующей системе, предназначенной для направления движения бурового наконечника так, чтобы избежать столкновения с обсадной трубой в первом стволе скважины или ввести его в столкновение с ней. Техническим результатом является повышение точности определения местоположения других скважин или боковых стволов. Предложена система, содержащая буровой наконечник, выполняющий бурение второго ствола скважины; бурильную колонну, выполненную из группы трубчатых элементов, смонтированных в одну трубчатую колонну посредством соединительных средств; и группу каротажных устройств, расположенных по одному в каждом соединительном средстве или относительно него. При этом каждое каротажное устройство содержит устройство передачи данных и устройство приема данных, предназначенные для передачи и приема данных между каротажными устройствами; детектор и излучатель. Причем излучатель одного каротажного устройства подает сигнал, который отражается от обсадной трубы и выявляется детектором по меньшей мере двух каротажных устройств так, что положение и/или направление прохождения обсадной трубы можно определить путем тригонометрических вычислений. Кроме того, предложен способ направления движения бурового наконечника с использованием указанной ориентирующей системы. 2 н. и 13 з.п. ф-лы, 6 ил.

Изобретение относится к средствам для выполнения скважинного каротажа. Техническим результатом является повышение чувствительности и точности информации в процессе измерений в скважине. Предложен способ проведения измерений в скважине, содержащий этапы, на которых: управляют активацией прибора, расположенного в скважине и имеющего компоновку излучающих антенн и приемных антенн, разнесенных на расстояния, способных работать выбираемыми парами излучатель-приемник. При этом регистрируют глубинный сигнал из глубинного измерения, используя пару излучатель-приемник, и один или несколько малоглубинных сигналов из одного или нескольких малоглубинных измерений, используя одну или несколько других пар излучатель-приемник; обрабатывают один или несколько малоглубинных сигналов, образуют модельный сигнал относительно областей, прилегающих к боковым сторонам и задней стороне прибора; и формируют сигнал опережающего просмотра по существу без вкладов из областей, прилегающих к прибору, путем обработки глубинного сигнала в зависимости от модельного сигнала. Предложены также устройство для проведения измерений в скважине и машиночитаемое запоминающее устройство, имеющее инструкции выполнения действий указанного способа. 6 н. и 25 з.п. ф-лы, 41 ил.

Изобретение относится к направленному бурению скважин, в частности к средствам каротажа удельного сопротивления пород в реальном времени. Техническим результатом является повышение точности и информативности о наборе слоев перед буровым долотом по мере перемещения компоновки низа бурильной колонны, что обеспечивает более точное управление направленным бурением. Предложены способ и система для получения опережающих измерений профиля, при этом способ включает в себя расположение излучателя энергии, такого как излучающая антенна, вблизи инструмента компоновки низа бурильной колонны. При этом один или несколько приемников энергии, таких как приемные антенны, располагают по длине компоновки низа бурильной колонны. Затем излучают энергию для выполнения опережающих сканирований относительно инструмента компоновки низа бурильной колонны. Образуют данные графика опережающего просмотра с осью x, являющейся функцией времени относительно положения инструмента компоновки низа бурильной колонны. Строят график опережающего просмотра и отображают его на дисплейном устройстве. На основании моделей геологической среды по графику опережающего просмотра можно прослеживать оцененные пластовые значения. Оцененные пластовые значения отображают ниже линии изменения во времени положения инструмента, которая является частью графика опережающего просмотра. Причем оцененные пластовые значения на графике опережающего просмотра могут быть основаны на инверсиях данных об удельном сопротивлении из опережающих сканирований. 3 н. и 17 з.п. ф-лы, 12 ил.

Изобретение относится к области инклинометрии и может быть использовано в нефте- и газопромысловой геофизике. Достигаемый технический результат - расширение функциональных возможностей инклинометра за счет более высокой точности выработки азимута и обеспечения работоспособности инклинометра в условиях произвольного характера распределения поля в зоне считывания. Способ основан на использовании показаний проекций HX3, HY3, hZ3 классической триады феррозондов и двух дополнительных датчиков поля, пространственно разнесенных вдоль продольной оси Z инклинометра. В качестве дополнительных феррозондов используют одноосные с направленными вдоль оси Z осями чувствительности датчики поля, вырабатывающие соответственно текущие значения проекций суммарного поля hZ1=HZ3+HP1 и hZ2=HZ3+HP2, где HZ3 - проекция поля Земли на ось Z инклинометра, a HP1, HP2 - напряженности поля помехи, фиксируемые дополнительными датчиками 1 и 2, и затем производят вычисление величин HZ(1), HZ(2), HZ(3), представляющих собой три независимые реализации одного и того же значения проекции HZ3, очищенной от влияния магнитных помех, в соответствии с выражениями: HZ(1)=hZ1-(hZ1-hZ3)/1-K31, HZ(2)=hZ2-(hZ2-hZ3)/1-K32, HZ(3)=hZ1-(hZ1-hZ2)/1-K21, где (hzi-hzj) характеризует разность показаний первичных измерителей, ответственных за локальный градиент поля между датчиками i и j, а величины - масштабные коэффициенты, являющиеся постоянными величинами на всем протяжении времени проводки скважины и которые экспериментально определяют на начальном этапе проведения буровых работ, для чего колонну в собранном виде устанавливают в вертикальное положение со значением зенитного угла в диапазоне (0÷15)° и опускают на такую глубину, при которой приращение разности показаний δ(hZ1-hZ3) в процессе движения колонны вниз не превышает одной-двух отсчетных единиц. 1 з.п. ф-лы, 1 табл.

Изобретение относится к средствам передачи информации из скважины на поверхность. Техническим результатом является повышение эффективности использования поплавкового клапана и снижение затрат энергии на передачу информации по давлению на поверхность. Предложена система для передачи скважинной информации по стволу скважины на поверхность, включающая: переводник на конце бурильной колонны; детектор, расположенный на упомянутом месте на поверхности и взаимодействующий с жидкостью, проходящей через переводник, для предоставления на упомянутое место на поверхности величины измерения, коррелированной со временем между изменениями давления жидкости в бурильной колонне; и скважинный электронный модуль, расположенный в переводнике. При этом скважинный электронный модуль содержит поплавковый клапан для создания ограничения потока для жидкости, проходящей через переводник. Причем поплавковый клапан управляет падением давления бурового раствора в переводнике и включает корпус, керамическую оболочку седла, размещенную в отверстии корпуса, тарелку, выполненную с возможностью аксиального сдвига в корпусе и наружу от керамического седла, шток поршня, соединенный с тарелкой и выходящий наружу из корпуса, и верхнюю и нижнюю втулки для аксиального направления штока поршня в корпусе. Кроме того, система содержит датчик, расположенный в переводнике, для отслеживания состояния в стволе скважины и тормоз, взаимодействующий со штоком поршня, для фиксации тарелки по меньшей мере в двух статических положениях во время начала потока бурового раствора через переводник и во время открывания поплавкового клапана. 3 н. и 15 з.п. ф-лы, 10 ил.

Изобретение относится к способу и системе прямого моделирования скважинного изображения свойств пласта. Техническим результатом является повышение эффективности прямого моделирования скважинного изображения свойств пласта. Способ содержит этапы, на которых центрируют воображаемый круг, имеющий множество элементов дискретизации, на представляющем интерес месте в осевом положении вдоль целевого ствола скважины, при этом воображаемый круг помещают перпендикулярно к оси целевого ствола скважины. При этом воображаемый круг представляет область анализируемого пласта, определяют псевдокаротажную диаграмму, относящуюся к представляющему интерес параметру, в осевом положении вдоль целевого ствола скважины, при этом определение псевдокаротажной диаграммы в заданной точке содержит: образование первой соседней скважины и второй соседней скважины, при этом первая соседняя скважина и вторая соседняя скважина пересекают поверхность, соответствующую заданной точке, определение значений каротажных диаграмм представляющего интерес параметра в первой точке на поверхности, соответствующей первой соседней скважине, и во второй точке на поверхности, соответствующей второй соседней скважине; интерполирование значения каротажной диаграммы представляющего интерес параметра в первой точке и во второй точке для определения псевдокаротажной диаграммы в заданной точке, при этом псевдокаротажная диаграмма содержит по меньшей мере одно значение представляющего интерес параметра в заданной точке, соответствующей одному из множества элементов дискретизации, и визуализируют определенную псевдокаротажную диаграмму. 3 н. и 15 з.п. ф-лы, 7 ил., 1 пр.

Изобретение относится к бурению скважин, в частности к средствам отслеживания бурения множества скважин относительно друг друга. Техническим результатом является повышение точности обнаружения магнитного градиента за счет минимизации влияния тока на магнитный градиометр. Предложена скважинная система дистанционирования для электромагнитного дистанционирования между первой и второй скважинами, содержащая инструмент, включающий: источник электрического тока; по меньшей мере два электрода, расположенные вдоль оси инструмента, в котором по меньшей мере один электрод является эмиттерным электродом и по меньшей мере один электрод является возвратным электродом, причем источник электрического тока является электрически соединенным с эмиттерным электродом; и магнитный градиометр, расположенный вдоль оси инструмента, предназначенный для обнаружения магнитного градиента, индуцируемого потоком тока, протекающего в проводящем элементе в одной из скважин. При этом магнитный градиометр отделен от электродов по меньшей мере одним изолятором. 2 н. и 30 з.п. ф-лы, 20 ил.

Изобретение относится к области бурения наклонно направленных и горизонтальных скважин, в частности к определению угловых параметров пространственной ориентации бурового инструмента (азимута, зенитного угла и угла установки отклонителя в апсидальной плоскости). Технический результат: уменьшение погрешности измерений инклинометрических систем за счет учета малых угловых параметров отклонения осей чувствительности трехкомпонентных феррозондовых и акселерометрических датчиков инклинометрических систем от ортогональных осей при обработке результатов измерений. Сущность изобретения: в корпусе скважинного прибора устанавливают трехосевой блок акселерометр/магнитометр, с помощью которого осуществляют измерение проекций gx, gy, gz известного вектора ускорения силы тяжести, измеряют проекции mx, my, mz полного вектора напряженности геомагнитного поля, по которым определяют азимут α, зенитный θ и визирный ϕ углы. При этом используют априорно определенные численные значения малых угловых параметров отклонения осей чувствительности датчиков: χА, δХА, δYА, σ1А, σ2А для трехосевого акселерометра и χF, γF, δXF, δYF, σ1F, σ2F для трехосевого магнитометра. 2 ил., 2 табл.
Наверх