Способ получения нанокапсул ауксинов в каррагинане

Изобретение относится к способу получения нанокапсул ауксинов. Указанный способ заключается в том, что ауксин добавляют в суспензию каррагинана в толуоле в присутствии препарата Е472с при перемешивании, затем приливают четыреххлористый углерод, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом соотношение ядро/оболочка в нанокапсулах составляет 1:1 или 5:1. Изобретение обеспечивает упрощение и ускорение процесса получения нанокапсул, а также увеличение их выхода по массе. 2 ил., 2 табл., 7 пр.

 

Изобретение относится к области нанотехнологии, в частности к растениеводству.

Ранее были известны способы получения микрокапсул.

В патенте РФ 2173140, МПК А61К 009/50, А61К 009/127, опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения

В патент РФ 2359662, МПК А61К 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин).

Наиболее близким методом является способ, предложенный в патенте РФ 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999. В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4: 1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул ауксинов, отличающимся тем, что в качестве оболочки нанокапсул используется каррагинан, а в качестве ядра - ауксины, при получении нанокапсул методом осаждения нерастворителем с применением четыреххлористого углерода в качестве осадителя, процесс получения нанокапсул осуществляется без специального оборудования.

Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием четыреххлористого углрода в качестве осадителя, а также использование каррагинана в качестве оболочки частиц и ауксины - в качестве ядра.

Результатом предлагаемого метода являются получение нанокапсул ауксинов.

ПРИМЕР 1. Получение нанокапсул индолилуксусной кислоты в каррагинане, соотношение ядро:оболочка 1:1

100 мг индолилуксусной кислоты добавляют небольшими порциями в суспензию каррагинана в толуоле, содержащую указанного 100 мг полимера, в присутствии 0,005 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами, свободные кислотные группы могут быть нейтрализованы натрием) при перемешивании 1300 об/сек. Далее приливают 2 мл четыреххлористого углерода. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,2 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 2. Получение нанокапсул индолилуксусной кислоты в каррагинане, соотношение ядро:оболочка 5:1

500 мг индолилуксусной кислоты добавляют небольшими порциями в суспензию каррагинана в толуоле, содержащую указанного 100 мг полимера, в присутствии 0,005 г препарата Е472с при перемешивании 1300 об/сек. Далее приливают 2 мл четыреххлористого углерода. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,6 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 3. Получение нанокапсул индолил-3-масляной кислоты в каррагинане, соотношение ядро:оболочка 1:1

100 мг индолил-3-масляной кислоты добавляют небольшими порциями в суспензию каррагинана в толуоле, содержащую указанного 100 мг полимера, в присутствии 0,005 г препарата Е472с при перемешивании 1300 об/сек. Далее приливают 2 мл четыреххлористого углерода. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,2 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 4. Получение нанокапсул индолил-3-масляной кислоты в каррагинане, соотношение ядро:оболочка 5:1

500 мг индолил-3-масляной кислоты добавляют небольшими порциями в суспензию каррагинана в толуоле, содержащую указанного 100 мг полимера, в присутствии 0,005 г препарата Е472с при перемешивании 1300 об/сек. Далее приливают 2 мл четыреххлористого углерода. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,6 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 5. Получение нанокапсул 1-нафтилуксусной кислоты в каррагинане, соотношение ядро:оболочка 1:1

100 мг 1-нафтилуксусной кислоты добавляют небольшими порциями в суспензию каррагинана в толуоле, содержащую указанного 100 мг полимера, в присутствии 0,005 г препарата Е472с при перемешивании 1300 об/сек. Далее приливают 2 мл четыреххлористого углерода. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,2 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 6. Получение нанокапсул 1-нафтилуксусной кислоты в каррагинане, соотношение ядро:оболочка 5:1

500 мг 1-нафтилуксусной кислоты добавляют небольшими порциями в суспензию каррагинана в толуоле, содержащую указанного 100 мг полимера, в присутствии 0,005 г препарата Е472с при перемешивании 1300 об/сек. Далее приливают 2 мл четыреххлористого углерода. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,6 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 7. Определение размеров нанокапсул методом NTA

Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном bASTM E2834.

Оптимальным разведением для разведения было выбрано 1: 100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length:Auto, Min Expected Size: Auto.длительность единичного измерения 215s, использование шприцевого насоса.

Способ получения нанокапсул ауксинов, характеризующийся тем, что ауксин добавляют в суспензию каррагинана в толуоле в присутствии препарата Е472с при перемешивании 1300 об/с, затем приливают четыреххлористый углерод, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом соотношение ядро/оболочка в нанокапсулах составляет 1:1 или 5:1.



 

Похожие патенты:

Изобретение относится к способу получения нанокапсул ауксинов. Указанный способ заключается в том, что ауксин добавляют в суспензию альгината натрия в бензоле в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты при перемешивании, затем приливают 1,2-дихлорэтан, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом соотношение ядро/оболочка в нанокапсулах составляет 1:1 или 5:1.
Изобретение относится к способам получения коллоидных растворов, содержащих наночастицы полупроводникового соединения, и может быть использовано в оптоэлектронике и медицине.

Изобретение относится к нанотехнологии и может быть использовано в технике, медицине и энергетике. Устройство для получения углеродных нанотрубок содержит реакционную камеру 12, в которой размещены подложкодержатель 1, нагреватель 2, подложка 3, входное окно 6, держатель 9 мишени 8, патрубок 11 ввода газов системы подачи реакционной газовой смеси и патрубок 10 системы вакуумирования.
Изобретение относится к способу создания каталитического слоя на поверхности пористого носителя. Данный способ включает нанесение наночастиц катализатора, содержащих оксид церия или гомогенный смешанный оксид церия и циркония, на внутреннюю поверхность пористого носителя из оксида алюминия посредством погружения пористого носителя в предварительно приготовленную стабильную водную суспензию, содержащую наночастицы катализатора, и запекание носителя с нанесенными на него наночастицами катализатора.

Изобретение относится к способу формирования стабильных наноструктурных покрытий плазменной струей. Осуществляют напыление твердосплавных нанопорошков плазменной струей на подложку, расположенную перпендикулярно к направлению оси плазменной струи, с использованием кислород-углеводородных газовых смесей.

Изобретение относится к упаковочным материалам и касается способа снабжения поверхности подложки с волоконной основой барьерным слоем. Барьерный слой формируют осаждением нановолокон на поверхности посредством использования электроформования или формования из расплава, при этом пленку формируют посредством постобработки подложки с осажденными нановолокнами после осаждения нановолокон на поверхности.

Изобретение может быть использовано при изготовлении композиционных материалов, катализаторов, материалов для хранения газов. Катализатор - нанодисперсный порошок никелида алюминия, покрытый каталитически активным металлом из ряда, включающего железо, кобальт, никель, молибден или их смеси, получают путём его пропитки солями указанных каталитически активных металлов, сушки, прокаливания и модифицирования монохроматическим электромагнитным излучением в импульсном режиме с частотой 10-30 Гц при удельной мощности излучения 1,1-1,8 кВт/мм2.
Настоящее изобретение относится к модифицированным полиэфирным композициям, содержащим модификаторы полиэфирной смолы на основе наночастиц оксидов. Описана полиэфирная композиция, используемая в качестве связующего, содержащая полиэфирную смолу, содержащую модификатор на основе наночастиц оксидов, выбранных из SiO2, Al2O3, MgO, ZrO2, CeO2, TiO2, ZnO, FeO, Fe2O3, Fe3O4 и SnO, содержащий C2-C16 углеводородный фрагмент, имеющий по меньшей мере одну гидроксильную группу, и связанный посредством указанного C2-C16 углеводородного фрагмента ковалентной связью с указанной полиэфирной смолой; и модификатор полиэфирной смолы на основе наночастиц оксидов, выбранных из SiO2, Al2O3, MgO, ZrO2, CeO2, TiO2, ZnO, FeO, Fe2O3, Fe3O4 и SnO, содержащий непредельные С2-С20 углеводородные группы, выбранные из остатка С2-С20 алкена, С2-С20 алкина или С2-С20 циклоалкена, ковалентно связанные с поверхностью указанных наночастиц через кислород.
Изобретение относится в области нанотехнологии, в частности к способу получения нанокапсул АСД в хитозане. Технической задачей изобретения является упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе.

Изобретение относится к способам получения частиц благородных металлов, в частности золота нанометрового размера, которые находят применение в различных отраслях науки и техники.

Изобретение относится к способу получения нанокапсул ауксинов. Указанный способ заключается в том, что ауксин добавляют в суспензию альгината натрия в бензоле в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты при перемешивании, затем приливают 1,2-дихлорэтан, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом соотношение ядро/оболочка в нанокапсулах составляет 1:1 или 5:1.

Изобретение относится к сельскому хозяйству. Осуществляют усиление роста растений путем обработки семян растения или растения, которое прорастает из семян, эффективным количеством по меньшей мере одного хитоолигосахарида (ХО), представленного формулой: в которой R1 означает водород или метил; R2 означает водород или метил; R3 означает водород, ацетил или карбамоил; R4 означает водород, ацетил или карбамоил; R5 означает водород, ацетил или карбамоил; R6 означает водород, арабинозил, фукозил, ацетил, сульфат, 3-0-S-2-0-MeFuc, 2-0-MeFuc или 4-0-AcFuc; R7 означает водород, маннозил или глицерин; R8 означает водород, метил или -CH2OH; R9 означает водород, арабинозил или фукозил; R10 означает водород, ацетил или фукозил; и n равно 0, 1, 2 или 3.

Изобретение относится к области сельского хозяйства, в частности к садоводству. Способ включает нарезку черенков, обработку нижней части черенков перед укоренением слабоконцентрированным водным раствором регулятора роста в течение 12-24 ч и укоренение.

Группа изобретений относится к иминопроизводному, представленному формулой (I), где "Ar" означает пиридин, содержащий атом хлора на кольце или тиазол, который может содержать атом хлора на кольце; "X" означает атом серы или CH2; когда "Y" представляет собой COR1, "R1" означает атом водорода или C1-C5алкильную группу, галогенированную метильную группу, за исключением трифторметильной группы, галогенированную C2-C5алкильную группу, C2-C5алкенильную группу, галогенированную C2-C5алкенильную группу, C3-C5алкинильную группу, незамещенную или замещенную атомом хлора, фтора, метильной группой или ацетамидом фенильную группу, незамещенную (C6) арил(C1-C3)алкильную группу, (C1-C4)алкокси(C1-C5)алкильную группу, C1-C3алкоксикарбонильную группу, (C1-C3) алкилсульфонил(C1-C3)алкильную группу, (C1-C3)алкилтио(C1-C3)алкильную группу, незамещенную или замещенную метильной группой или атомом фтора C3-C7циклоалкильную группу, циано(C1-C3) алкильную группу, незамещенную фенокси(C1-C3) алкильную группу, незамещенную пиридилметильную группу, незамещенную имидазолилметильную группу, фуранильную группу, морфолиногруппу, адамантильную группу, изотиоцианатометильную группу или гетероциклическое кольцо, выбранное из хинолина, индола, пиридина, пиразина, пиридазина или тетрагидрофурана, замещенное одним, двумя или пятью заместителями, выбранными из хлора, брома, трифторметана или фтора, и незамещенное гетероциклическое кольцо, выбранное из хинолина, индола, пиридина, пиразина, пиридазина или тетрагидрофурана; когда "Y" представляет собой CONR3R4 "R3" и "R4" означает атом водорода или C1-C5алкильную группу, C1-C3алкоксигруппу, незамещенную фенильную группу, (C1-C3)алкокси(C1-C3)алкильную группу, C1-C3алкоксикарбонилметильную группу, незамещенную C3-C7циклоалкильную группу, незамещенную бензолсульфонильную группу; кроме случаев, когда "R3" и "R4" одновременно означают водород; когда "Y" представляет собой CONHCOR5, "R5" означает галогенированную C1-C5алкильную группу, незамещенную фенильную группу; когда "Y" представляет собой CO2R9, "R9" означает C1-C7алкильную группу, галогенированную C1-C5алкильную группу, C2-C5алкенильную группу, галогенированную C2-C5алкенильную группу, C3-C5алкинильную группу, незамещенную или замещенную хлором, фтором или нитрогруппой нафтильную или фенильную группу, незамещенную (C6)арил(C1-C3)алкильную группу, (C1-C3)алкокси(C1-C3) алкильную группу, (C1-C3)алкилтио(C1-C3)алкильную группу, три(C1-C3алкил)силил(C1-C3)алкильную группу, незамещенную C3-C7циклоалкильную группу, 3-6-членную незамещенную гетероциклоалкильную группу, содержащую атом кислорода в качестве гетероатома, незамещенную или замещенную метоксигруппой фенилметильную группу, незамещенную фуранилметильную группу, незамещенную тиенилметильную группу, незамещенную пиридилметильную группу, сукцинимидную группу.
Изобретение относится к биоцидам. Композиция для опосредованного контактирования с пищей включает 1,2-бензизотиазолин-3-он, диспергированный в водной среде.

Изобретение относится к сельскому хозяйству. Проводят предпосевную обработку семян зерновых культур 6-метил-4-(2-пиридилсульфанил)-1,3-дигидрофуро[3,4-с]пиридин-3-оном, проявляющим рострегулирующую активность в дозе 0,2-0,6 г/т семян при норме расхода рабочей жидкости 10 л/т семян.

Изобретение относится к новым замещенным 2-фенилиндолам общей формулы I: где при R, R2 и R4 =Н и R1=OH, R3=CN, CF3, COOEt или SO2NH2;при R=Me и R1 и R3=H, R2=NO2 R4=OH; при R=Me и R1 и R3=H, R2=OH и R4=NO2; при R=Me и R 2 и R3=H, R1=NO2 и R 4=ОН; при R=Me и R2 и R3=Н, R 1=ОН и R4=NO2, которые проявляют фунгицидную активность, что позволяет использовать их при получении фунгицидной композиции.

Изобретение относится к синергетическому средству для борьбы с насекомыми, содержащему в качестве активных веществ соединение общей формулы (I) где Е означает NO2 или CN, R означает тиазолилметил или пиридилметил, замещенные галогеном, А означает водород, Z означает алкиламиногруппу с числом атомов углерода от 1 до 4 или А и Z вместе с атомами, с которыми они связаны, образуют тиазолидин, имидазолидин, гексагидро-1,3,5-триазин, который у атомов азота в 3-м и 5-м положении замещен двумя алкильными группами с 1-4 атомами углерода в алкильной группе, 6-членный насыщенный гетероциклический фрагмент, который дополнительно включает кислород и гетерогруппу N-алкил, при этом алкил в N-алкильной группе содержит 1-4 атома углерода, и фунгицидное активное вещество, выбранное из группы, включающей дифеноконазол, триадимефон, флуквинконазол, фенпропиморф, процимидон, дихлофлуанид, каптан, анилазин, манеб, манкозеб, беномил и серу.

Изобретение относится к области органической химии и сельского хозяйства и касается стимулятора роста растений на основе калиевой соли 3-индолилуксусной кислоты, содержащего калиевую соль 3-индолилуксусной кислоты, хлористый калий, калиевую соль гликолевой кислоты, дигидрофосфат калия и воду при следующем соотношении компонентов, мас.%: калиевая соль 3-индолилуксусной кислоты - 4,5-4,7, хлористый калий - 2,4-2,6, калиевая соль гликолевой кислоты - 1,2-1,4, дигидрофосфат калия - 11,1-11,5, вода - остальное.

Изобретение относится к способу получения нанокапсул ауксинов. Указанный способ заключается в том, что ауксин добавляют в суспензию альгината натрия в бензоле в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты при перемешивании, затем приливают 1,2-дихлорэтан, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом соотношение ядро/оболочка в нанокапсулах составляет 1:1 или 5:1.
Наверх