Способ получения композиционного материала на основе меди для электрических контактов

Изобретение относится к области цветной металлургии, в частности к производству графитсодержащих композиционных материалов электротехнического назначения на основе меди, и может быть использовано для изготовления электрических разрывных контактов низковольтной аппаратуры. Способ получения композиционного материала на основе меди для электрических контактов включает расплавление меди, введение в медный расплав смеси порошковых компонентов, содержащей графит и хром, с одновременным воздействием на полученный расплав вертикальными низкочастотными колебаниями и последующую кристаллизацию расплава, при этом смесь порошковых компонентов вводят в медный расплав при температуре 1030-1300°C в следующем соотношении, мас.%: графит 0,2-2,0, хром - 0,1-1,0, медь - остальное, при фракционном составе порошков графита и хрома - 0,1-10,0 мкм, а механоактивацию расплава проводят низкочастотными колебаниями с частотой 40-100 Гц в неподвижной емкости вибрирующим поршнем-активатором, погруженным в расплав и обеспечивающим интенсивное перемешивание во всем объеме в течение 1-10 минут. Способ позволяет получить беспористый сплав с высокой электродугостойкостью, а также сократить энерго-временные затраты на его получение. 1 табл.

 

Изобретение относится к области цветной металлургии, в частности к производству графитсодержащих композиционных материалов электротехнического назначения на основе меди, и может использоваться в электротехнической промышленности для изготовления электрических разрывных контактов низковольтной аппаратуры.

Разрывные электрические контакты в процессе работы при соударениях и горении электрической дуги испытывают большие силовые и температурные нагрузки, в результате чего происходит деформирование (смятие) и электродуговой износ (электроэрозия) коммутирующих поверхностей, а также их окисление в присутствие кислорода воздуха. Одной из основных характеристик, определяющих работу электрических контактов, является их высокая износостойкость электропроводность. В связи с этим в их состав вводят добавки, упрочняющие матрицу (например, тугоплавкие металлы и соединения), и восстановители (чаще всего графит).

Широко известны способы получения композиционных материалов медь-графит для разрывных электроконтактов на основе меди спеканием порошковых компонентов. Вследствие отсутствия смачиваемости графита расплавом меди такие сплавы по литейным технологиям не получают.

Известен способ изготовления электрических контактов для низковольтной аппаратуры на основе меди с добавлениями графита, а также оксидов тантала и кобальта или цинка, включающий смешивание исходных порошков между собой в сухом виде, прессование и спекание в течение 1-2 часов при 960°C в защитной атмосфере азота, водорода или в вакууме. Полученные контакты подвергают допрессовке и последующему отжигу при 450-500°C в защитной атмосфере в течение 30 мин. Данный материал, изготовленный в соответствии с известным способом, обладает удовлетворительными механическими и электрическими характеристиками, однако может применяться только в производстве контактов для низковольтной аппаратуры (авторское свидетельство СССР №139379, С22С 1/05, «Бюллетень изобретений» №13 1961 г.).

Кроме того, к недостаткам способа относится трудоемкость, длительность и многоступенчатость технологического процесса, а также пористость получаемых спеченных материалов, обусловленная существованием замкнутых пор на границе медь-графит вследствие инактивности меди к углероду, и остаточная пористость, характерная для всех спеченных изделий, связанная с технологией изготовления. Пористость существенно ухудшает функциональные свойства материалов, в частности твердость, электропроводность и электроэрозионную стойкость (В.И. Раховский и др. Разрывные контакты электрических аппаратов. М.-Л:: Энергия, 1966, с.202).

Известен способ изготовления композиционного материала для электрических контактов на медной основе из порошков графита, меди, алюминия, фосфорной меди и окиси меди (патент РФ №2398656, МПК B22F 3/14, С22С 1/05, опубл. 10.09.2010). Исходные порошки смешивают и подвергают высокоэнергетической обработке в шаровой мельнице до образования гранул материала, представляющего собой матрицу на основе меди с равномерно распределенными в ней упрочняющими частицами в количестве 0,35-0,55 мас. % от общей массы. Далее смесь прессуют, спрессованную заготовку уплотняют путем экструдирования в нагретом состоянии. Полученный материал имеет высокие значения электропроводности, электродугового износа и температуры разупрочнения.

К недостаткам способа относятся не только трудоемкость его осуществления, но и загрязнение материала продуктами разрушения мелющих тел шаровой мельницы, а также карбидом алюминия Al4C3, легко образующимся в описанных условиях получения материала. Указанный карбид даже при комнатной температуре может взаимодействовать с влагой воздуха, образуя метан и гидроксид алюминия. Однако авторы способа, к сожалению, не проанализировали возможность разрушения коммутирующих поверхностей при наличии влаги воздуха.

Наиболее близким к предлагаемому изобретению является способ получения композиционного сплава на основе меди электротехнического назначения, включающий расплавление меди, введение в медный расплав смеси порошковых компонентов, содержащей графит и хром, при вертикальной низкочастотной вибрации тигля с расплавом (Химическая физика и мезоскопия. 2013. Т. 15. №2. С. 262-269). Для получения литых композитов с содержанием 10-20 мас. % Cr, 4-5 мас. % C использовались порошки различных фракций: хром, как крупный (100-500) мкм, так и мелкий (1-100) мкм, графит с размером частиц (1-500) мкм.

Недостатками описанного способа являются технологические сложности осуществления колебания тигля с расплавом, особенно при больших объемах расплава, а также необходимость дополнительного перемешивания расплава с твердыми компонентами для получения однородной структуры литого сплава. Кроме того, получаемый материал имеет низкую и неоднородную по сплаву твердость и повышенное электросопротивление, обусловленные присутствием крупных частиц графита в структуре композиционного сплава и хрома в кристаллической решетке медной матрицы.

Задача, которая решается настоящим изобретением, заключается в удешевлении и упрощении способа получения композиционного материала медь-графит, в котором графит находится в составе структурных комплексов «ядро (графит) - оболочка (карбиды хрома)».

Техническим результатом заявляемого изобретения является упрощение способа получения композиционного материала медь-графит электротехнического назначения, обладающего повышенными функциональными свойствами за счет механической активации процесса образования карбидной оболочки вокруг включений графита и равномерного распределения структурных комплексов «графит - карбидная оболочка» в расплаве меди.

Указанный результат достигается в способе получения композиционного материала на основе меди для электрических контактов, включающем расплавление меди, введение в медный расплав смеси порошковых компонентов, содержащей графит и хром, с одновременным воздействием на полученный расплав вертикальными низкочастотными колебаниями, последующую кристаллизацию расплава, согласно изобретению смесь порошковых компонентов вводят в медный расплав при температуре 1030-1300°C при следующем соотношении, мас.%:

графит 0,2-2,0
хром 0,1-1,0
медь остальное

и следующем фракционном составе используемых порошков, мкм: графит, хром - 0,1-10,0 мкм, а механическую активацию расплава низкочастотными колебаниями с частотой 40-100 Гц проводят в неподвижной емкости вибрирующим поршнем-активатором, погруженным в расплав и обеспечивающим интенсивное перемешивание во всем объеме расплава в течение 1-10 минут.

Предлагаемый способ получения композиционных материалов медь-графит по литейной технологии позволяет получать беспористый сплав с высокими функциональными свойствами. Высокая дугостойкость и твердость материала реализуется за счет присутствия свободного графита в структурных комплексах «ядро (графит) - оболочка (карбиды хрома)», равномерно распределенных по всему объему сплаву.

Формирование карбидной оболочки вокруг включений графита обеспечивает сохранение графита в медной матрице, невозможное в литых сплавах в отсутствие карбидообразующих элементов (в частности, Cr).

Полученные композиты обладают беспористой структурой, обусловленной активным движением жидкой меди между твердыми частицами включений, а также отсутствием межфазных границ медь-графит.

На межфазной границе «медь-графит» медь изолирована от графита слоем карбидов хрома, хорошо смачивающихся расплавом меди (Расплавы. 2009. №5. С. 3-9). Синтез карбидов хрома происходит непосредственно в расплаве меди при небольших его перегревах и воздействии низкочастотной вибрации в течение 1-10 мин.

Таким образом, графит в сплаве находится в составе структурных комплексов «ядро (графит) - оболочка (карбиды хрома)». Карбиды хрома при этом присутствуют в сплаве в двух формах: в виде прослойки между медью и графитом и в виде отдельных дисперсных включений, образовавшихся из наиболее мелких частиц графита.

Применение низкочастотной вибрации поршня-излучателя, погруженного в расплав меди, для замешивания в него порошков графита и хрома при неподвижном тигле с расплавом позволяет не только равномерно распределить матрицу по всему расплаву, но и понизить температуру обработки расплава для более эффективного протекания процесса карбидообразования.

Установлено, что использование согласно изобретению порошков графита и хрома фракций от 0.1 до 10.0 мкм позволяет достичь необходимого эффекта, так как частицы размерами менее 0.1 мкм полностью переходят в карбидную фазу, а более 10.0 мкм - приводят к образованию слишком крупных гетерогенных включений, снижающих механическую прочность коммутирующих поверхностей контакт-деталей.

Соотношение вводимых порошков графита и хрома определяется условиями работы электроконтактов, требующих определенной стойкости к свариванию, предотвращению окисления и снижению времени горения электрической дуги, и должно обеспечить избыток графита выше стехиометрического соотношения в высшем карбиде хрома.

Относительное содержание графита менее 0,2% не приводит к заметному повышению электроэрозионной стойкости, а выше 2,0% - снижает механическую прочность электроконтактов.

Содержание хрома в сплаве менее 0,1 мас. % недостаточно для одновременного обеспечения сплаву способности к его дисперсионному упрочнению и образованию карбидной оболочки вокруг частиц графита, а свыше 1,0 масс. % сильно снижает электропроводность сплава. При этом соотношение вводимых порошков графита и хрома зависит от условий работы электроконтактов, требующих определенной стойкости к их свариванию, предотвращению окисления и снижению времени горения электрической дуги и должно обеспечить избыток графита выше стехиометрического соотношения в высшем карбиде хрома.

Частота вибрации поршня-активатора, погруженного в расплав, выше или ниже пределов 40-100 Гц не создает активного перемешивания расплава во всем обрабатываемом объеме.

Время перемешивания расплава с порошками ограничивается снизу (1 мин) - временем, достаточным для образования карбидного слоя на поверхности графитовых частиц и необходимым для равномерного распределения гетерогенных частиц по расплаву, а сверху (5 мин) - сохранением части графита в центре структурных комплексов «ядро (графит) - оболочка (карбид)» и предотвращением коагуляции конгломератов из гетерогенных включений (Russian Journal of Non-Ferrous Metals, 2013, Vol. 54, No.3, pp. 215-219).

Температура замешивания порошков в расплав ограничивается снизу (1030°C) - большой вязкостью расплава, препятствующей перемешиванию жидкости и твердых частиц, сверху (1300°C), - повышением окисляемости меди, а также целью удешевления технологии.

Сведения, подтверждающие возможность осуществления изобретения

Получение материала осуществляется следующим образом. Медный пруток марки M1 расплавляют в печи сопротивления в графитовом тигле под слоем аргона. На зеркало расплава при температуре 1050-1300°C подают смесь порошков графита МГ1 фракции 0,1-10 мкм и хрома фракции 0,1-10 мкм. В расплав погружают поршень-вибратор, изготовленный из графита, прогрев его предварительно до 1000°C. Смесь расплава и порошков обрабатывают колебаниями поршня-вибратора с частотой 40-100 Гц на лабораторной установке. Полученную суспензию разливают по графитовым изложницам размерами 10×10×150 мм. После закалки слитки отжигают на дисперсионное твердение в стандартных для хромовых бронз условиях (450°C в течение 2 часов).

Структуру полученных сплавов исследовали на шлифах поперечного разреза слитков на инвертированном металловедческом микроскопе OLIMPUS GX-51. На трех различных участках слитков измеряли структурно-чувствительные физико-механические свойства сплавов - твердость по Бринеллю (нагрузка 250 кг, диаметр шарика 5 мм) и удельную электропроводность (ρ) на микроомметре ИКС-5.

Для сравнения электроэрозионной стойкости композиционных материалов (износ под воздействием электрической дуги), полученных по способу-прототипу и заявляемому способу, из полученных сплавов и меди марки M1 были изготовлены контакт-детали с плоской поверхностью (ГОСТ 3884-77) высотой 20 мм и диаметром 10 мм. Сравнительные испытания контакт-деталей на электроэрозию проводили на лабораторном испытательном стенде, имитирующем работу контактора переменного тока (испытательный ток 100 А, напряжение 25 В). Изменение массы контакт-деталей измеряли после их работы в течение 5000 рабочих циклов включение-отключение.

Условия получения сплавов, их физико-механические свойства и результаты испытаний на эрозионную стойкость приведены в Таблице.

В качестве образцов сравнения были выбраны медь марки M1 и сплав, приготовленный по способу-прототипу, полученный в условиях, указанных в Таблице.

Все измеренные свойства являются функциональными: твердость определяет несминаемость соударяющихся контакт-деталей, электросопротивление - их проводящую способность и температуру разогрева, коммутационный износ - работоспособность коммутирующих поверхностей.

Сравнение функциональных свойств сплава-прототипа (№1) и сплава по заявляемому способу (№2), различающихся лишь способом обработки расплава низкочастотными колебаниями, показывает, что сплав-прототип обладает гораздо большим разбросом значений физико-механических свойств и более высоким (на порядок) электроэрозионным износом. Исследования структуры показали, что причиной разброса твердости и электропроводности по длине слитка является сильно макронеоднородное строение сплава, проявляющееся в неравномерном распределении включений графита по объему, а также наличие крупных включений частично нерастворенных в меди частиц хрома и недиспергированного графита. На практике такая неоднородность сплава и наличие слабых мест в его структуре приводит к дестабилизации и быстрому выходу из рабочего состояния электроконтактов, изготовленных из такого сплава.

Напротив - все сплавы, полученные по заявляемому способу, обладают по сравнению с прототипом более высокими значениями твердости, электропроводности и меньшим разбросом их значений и, главное, в разы меньшим коммутационным износом.

Способ получения композиционного материала на основе меди для электрических контактов, включающий расплавление меди, введение в медный расплав смеси порошковых компонентов, содержащей графит и хром, с одновременным воздействием на полученный расплав вертикальными низкочастотными колебаниями и последующую кристаллизацию расплава, отличающийся тем, что смесь порошковых компонентов вводят в медный расплав при температуре 1030-1300°C при следующем соотношении, мас.%:
графит - 0,2-2,0
хром - 0,1-1,0
медь - остальное,
при этом фракционный состав используемых порошков графита и хрома составляет 0,1-10,0 мкм, а механическую активацию расплава проводят низкочастотными колебаниями с частотой 40-100 Гц в неподвижной емкости поршнем-активатором, погруженным в расплав и обеспечивающим интенсивное перемешивание во всем объеме в течение 1-10 минут.



 

Похожие патенты:

Изобретение относится к формированию на медных электрических контактах покрытий на основе вольфрама, углеродистого вольфрама и меди, и может быть использовано в электротехнике.

Изобретение относится к формированию на медных электрических контактах покрытий на основе вольфрама и меди, которые могут быть использованы в электротехнике. Способ включает электрический взрыв композиционного электрически взрываемого проводника, состоящего из двухслойной плоской медной оболочки массой 60-360 мг и сердечника в виде порошка вольфрама массой, равной 0,5-2,0 массы оболочки, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности медного электрического контакта при поглощаемой плотности мощности 4,5-6,5 ГВт/м2, осаждение на поверхность продуктов взрыва, формирование на ней композиционного покрытия системы W-Cu и последующую импульсно-периодическую электронно-пучковую обработку поверхности покрытия при поглощаемой плотности энергии 40-60 Дж/см2, длительности импульсов 150-200 мкс и количестве импульсов 10-30 имп.
Изобретение относится к способу получения легированного оксидом индия серебряно-оловооксидного материала для электроконтактов и может применяться в электротехнической промышленности.

Изобретение относится к формированию покрытий на медных электрических контактах и может быть использовано в электротехнике. Способ включает электрический взрыв композиционного электрически взрываемого проводника, состоящего из двухслойной плоской медной оболочки массой 60-360 мг и сердечника в виде порошка диборида титана массой, равной 0,5-2,0 массы оболочки, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности медного электрического контакта при поглощаемой плотности мощности 4,5-6,5 ГВт/м2, осаждение на поверхность продуктов взрыва, формирование на ней композиционного покрытия системы TiB2-Cu и последующую импульсно-периодическую электронно-пучковую обработку поверхности покрытия при поглощаемой плотности энергии 40-60 Дж/см2, длительности импульсов 150-200 мкс и количестве импульсов 10-30 имп.

Изобретение относится к формированию на медных электрических контактах покрытий на основе молибдена, углеродистого молибдена и меди, которые могут быть использованы в электротехнике как электроэрозионно-стойкие покрытия с высокой адгезией с основой на уровне когезии.

Изобретение относится к порошковой металлургии, в частности к получению порошка сплава серебро-кадмий для изготовления контактов. Раствор нитратов серебра и кадмия обрабатывают раствором гидроксида натрия, выдерживают пульпу и отделяют осадок смеси AgOH и Cd(OH)2 от маточного раствора.
Изобретение относится к порошковой металлургии, в частности к изготовлению скользящих контактов. Может использоваться в электротехнике, в узлах токосъема, в частности щеток электромашин и контактных вставок железнодорожного и городского транспорта.

Изобретение относится к порошковой металлургии, в частности к получению скользящих контактов. Может использоваться в электротехнике для изготовления щеток электромашин, контактных вставок для устройств токосъема городского и железнодорожного транспорта.
Изобретение относится к порошковой металлургии, в частности к производству графито-медных материалов для сильноточных электрических контактов. Шихта содержит, мас.%: частицы меди 20-85, частицы гидрида титана 1-10 и частицы графита - остальное.

Изобретение относится к производству материалов дугогасительных и разрывных электрических контактов и может быть использовано в токоприемниках электровозов, метропоездов и другого городского электрифицированного транспорта.

Изобретение относится к изготовлению породоразрушающего инструмента. Формируют в графитовой форме композиционную матрицу инструмента, содержащую включения в виде алмаза или твердого сплава, прессуют, затем проводят нагрев спрессованного инструмента до температуры пропитки с горячим прессованием и охлаждают инструмент на воздухе до 350°C.
Изобретение относится к изготовлению электротехнических изделий из композиционного материала. Электротехническое изделие изготовлено из токопроводящего композиционного материала формованием методом холодного прессования, при этом токопроводящий композиционный материал содержит 40÷55 мас.% порошка естественного графита, 30÷15 мас.% связующего на основе новолачной смолы, 30 мас.% медного порошка и дополнительно поливинилацетат в качестве пластификатора в количестве 9÷35 мас.% от суммарной массы порошкообразных компонентов.

Изобретение относится к металлургии, а именно к получению пористых металлических материалов методом самораспространяющегося высокотемпературного синтеза, и может использоваться в медицинской имплантологии.
Изобретение относится к области порошковой металлургии, а именно к получению высокотемпературных композиционных материалов на основе ниобия с оксидным упрочнением.
Изобретение относится к цветной металлургии, в частности к производству деформируемых автоматных сплавов на основе алюминия, содержащих магний и свинец. Способ включает загрузку в печь и расплавление всех предусмотренных компонентов шихты, кроме магния и свинца, которые вводят в расплав в виде лигатуры, содержащей 70-40% магния и 30-60% свинца, после чего расплав перемешивают, рафинируют, отстаивают и кристаллизуют.

Изобретение относится к области металлургии, а именно к сплавам на магниевой основе и способам их получения. Способ получения сплава на магниевой основе включает обеспечение расплава магния или магниевого сплава, добавление 0,01-30 мас.% оксида щелочноземельного металла на поверхность расплава, поверхностное перемешивание в течение от 1 секунды до 60 минут на 0,1 мас.% добавленного оксида щелочноземельного металла с обеспечением его диссоциации и частичного расходования, обеспечение возможности взаимодействия щелочноземельного металла, полученного в результате расходования оксида щелочноземельного металла, с магнием и/или легирующим элементом в магниевом сплаве с получением интерметаллического соединения, удаление оксида щелочноземельного металла, остающегося после реакции, вместе со шлаком, разливку и кристаллизацию.
Изобретение относится к области металлургии благородных металлов, в частности к производству платины или платинородиевых сплавов, упрочненных дисперсными оксидными частицами, и может быть использовано при изготовлении стеклоплавильных аппаратов (СПА) и фильерных питателей (ФП), эксплуатируемых в агрессивных средах в условиях высоких температур.

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на основе никеля, и может быть использовано при выплавке сплавов для литья лопаток газотурбинных двигателей.
Изобретение относится к порошковой металлургии. Способ получения композиционного материала на основе никеля включает перемешивание порошков для приготовления матрицы материала и дисперсного порошка оксида металла, механическое легирование полученной смеси, компактирование и прокатку полученного сплава.

Изобретение относится к области металлургии, а именно к материалам для изготовления штамповочного инструмента. Пуансон из цементированного карбида для изготовления металлических банок для напитков.

Изобретение относится к получению упрочненных легких сплавов на основе алюминия. В расплав алюминиевого сплава при температуре 750÷800ºС вводят 6 мас.% порошка криолита Na3AlF6, через промежуток времени не менее 10 мин в расплав вводят 5÷6 мас.% модификатора при одновременной активации расплава в течение не менее 20 мин механическим перемешиванием и/или воздействием ультразвуковых колебаний частотой 10 кГц, и/или воздействием электромагнитного поля частотой 40 Гц. В качестве модификатора используют перемешанную до однородного состояния смесь, состоящую из 20 мас.% нанопорошка титана, 5 мас.% нанопорошка углерода и 75 мас.% порошка криолита. Обеспечивается повышение прочности и износостойкости дисперсно-упрочненных сплавов за счет образования in situ наночастиц карбида титана, равномерно распределенных в алюминиевой матрице. 1 ил., 1 пр.
Наверх