Устройство для измерения малых величин толщины льда

Изобретение относится к области измерительной техники и может быть использовано в системах контроля технологических процессов. Устройство для измерения малых величин толщины льда содержит микроволновый генератор и полую цилиндрическую герметичную эластичную оболочку. Кроме того, в устройство введены волноводная детекторная головка с поршнем, гидроцилиндр поступательного движения и измеритель амплитуды. Вход измерителя амплитуды соединен с первым плечом волноводной детекторной головки с поршнем. Второе плечо волноводной детекторной головки подключено к выходу микроволнового генератора, а ее третье плечо соединено с выходом гидроцилиндра поступательного движения. Вход гидроцилиндра поступательного движения подключен к полой цилиндрической герметичной эластичной оболочке. Техническим результатом заявляемого решения является повышение чувствительности измерения толщины льда. 1 ил.

 

Предлагаемое изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами.

Известно устройство, реализующее способ определения толщины льда, содержащее полую цилиндрическую герметичную эластичную оболочку, заполненную незамерзающей рабочей средой под давлением выше атмосферного и соединенную полостью с манометром (RU 2422736 C1, 27.06.2011). В этом устройстве в период льдообразования измеряют давление в полости эластичной оболочки посредством манометра и на основе тарировочного графика, построенного по результатам измерения давления, определяют толщину льда.

Недостатком этого известного устройства можно считать узкую функциональную возможность, связанную с построением тарировочного графика в зависимости от диапазона изменения толщины льда. Наиболее близким техническим решением к предлагаемому является принятое автором за прототип устройство для определения толщины льда (RU 2495369 C1, 10.10.2013), содержащее микроволновой генератор, полый диэлектрический цилиндр, полую цилиндрическую герметичную эластичную оболочку и измеритель амплитудно-частотных характеристик. Принцип действия этого устройства заключается в возбуждении электромагнитных колебаний в металлическом резонаторе (резонатор размещен в цилиндрическом цилиндре) с диафрагмой в виде одной из торцевых стенок и воздействии рабочей средой эластичной оболочки на диафрагму резонатора. В данном устройстве измерение собственно резонансной частоты резонатора дает возможность определить толщину льда.

Недостатком этого устройства является низкая чувствительность при изменении толщины в малых значениях.

Техническим результатом заявляемого технического решения является повышение чувствительности измерения.

Технический результат достигается тем, что в устройство для измерения малых величин толщины льда, содержащем микроволновый генератор и полую цилиндрическую герметичную эластичную оболочку, введены волноводная детекторная головка с поршнем, гидроцилиндр поступательного движения и измеритель амплитуды, причем вход измерителя амплитуды соединен с первым плечом волноводной детекторной головки с поршнем, второе плечо которого подключено к выходу микроволнового генератора, третье плечо волноводной детекторной головки с поршнем соединен с выходом гидроцилиндра поступательного движения, вход гидроцилиндра поступательного движения подключен к полой цилиндрической герметичной эластичной оболочке.

Сущность заявляемого изобретения, характеризуемого совокупностью указанных выше признаков, состоит в том, что продедектированный выходной сигнал волноводной детекторной головки с поршнем, сформированный в результате взаимодействия микроволнового сигнала с поршнем при его перемещении из-за воздействия на него штока гидроцилиндра после обжатия эластичной оболочки образованным на поверхности воды льдом, дает возможность измерить толщину льда.

Наличие в заявляемом устройстве совокупности перечисленных существующих признаков позволяет решить задачу измерения толщины льда на основе использования продедектированного выходного сигнала волноводной детекторной головки с поршнем, возникающего при взаимодействии микроволнового сигнала с поршнем при перемещении штока гидроцилиндра и обжатии эластичной оболочки с желаемым техническим результатом, т.е. повышением чувствительности измерения толщины льда.

На чертеже представлена функциональная схема предлагаемого устройства.

Данное устройство содержит измеритель амплитуды 1, соединенный входом с первым плечом волноводной детекторной головки с поршнем 2, микроволновой генератор 3, гидроцилиндр поступательного движения 4 и полую цилиндрическую герметичную эластичную оболочку 5.

Устройство работает следующим образом. Электромагнитные колебания одной фиксированной частоты с выхода микроволнового генератора 3 поступают на второе плечо волноводной детекторной головки с поршнем 2. Колебания, поступившие в полость волноводной детекторной головки, распространяются по ее полости и могут отразиться от поверхности поршня (поршень размещен в третьем плече волноводной детекторной головки), перемещающегося внутри детекторной головки со стороны ее третьего плеча в сторону второго плеча. По принципу работы волноводной детекторной головки с поршнем в полости детекторной головки, ввиду наложения отраженной от поверхности поршня и распространяющейся со стороны второго плеча детекторной головки волн, может возникнуть стоячая волна, амплитуда которой используется для измерения толщины льда в данном устройстве.

При отсутствии льда на поверхности воды эластичная оболочка 5, контактирующая с поверхностью воды, не испытывает обжатия и в связи с этим рабочая среда (жидкость) из эластичной оболочки не поступает в гидроцилиндр поступательного движения 4, т.е. не наблюдается перемещение штока гидроцилиндра (предварительно шток гидроцилиндра жестко связывается с поршнем детекторной головки). Появление льда в водоеме приводит к обжатию оболочки и из-за этого давление рабочей среды в оболочке увеличится, что, в свою очередь, может обусловить поступление рабочей среды в гидроцилиндр. В результате этого шток будет перемещаться. Так как шток жестко связан с поршнем детекторной секции, то перемещение штока приведет и к перемещению поршня по внутренней поверхности волноводной детекторной головки. В силу этого амплитуда стоячей волны, возникающей в полости детекторной головки ввиду наложения отраженной от поверхности перемещающегося поршня и распространяющейся по полости детекторной головки со стороны второго плеча детекторной головки волн (как уже было показано выше), будет изменяться в зависимости от расстояния перемещения поршня. Согласно принципу действия волноводной детекторной головки съем электромагнитного сигнала, соответствующего стоячей волне в полости детекторной головки с поршнем, осуществляется с помощью первого плеча детекторной головки. В предлагаемом устройстве снимаемый с первого плеча детекторной головки продедектированный сигнал далее подается на вход измерителя амплитуды 1. Здесь по амплитуде сигнала можно получить информацию о величине толщины льда в водоеме.

В предлагаемом устройстве однозначную зависимость амплитуды продедетектированного сигнала от изменения толщины льда можно получить в пределах изменения толщины λ/4, где λ - длина электромагнитных колебаний при фиксированной частоте, генерируемых микроволновым генератором. Это объясняются свойствами стоячих волн (расстояние между минимумами и максимумами стоячей волны, например). При отсутствии льда поршень волноводной детекторной головки должен занимать положение (одновременно с положением штока гидроцилиндра), соответствующее минимальному значению амплитуды стоячей волны. После этого появление льдообразования на поверхности воды приведет к перемещению штока одновременно с поршнем детекторной головки и амплитуда стоячей волны будет расти. При этом максимальное значение (изменение степень обжатия оболочки из-за увеличения толщины льда) амплитуды стоячей волны будет соответствовать максимальной величине толщины льда. При этом уменьшение толщины льда от максимума до нулевого (отсутствие) значения должно привести к уменьшению амплитуды информативного сигнала от максимума до минимума.

Согласно предлагаемому техническому решению предварительно полая герметичная цилиндрическая эластичная оболочка устанавливается на поверхность воды. Для обеспечения возможности плавания оболочки служит поплавок, а для удержания оболочки в вертикальном положении - балластный груз. Оболочку можно выполнить из морозостойкой армированной резины. В качестве рабочей среды в полости оболочки используется незамерзающая жидкость с давлением больше атмосферного. При этом полость оболочки, для подачи рабочей среды, с помощью трубки соединятся с входом гидроцилиндра поступательного движения.

При практической реализации данного устройства в качестве микроволнового генератора могут быть использованы генераторы ГЛПД 1, 2 или генераторы, построенные на диодах Ганна.

Предлагаемое устройство успешно может быть использовано для расчета нагрузки на опоры мостов и в рыболовстве.

Таким образом, согласно предлагаемому устройству на основе измерения амплитуды стоячей волны, возникающей в полости волноводной детекторной головке с поршнем, перемещающим под воздействием штока гидроцилиндра при обжатии льдом эластичной оболочки, соприкасающейся с поверхностью воды, можно обеспечить повышение чувствительности измерения льда.

Устройство для измерения малых величин толщины льда, содержащее микроволновый генератор и полую цилиндрическую герметичную эластичную оболочку, отличающееся тем, что в него введены волноводная детекторная головка с поршнем, гидроцилиндр поступательного движения и измеритель амплитуды, причем вход измерителя амплитуды соединен с первым плечом волноводной детекторной головки с поршнем, второе плечо которой подключено к выходу микроволнового генератора, третье плечо волноводной детекторной головки с поршнем соединено с выходом гидроцилиндра поступательного движения, вход гидроцилиндра поступательного движения подключен к полой цилиндрической герметичной эластичной оболочке.



 

Похожие патенты:

Изобретение относится к способам и устройствам для бесконтактного диагностического контроля качества медной катанки в процессе ее производства и может быть использовано в других отраслях промышленности.

Использование: для определения толщины покрытия в ходе процесса плазменно-электролитического оксидирования. Сущность изобретения заключается в том, что выполняют измерение амплитуды анодного импульсного поляризационного напряжения UП, при этом определяют длительность τ спада напряжения до порогового значения U1=(0,2…0,8)·UП, а толщину покрытия рассчитывают по формуле: h=k1+k2·τ, где k1 и k2 - эмпирические коэффициенты, зависящие от природы обрабатываемого материала и состава электролита, определяемые по тарировочным кривым; τ - длительность спада поляризационного напряжения UП до порогового значения U1.

Изобретение относится к области in situ контроля производства в условиях сверхвысокого вакуума наноразмерных магнитных структур и может быть использовано в магнитной наноэлектронике для характеризации гетерогенных магнитных элементов в устройствах памяти, в сенсорных устройствах и т.п.

Изобретение относится к области измерительной техники и может найти применение при измерениях толщины тонкопленочных структур. Целью изобретения является упрощение процессов калибровки кулонометрического нанотолщиномера и получения результата измерения толщины покрытия.

Изобретение относится к измерительной технике. Сущность: устройство обнаружения дальнего поля вихревых токов вводится в цилиндрические трубы и перемещается по ним.

Изобретение относится к электронной технике. Сущность изобретения: устройство для контроля толщины проводящей пленки изделий электронной техники непосредственно в технологическом процессе ее формирования в вакууме путем измерения электрического сопротивления содержит подложку из диэлектрического или полупроводникового материала, металлические контактные площадки, выполненные на противоположных концах упомянутой подложки с лицевой ее стороны, для обеспечения соединения с измерительным прибором, заданную проводящую пленку.

Предлагаемое техническое решение относится к измерительной технике и льдотехнике. Техническим результатом является расширение функциональной возможности устройства.

Изобретение относится к методам неразрушающего контроля и может быть использовано на трубопроводах нефти и газа на химических и нефтехимических предприятиях, тепловых и атомных энергоустановках.

Изобретение относится к способу и устройству для измерения толщины слоя частично кристаллизованных расплавов, в особенности на ленточном транспортере, в рамках способа литья полосы.

Группа изобретений относится к области измерительной техники и может быть использована для оценки надежности и качества многослойных конструкций из полимерных композиционных материалов на основе контроля толщины слоев. Сущность: способ характеризуется тем, что предварительно измеряют градуировочную характеристику, в зоне измерения толщины композитного материала устанавливают металлические закладные элементы малой площади, устанавливают вихретоковый преобразователь на поверхность контролируемого композитного материала в центре зоны измерения толщины, измеряют сигнал, пропорциональный периоду измерительного автогенератора и толщине измеряемого композитного материала, дополнительно генерируют сигналы опорным автогенератором, по величине пропорциональные периоду. Определяют сигнал, пропорциональный разности периода колебаний измерительного и опорного автогенератора. Линеаризируют полученный сигнал. Перед каждым измерением толщины вихретоковый преобразователь устанавливают вне зоны контроля и измеряют сигнал, пропорциональный разности периодов сигналов опорного и измерительного автогенераторов, и уточняют линеаризированный сигнал, регистрируют значение толщины на регистрирующем устройстве. Для осуществления способа используется устройство, включающее вихретоковый преобразователь с катушкой индуктивности, измерительный автогенератор, регистрирующее устройство, опорный автогенератор со второй катушкой индуктивности, измеритель периода колебаний измерительного автогенератора, измеритель периода колебаний опорного автогенератора, вычитатель/сумматор измерителей периода колебаний, блок временных поправок, блок управления блоком временных поправок и линеаризатор передаточной функции. Технический результат: повышение точности измерения и достоверности результатов оценки технического и эксплуатационного состояния конструкций и их элементов. 2 н.п. ф-лы, 4 ил.

Изобретение относится к измерительной технике. Сущность: система содержит первый электрод, имеющий первую поверхность контакта с образцом, выполненную с возможностью размещения в контакте с первой поверхностью многослойной структуры, второй электрод, имеющий вторую поверхность контакта с образцом, выполненную с возможностью размещения в контакте со второй поверхностью многослойной структуры. Вторая поверхность находится с противоположной стороны от первой поверхности. Система содержит также устройство управления давлением, выполненное с возможностью прижатия первого электрода к многослойной структуре с заранее заданным испытательным давлением, являющимся давлением, при котором электрический импеданс образца достигает эталонного импеданса, соответствующего образцу. Устройство содержит также измерительное устройство, электрически соединенное первым электродом и вторым электродом и выполненное с возможностью измерения электрического импеданса между первым электродом и вторым электродом. 7 з.п. ф-лы, 4 ил.

Изобретение относится к области контроля состояния стенок трубопроводов без их вскрытия. Сущность: через трубопровод пропускают в продольном направлении переменный электрический ток. Измеряют создаваемое переменным током магнитное поле на неизменном расстоянии от внутренней стенки трубы во внутренней ее полости, продвигаясь вдоль нее с остановками на время полного оборота вокруг оси трубы одновременно в нескольких точках, расположенных на продольных трубе отрезках при повороте вокруг ее оси. По данным измерения вычисляют среднее арифметическое значение индукции магнитного поля в каждом месте прерывания продольного движения. Изменение толщины стенки в точках цилиндрической поверхности трубы устанавливают как функцию прямой пропорциональности от отношения среднего значения индукции магнитного поля внутри трубопровода каждого места прерывания продольного движения к ее значению в точках измерения с коэффициентом пропорциональности, равным заранее определенной величине толщины бездефектного участка трубы. Технический результат: повышение точности, возможность контроля изнутри трубы без внесения возмущений в процесс измерения коррозионных и шламовых отложений и других дефектов. 2 н.п. ф-лы,. 2 ил.

Изобретение может быть использовано для бесконтактного измерения внутреннего диаметра металлических труб на металлургических, машиностроительных предприятиях, в том числе при их производстве, например, по методу центробежного литья. Оно может быть применено также при бесконтактном измерении внутреннего диаметра и толщины стенок труб. Предлагаемое устройство для измерения внутреннего диаметра металлической трубы, содержащее размещаемый внутри трубы коаксиально с ней металлический стержень, выполненный из трех участков, первый и второй из которых имеют одинаковый диаметр, а третий участок, расположенный между ними на измерительном участке трубы, имеет отличный от них диаметр, при этом на этом участке трубы возбуждены электромагнитные колебания как в открытом с торцов объемном резонаторе, электронный блок для возбуждения в объемном резонаторе и съема электромагнитных колебаний и измерения резонансной частоты электромагнитных колебаний, электрически соединенный посредством линии связи и элемента связи с объемным резонатором, при этом частота возбуждаемых электромагнитных колебаний выбрана меньшей, чем критическая частота возбуждения электромагнитных волн на участках трубы с участками металлического стержня с одинаковым диаметром. На третьем участке металлический стержень имеет диаметр, уменьшенный по сравнению с диаметром металлического стержня на первом и втором участках. Техническим результатом является расширение области использования. 1 з.п. ф-лы, 2 ил.

Группа изобретений относится к измерительной технике и может быть использована для оценки надежности и качества многослойных конструкций из полимерных композиционных материалов на основе контроля толщины слоев. Способ магнитоиндукционного измерения толщины диэлектрического покрытия включает возбуждение магнитного поля датчика, состоящего из соосно установленных измерительного и компенсационного магнитных трансформаторов, установку датчика на поверхность диэлектрического покрытия таким образом, чтобы измерительный трансформатор датчика генерировал магнитное поле относительно поверхности контролируемого диэлектрического покрытия, регистрацию и усиление изменения разностного сигнала измерительного и компенсационного магнитных трансформаторов за счет искажения магнитного поля и определение толщины диэлектрического покрытия. Ориентируют датчик таким образом, чтобы его измерительный трансформатор генерировал магнитное поле параллельно поверхности контролируемого диэлектрического покрытия, измеряют отношение сигналов на входе и выходе компенсационного магнитного трансформатора, на основании величины отношения сигналов осуществляют компенсацию погрешности измеряемой толщины диэлектрического покрытия. Способ осуществляют с помощью устройства магнитно-индукционного измерения толщины диэлектрического покрытия. Технический результат заключается в повышении точности измерения толщины слоев полимерных композитных материалов (ПКМ), расширении области применения и повышении достоверности результатов оценки технического и эксплуатационного состояния сложных конструкций и их элементов из ПКМ. 2 н.п. ф-лы, 5 ил., 2 табл.

Изобретение относится к измерениям в области теплотехники. Сущность: способ основан на измерении толщины отложений накипи на стенках теплоагрегата путем сравнения электрических сопротивлений слоев воды с отложениями накипи и просто воды в емкости теплоагрегата. Текущие значения измеренных толщин накипи дифференцируют во времени. Фиксируют факт начала отложений и рост накипи с возможностью установления критического уровня скорости накипеобразования. Устройство содержит электрический мост сопротивлений с пятью электродами, помещенными в водную среду. Три балансировочные сопротивления моста образованы сопротивлениями слоев воды между первым и вторым электродами, между вторым и третьим и также четвертым и пятым электродами. Четвертое плечо образовано между пятым электродом и металлической стенкой. Стенка подключена к одному из полюсов источника питания. Третий и пятый электроды объединены и присоединены к другому его полюсу. Выходная диагональ моста сопротивлений, образованная между вторым и пятым электродами, подключена к входу дифференцирующего звена, которое снабжено на выходе пороговой схемой. Технический результат: повышение точности и технологичности контроля. 2 н. и 2 з.п. ф-лы, 2 ил.

Изобретение относится к средствам неразрушающего контроля немагнитных металлических изделий и может быть использовано для контроля их толщины и удельной электрической проводимости материала. Сущность: устройство содержит первый, второй и третий генераторы гармонических сигналов, схему синхронизации, накладной вихретоковый преобразователь, первый, второй, третий, четвертый, пятый и шестой синхронные детекторы, первый, второй, третий, четвертый пятый и шестой интегрирующие дискретизаторы, вычислительный блок, блок индикации. Входы генераторов соединены с первым выходом схемы синхронизации, сигнальные выходы генераторов соединены со входами накладного вихретокового преобразователя. Сигнальные входы синхронных детекторов соединены с выходом накладного вихретокового преобразователя, входы управления первого, второго, третьего, четвертого, пятого и шестого синхронных детекторов соединены соответственно с первым и вторым выходами управления первого генератора, с первым и вторым выходами управления второго генератора, с первым и вторым выходами управления третьего генератора, а выходы синхронных детекторов соединены соответственно с сигнальными входами первого, второго, третьего, четвертого пятого и шестого интегрирующих дискретизаторов. Входы управления интегрирующих дискретизаторов соединены со вторым выходом схемы синхронизации, выходы интегрирующих дискретизаторов соединены каждый с отдельным входом вычислительного блока. Выход вычислительного блока соединен со входом блока индикации. Технический результат: повышение достоверности контроля за счет более качественного разделения реакций вихретокового преобразователя на взаимодействие с объектом каждой в отдельности частотных составляющих возбуждающего магнитного поля. 3 ил.

Изобретение относится к теплоэнергетике и может быть использовано для определения толщины солеотложения в оборудовании химических, нефтехимических предприятий, а также тепловых, геотермальных, атомных энергоустановок. Устройство включает цилиндрический корпус с резьбой, внутри которого коаксиально с ним расположен изолированный от него металлический стержень. Торцы металлического стержня и цилиндрического корпуса расположены на одном уровне с внутренней поверхностью теплообменного оборудования, а диаметр стержня составляет 0,75 от внутреннего диаметра цилиндрического корпуса. Толщину слоя соли определяют по величине начального и общего сопротивления электрической цепи, состоящей из раствора и отложений между корпусом и стержнем. Изобретение обеспечивает повышение точности определения толщины отложений на внутренней поверхности оборудования и расширение области возможного его применения. 1 ил.

Изобретение относится к области контрольно-измерительной техники. Техническим результатом является повышение точности измерения толщины покрытий. Технический результат достигается тем, что в устройство для измерения толщины покрытий, содержащее чувствительный элемент в виде трансформатора с первичной и вторичной обмотками, соединенный посредством первичной обмотки с источником переменного тока, и регистратор, введены первый усилитель, источник светового излучения, фотодиод и второй усилитель, причем вторичная обмотка трансформатора через первый усилитель подключена к источнику светового излучения, фотодиод через второй усилитель соединен с регистратором, выход последнего является выходом устройства. 1 ил.
Наверх