Способ и устройство получения высокооктановых бензинов путем совместной переработки углеводородных фракций и кислородсодержащего органического сырья

Изобретение относится к области переработки углеводородов в высокооктановый компонент автомобильного бензина. Смешивают углеводородные фракции и кислородсодержащее органическое сырье (огсигенат). Нагревают полученную смесь и подают на верх полочного реактора, подключенного к системе охлаждения продуктов реакции внутри реактора. Часть оксигената дополнительно направляют непосредственно в среднюю часть реактора. Катализат из реактора используют в качестве теплоносителя в испарителе колонны стабилизации. Катализат охлаждают во первом теплообменнике и в первом холодильнике и подают в сепаратор, выполненный с возможностью разделения поступившего охлажденного катализата на газ выветривания, воду и жидкую углеводородную фракцию, которую после предварительно нагрева во втором теплообменнике направляют в колонну стабилизации. Газ выветривания направляют в магистраль газа стабилизации и частично в колонну стабилизации. Часть газа стабилизации из верхней части колонны стабилизации поступает через второй холодильник в рефлюксную емкость, из которой газовая фаза поступает в магистраль газа стабилизации, а жидкая фаза на орошение в колонну стабилизации и частично в качестве сжиженной пропан-бутановой фракции на товарный склад. Технический результат, достигаемый при реализации разработанного технического решения, состоит в повышении качества получаемого продукта при одновременном упрощении конструкции используемой установки. 2 н. и 2 з.п. ф-лы, 1 ил., 1 табл.

 

Изобретение относится к области переработки углеводородов в высокооктановый компонент автомобильного бензина.

Известен (RU, патент №2181750, опубл. 27.04.2002) способ переработки нефтяных дистиллятов в бензиновые фракции с концом кипения не выше 195°С и октановым числом не ниже 80 по моторному методу. Способ состоит в превращении углеводородного сырья в присутствии пористого катализатора при температуре 250-500°С, давлении не более 2 МПа, массовых расходах смеси углеводородов не более 10 ч-1. В качестве сырья используют нефтяные дистилляты с концом кипения 200-400°С, а в качестве катализатора используют либо цеолит алюмосиликатного состава с мольным отношением SiO2/AL2O3 не более 450, выбранный из ряда ZSM-5, ZSM-11, ZSM-35, ZSM-38, ZSM-48, BETA, либо галлосиликат, галлоалюмосиликат, железосиликат, железоалюмосиликат, хромсиликат, хромалюмосиликат со структурой ZSM-5, ZSM-11, ZSM-35, ZSM-38, ZSM-48, BETA, либо алюмофосфат со структурой типа А1РО-5, А1РО-11, А1РО-31, А1РО-41, А1РО-36, А1РО-37, А1РО-40 с введенным в структуру на стадии синтеза элементом, выбранным из ряда: магний, цинк, галлий, марганец, железо, кремний, кобальт, кадмий.

Существенным недостатком вышеуказанных способов является повышенное содержание бензола (5-10%) в составе получаемых бензинов.

Известны способы получения бензина непосредственно из метанола.

Так известен (SU, авторское свидетельство №1153501, опубл. 27.09.1996) способ превращения метанола в бензин. Процесс осуществляют в реакторе при 410-430°С, давлении 0,6-0,8 МПа на содержащем цеолит типа ZSM катализаторе со связующим - гамма-Al2O3. В способе предусмотрено охлаждение продуктов, конденсация и сепарация их с выделением газов конверсии метанола, воды и целевых продуктов и рециркуляция охлажденных газов конверсии метанола в реактор. Процесс проводят в реакторе, имеющем 2-14 последовательно увеличивающиеся на 10-20% по объему реакционные зоны, чередующиеся с зонами, заполненными инертным материалом, куда подают циркуляционный газ в количестве, увеличивающемся от зоны к зоне на 10-20%, при уменьшении объемной скорости подачи сырья и продуктов реакции от зоны к зоне на 10-30%.

Недостатком известного способа следует признать низкую эффективность.

Наиболее близким аналогом разработанного технического решения в области способа можно признать (RU, патент №2163623, опубл. 27.02.2001) способ переработки низкооктановых бензиновых фракций. Согласно известному способу низкооктановые бензиновые фракции подвергают риформингу в присутствии одно- или двухатомных спиртов, взятых в количестве 0,2-5,0 мас.%. Катализатором процесса является механическая смесь двух катализаторов - цеолитсодержащего катализатора Ц-10 и алюмокобальт(никель)-молибденового оксидного катализатора. Возможно использование алюмохром(вольфрам)овых катализаторов, модифицированных фенилсилоксаном. Процесс проводят при 460-510°С и объемной скорости подачи сырья 0,3-0,9 ч-1. При добавлении спиртов к низкооктановым бензинам достигается повышение выхода целевого продукта, октанового числа и снижение газообразования.

Недостатком указанного способа является высокая температура процесса и низкая объемная скорость подачи сырья. Кроме того, отмечается высокая чувствительность оксидного катализатора к серосодержащим примесям (содержание серы ограничено значением 27 ррм). Проведение процесса на серосодержащем сырье возможно лишь в присутствии водорода, при этом его содержание в сырьевой смеси не должно превышать 0,1 мол. %. Кроме того, недостатком этого известного способа является также и то, что сырьем для него служат узкие бензиновые фракции, выкипающие в пределах 85-180°С. Переработка легкого углеводородного сырья (пентан-гексановых и н.к. -85°С фракций) приводит к интенсивному газообразованию. Повышение конца кипения способствует коксообразованию и потому нежелательно.

Известна (RU, патент 1806171, опуб. 30.03.93) установка каталитического получения бензина из углеводородного сырья, содержащая ректификационные колонны сырья и продуктов реакции, соединенные с конденсаторами и сепараторами дистиллятов, устройства каталитической переработки сырья и обеспечения теплом процессов ректификации, выполненные в виде реакторно-тепловых блоков. Каждый из блоков представляет из себя циркуляционный газоход, состоящий из дымососа и установленных по ходу движения газа - теплоносителя теплогенератора и реакторного блока, содержащего установленные последовательно по ходу движения газа - теплоносителя перегреватель сырьевой фракции, каталитический реактор, испаритель сырьевой фракции, перегреватель кубовых продуктов ректификационных колонн, подогреватель сырья. Между реакторным блоком и дымососом установлен патрубок отвода избыточного отработанного газа-теплоносителя. Установка дополнительно может содержать узел получения регенерирующего газа реакторно-теплового блока.

К недостаткам следует также отнести сложность приготовления регенерирующего газа, получаемого путем сжигания отходящих с установки углеводородных газов.

Известна (Л.Г. Агабалян и др. ″Химия и технология топлив и масел″, №5, 1988 г., с. 6-7) установка каталитической переработки прямогонных фракций газового конденсата в высокооктановые топлива, содержащая насадочную колонну с пароподогревателями и сепарирующей емкостью для подготовки сырья, печь, каталитические реакторы и рекуперативный теплообменник, а также блок стабилизации катализата, включающий газосепаратор, связанный технологическими трубопроводами через межтрубное пространство теплообменника и пароперегреватель с питательной частью первой ректификационной колонны, имеющей в верхней части дефлегматор, представляющий собой холодильник-конденсатор и рефлюксную емкость, а в кубовой части - пароподогреватель продуктов. Кубовая часть первой колонны связана технологическим трубопроводом через пароподогреватель с питательной частью второй ректификационной колонны, верх которой через межтрубное пространство теплообменника и воздушный холодильник связан с рефлюксной емкостью для осуществления холодного орошения верха колонны. Кубовая часть второй колонны снабжена пароподогревателем продуктов.

Недостатком такой установки является сложность конструкции блока стабилизации катализата, содержащего две колонны со своими сепарирующими емкостями, нагревателями, холодильниками и трубопроводной обвязкой. Установка не имеет в своем составе самостоятельного блока подготовки газовой смеси для регенерации катализатора, что затрудняет автономное применение такой установки на объектах первичной переработки нефти и газового конденсата в промысловых условиях, когда объекты зачастую находятся в отдаленных районах. Кроме того, данная установка не предназначена для получения бензина с использованием алифатических спиртов, и в частности метанола, изопропанола.

Известна (RU, свидетельство на полезную модель 4746, опубл. 16.08.1997) установка каталитического получения высокооктанового бензина из углеводородного сырья. Известная установка содержит четыре реакторных модуля, каждый из которых включает соединенные между собой каталитический реактор, рекуперативный теплообменник и печь. Модули подключены к сырьевому насосу и холодильнику нестабильного конденсата, т.е. в каждом модуле сырьевой насос через рекуперативный теплообменник и печь подключен к каталитическому реактору, который, в свою очередь, соединен с холодильником нестабильного катализата через рекуперативный теплообменник. Холодильник нестабильного катализата соединен с газосепаратором, низ которого связан со входом ректификационной колонны через пароподогреватель. Ректификационная колонна снабжена в верхней части встроенным дефлегматором, а в кубовой части - встроенным подогревателем. Кубовая часть колонны соединена с водяным холодильником стабильного катализата и, кроме того, подключена ко входу колонны через циркуляционный насос и пароподогреватель.

Недостатком известной установки следует признать сложность ее конструкции, поскольку она содержит несколько реакторных модулей и кроме того она не предназначена для получения бензина из алифатических спиртов, например из таких, как метанол, изопропанол.

Известно устройство может быть использовано в качестве ближайшего аналога применительно к объекту разработанного технического решения - устройство.

Техническая задача, решаемая посредством разработанного технического решения, состоит в оптимизации процесса получения высокооктановых бензинов путем совместной переработки углеводородных фракций и кислородсодержащего органического сырья.

Технический результат, достигаемый при реализации разработанного технического решения, состоит в повышении качества получаемого продукта при одновременном упрощении конструкции используемой установки.

Для достижения указанного технического результата в области способа предложено использовать технологию, в поцессе которой смешивают углеводородные фракции и, по меньшей мере, часть кислородсодержащего органического сырья (оксигенат), нагревают полученную смесь последовательно в теплообменнике и печи и подают на верх полочного реактора, подключенного к системе охлаждения продуктов реакции внутри реактора, при этом часть кислородсодержащего органического сырья дополнительно направляют непосредственно в среднюю часть реактора, образующийся в реакторе катализат используют в качестве теплоносителя в испарителе колонны стабилизации, затем охлаждают во первом теплообменнике и в первом холодильнике и подают в сепаратор, выполненный с возможностью разделения поступившего охлажденного катализата на газ выветривания, воду и жидкую углеводородную фракцию, которую после предварительно нагрева во втором теплообменнике направляют в колонну стабилизации, газ выветривания из сепаратора, по меньшей мере, частично направляют в магистраль газа стабилизации и частично в колонну стабилизации, при этом часть газа стабилизации из верхней части колонны стабилизации поступает через второй холодильник в рефлюксную емкость, из которой газовая фаза поступает в магистраль газа стабилизации, а жидкая фаза, по меньшей мере частично, - на орошение в колонну стабилизации и частично в качестве сжиженной пропан-бутановой фракции на товарный склад.

Предпочтительно в качестве углеводородного сырья используют бензин прямой гонки, бензиновые фракции пиролиза, термического крекинга, висбрекинга, каталитического крекинга, газовый бензин и др, а в качестве кислородсодержащего органического сырья используют спирты C1-C4, отходы спиртового производства, простые эфиры, кетоны и др.

Для достижения указанного технического результата предложено использовать установку разработанной конструкции. Установка разработанной конструкции содержит последовательно установленные смеситель исходных углеводородных фракций и, по меньшей мере, части кислородсодержащего органического сырья, первый выход которого подключен к первому входу первого теплообменника, выход которого подключен к входу печи, выход которой к верхней части реактора, к средней части которого подключена магистраль кислородсодержащего органического сырья, а также, по меньшей мере, один квенч, нижняя часть реактора по катализату подключена последовательно через испаритель колонны стабилизации, второй вход первого теплообменника, второй выход первого теплообменника и первый холодильник к входу первого сепаратора, выполненного с возможностью разделения газожидкостной смеси на газ выветривания, воду и жидкую углеводородную фракцию, выход первого сепаратора по газу выветривания выполнен с возможностью подключения к магистрали газа стабилизации, выход по воде первого сепаратора выполнен с возможностью подключения к канализации, выход первого сепаратора по жидкой углеводородной фракции подключен к входу по жидкой углеводородной фракции второго теплообменника, выход которого по жидкой углеводородной фракции подключен к средней части колонны стабилизации, выход колонны стабилизации по парам высокооктанового бензина через второй холодильник подключен к входу рефлюксной емкости, выход которой по газовой фазе выполнен с возможностью подключения к магистрали газа стабилизации, а выход по жидкой фазе через насос подключен к верхней части колонны стабилизации, нижняя часть колонны стабилизации выполнена с возможностью через второй теплообменник и третий холодильник подключения к магистрали стабильного компонента высокооктанового бензина, при этом использован реактор полочного типа с отводом тепла, количество полок которого зависит от содержания оксигената в исходной смеси.

В дальнейшем сущность разработанного технического решения будет раскрыта с использованием графического материала, на котором приведена блок-схема разработанной установки, при этом использованы следующие обозначения: первый теплообменник 1, печь 2, реактор 3, испаритель 4 колонны 5 стабилизации, первый холодильник 6, сепаратор 7, второй теплообменник 8, второй холодильник 9, рефлюксная емкость 10, первый насос 11, третий холодильник 12, второй насос 13.

Разработанное техническое решение реализовано следующим образом.

Бензиновую фракцию и оксигенат смешивают, нагревают последовательно до 350-400°C в теплообменнике 1, печи 2 и при избыточном давлении подают на верх реактора 3. Часть холодного оксигената направляют непосредственно в среднюю часть реактора 3.

Требуемое число полок катализатора в реакторе 3, количество холодных квенчей и полку для подачи оксигената, подаваемого в реактор минуя нагревательную систему, определяют в зависимости от доли оксигената в сырьевой смеси «бензин + оксигенат».

Катализат, выходящий с низа реактора 3, используют в качестве теплоносителя в испарителе 4 колонны стабилизации 5, затем охлаждают в теплообменнике 1 и холодильнике 6 до температуры менее 50°C. Полученную газожидкостную смесь разделяют в сепараторе 7 на газ выветривания, воду и жидкую углеводородную фракцию. Газ выветривания из сепаратора 7 отводят на смешение с газом стабилизации колонны 5. Воду сливают в канализацию. Жидкую углеводородную фракцию C3+ из сепаратора 7 вторым насосом 13 после предварительно нагрева в теплообменнике 8 направляют на стабилизацию в колонну 5. Целевой продукт - высокооктановый бензин - отбирают с низа колонны стабилизации 5, охлаждают в теплообменнике 8 и холодильнике 12, после чего подают на склад.

Пары верха колонны 5 частично конденсируют в холодильнике 9 и сбрасывают 9 в рефлюксную емкость 10, откуда газ стабилизации отправляют на дальнейшее использование, например, в топливную сеть. Жидкую фазу из емкости 10 сжимают первым насосом 11 и подают в качестве орошения на верх колонны стабилизации 5, а балансовую часть отводят на склад в качестве товарной пропан-бутановой фракции.

Полученный стабильный компонент высокооктанового бензина обладает более высокими потребительскими характеристиками по сравнению с продуктом, полученным по способу - ближайшему аналогу.

Упрощение конструкции используемой установки очевидно.

Сравнительные данные по результатам разработанного технического решения и решения - ближайшего аналога приведены в табл. 1.

1. Способ получения высокооктановых бензинов путем совместной переработки углеводородных фракций и кислородсодержащего органического сырья, характеризуемый тем, что смешивают углеводородные фракции и, по меньшей мере, часть кислородсодержащего органического сырья, нагревают полученную смесь последовательно в теплообменнике и печи и подают на верх полочного реактора, подключенного к системе охлаждения продуктов реакции внутри реактора, при этом часть кислородсодержащего органического сырья дополнительно направляют непосредственно в среднюю часть реактора, образующийся в реакторе катализат используют в качестве теплоносителя в испарителе колонны стабилизации, затем охлаждают во первом теплообменнике и в первом холодильнике и подают в сепаратор, выполненный с возможностью разделения поступившего охлажденного катализата на газ выветривания, воду и жидкую углеводородную фракцию, которую после предварительно нагрева во втором теплообменнике направляют в колонну стабилизации, газ выветривания из сепаратора, по меньшей мере, частично направляют в магистраль газа стабилизации и частично в колонну стабилизации, при этом часть газа стабилизации из верхней части колонны стабилизации поступает через второй холодильник в рефлюксную емкость, из которой газовая фаза поступает в магистраль газа стабилизации, а жидкая фаза, по меньшей мере частично, - на орошение в колонну стабилизации и частично в качестве сжиженной пропан-бутановой фракции на товарный склад.

2. Способ по п. 1, отличающийся тем, что в качестве углеводородного сырья используют бензин прямой гонки, бензиновые фракции пиролиза, термического крекинга, висбрекинга, каталитического крекинга, газовый бензин и др.

3. Способ по п. 1, отличающийся тем, что в качестве кислородсодержащего органического сырья используют спирты C1-C4, отходы спиртового производства, простые эфиры, кетоны.

4. Установка получения высокооктановых бензинов путем совместной переработки углеводородных фракций и кислородсодержащего органического сырья, характеризуемая тем, что она содержит последовательно установленные смеситель исходных углеводородных фракций и, по меньшей мере, части кислородсодержащего органического сырья, первый выход которого подключен к первому входу первого теплообменника, выход которого подключен к входу печи, выход которой подключен к верхней части полочного реактора, к средней части которого подключена магистраль кислородсодержащего органического сырья, а также, по меньшей мере, один квенч, нижняя часть реактора по катализату подключена последовательно через испаритель колонны стабилизации, второй вход первого теплообменника, второй выход первого теплообменника и первый холодильник к входу первого сепаратора, выполненного с возможностью разделения газожидкостной смеси на газ выветривания, воду и жидкую углеводородную фракцию, выход первого сепаратора по газу выветривания выполнен с возможностью подключения к магистрали газа стабилизации, выход по воде первого сепаратора выполнен с возможностью подключения к канализации, выход первого сепаратора по жидкой углеводородной фракции подключен к входу по жидкой углеводородной фракции второго теплообменника, выход которого по жидкой углеводородной фракции подключен к средней части колонны стабилизации, выход колонны стабилизации по парам высокооктанового бензина через второй холодильник подключен к входу рефлюксной емкости, выход которой по газовой фазе выполнен с возможностью подключения к магистрали газа стабилизации, а выход по жидкой фазе через насос подключен к верхней части колонны стабилизации, нижняя часть колонны стабилизации выполнена с возможностью через второй теплообменник и третий холодильник подключения к магистрали стабильного компонента высокооктанового бензина, при этом использован реактор полочного типа с отводом тепла, количество полок которого зависит от содержания кислородсодержащего органического сырья в исходной смеси.



 

Похожие патенты:

Изобретение относится к способу обработки потока углеводородов, включающему: прохождение углеводородного потока через емкость для обработки углеводородов; нагревание, по меньшей мере, части внутренней поверхности емкости до предварительно заданной температуры, составляющей 400°C или выше в течение 300 часов или более; выявление зон внутренней поверхности емкости для обработки углеводородов, которая поддерживается при предварительно заданной температуре и подвержена воздействию хлоридов с концентрацией более 1 ч./млн; контроль сенсибилизации и коррозийного растрескивания под напряжением в среде хлоридов, которые происходят в подверженной воздействию хлоридов зоне емкости для обработки углеводородов, путем выполнения указанной части внутренней поверхности емкости для обработки углеводородов из новой аустенитной нержавеющей стали, содержащей 0,005-0,020 мас.% углерода, 10-30 мас.% никеля, 15-24 мас.% хрома, 0,20-0,50 мас.% ниобия, 0,06-0,10 мас.% азота, до 5% меди и 1,0-7 мас.% молибдена, а других зон из другого материала для ограничения сенсибилизации и коррозийного растрескивания под напряжением в среде хлоридов, подверженных воздействию хлоридов зон внутренней поверхности.

Изобретение относится к устройствам для каталитической переработки легкого углеводородного сырья, в частности для переработки углеводородных фракций С3+, и может найти применение в нефтегазовой, нефтеперерабатывающей и нефтехимической отраслях промышленности.

Изобретение относится к способу риформинга углеводородного потока, включающему его разделение на легкий углеводородный поток и более тяжелый поток с относительно высокой концентрацией нафтенов.

Изобретение относится к способу производства ароматических соединений из потока углеводородного сырья. Способ включает: подачу потока углеводородного сырья в колонну фракционирования для получения верхнего потока, содержащего углеводороды С7 и более легкие углеводороды, и потока кубового остатка, содержащего углеводороды С8 и более тяжелые углеводороды; подачу верхнего потока в реакторную систему гидрогенизации/дегидрогенизации с получением первого потока, содержащего ароматические соединения С6 и С7 с низким содержанием олефинов, при этом реакторная система гидрогенизации/дегидрогенизации функционирует при температуре в интервале от 420°C до 460°C; подачу потока кубового остатка в аппарат для проведения риформинга для получения риформата кубового остатка, содержащего ароматические соединения; подачу указанного первого потока и потока риформата кубового остатка в по существу изотермическую реакторную систему с получением в результате потока ароматических соединений, при этом изотермическая реакторная система функционирует при температуре более 540°C; и подачу указанного потока ароматических соединений в колонну разделения риформата для получения верхнего потока риформата, содержащего ароматические соединения С7 и более легкие ароматические соединения, и парафины С7 или более легкие парафины, и потока кубового остатка, содержащего углеводороды С8 и более тяжелые углеводороды.

Изобретение относится к способу каталитического риформинга бензинов с регенерацией. Регенерация указанного катализатора включает в себя этап восстановления катализатора в атмосфере водорода согласно трем следующим вариантам: подают газовые отходы этапа восстановления катализатора частично на вход рекуперативного теплообменника, расположенного перед первым реактором серии, а частично - непосредственно в головную часть реактора; полностью направляют в головную часть первого реактора; полностью направляют на вход рекуперативного теплообменника, и в котором газовые отходы из компрессора рециркуляции, расположенного между разделительным резервуаром и блоком реакторов, подают полностью в головную часть предпоследнего реактора или подают частично в головную часть предпоследнего реактора и частично в головную часть последнего реактора.

Изобретение относится к способу получения концентрата ароматических углеводородов из жидких углеводородных фракций, при котором подают в смеситель исходные компоненты, нагревают смешанные компоненты, подают их в реактор, в котором производят конверсию нагретых компонентов в присутствии цеолитсодержащего катализатора в ароматические углеводороды, разделяют полученный продукт на жидкую и газообразную фазы, по меньшей мере частично подают полученную газообразную фазу в смеситель, жидкую фазу подают в ректификационную колонну, из которой отбирают концентрат ароматических углеводородов.

Изобретение относится к способу получения ароматических соединений из исходного углеводородного потока, в котором: пропускают исходный углеводородный поток в узел разделения, формируя таким образом легкий технологический поток, содержащий C7-углеводороды и имеющий пониженную концентрацию эндотермичных углеводородных компонентов, и тяжелый технологический поток, содержащий C8+-углеводороды, а также C6 и C7-нафтены и имеющий повышенную концентрацию эндотермичных компонентов; пропускают легкий технологический поток в первый реактор риформинга, при этом первый реактор риформинга имеет первую рабочую температуру более 540°C; пропускают тяжелый технологический поток во второй реактор риформинга, формируя таким образом выходной поток второго реактора риформинга, при этом второй реактор риформинга имеет вторую рабочую температуру, причем первая рабочая температура выше второй рабочей температуры; пропускают выходной поток второго реактора риформинга в первый реактор риформинга, формируя таким образом выходной поток первого реактора риформинга; пропускают выходной поток первого реактора риформинга в узел отделения ароматических соединений, формируя таким образом поток ароматических продуктов и поток рафината.

Изобретение относится к способу получения ароматических соединений из углеводородного сырья. Способ включает: подачу регенерированного катализатора в первую установку риформинга; подачу углеводородного сырья в первую установку риформинга, работающую при повышенной температуре, для создания первого выходящего потока и выходящего потока катализатора; при этом катализатор содержат благородный металл VIII группы на носителе и имеет пониженное содержание хлорида, повышенная температура является температурой выше 540°C, установка риформинга содержит множество реакторов с нагревателями между реакторами, и хвостовой реактор работает при более высокой температуре в течение укороченного времени контакта между выходящим потоком из множества реакторов и катализатором; подачу первого выходящего потока в первую установку фракционирования, создавая тем самым верхний погон, содержащий легкие газы, и нижний погон, содержащий продукт риформинга; подачу продукта риформинга в установку экстракции ароматических соединений для получения потока очищенного ароматического продукта.

Изобретение относится к способу производства водородсодержащего продукта и одного или нескольких продуктов в виде жидкой воды с использованием каталитического парового реформинга углеводородов.

Изобретение относится к способу получения ароматических соединений из лигроина в качестве сырья. Способ включает: подачу потока сырья в установку фракционирования и получение вследствие этого первого потока, содержащего легкие углеводороды, и второго потока, содержащего тяжелые углеводороды; подачу первого потока в первую установку риформинга, работающую при первом наборе условий реакции, и получение вследствие этого первого потока продукта, при этом первая установка риформинга имеет вход для катализатора и выход для катализатора; подачу второго потока во вторую установку риформинга, работающую при втором наборе условий реакции, и получение вследствие этого второго потока продукта, при этом вторая установка риформинга имеет вход для катализатора и выход для катализатора, в котором первый набор условий реакции включает первую температуру реакции, а второй набор условий реакции включает вторую температуру реакции, и при этом первая температура реакции больше, чем вторая температура реакции, и в котором второе давление меньше чем 580 кПа; подачу второго потока продукта в первую установку риформинга и получение при этом первого потока продукта; подачу катализатора из регенератора во вторую установку риформинга; подачу катализатора из второй установки риформинга в первую установку риформинга; и подачу первого потока продукта в установку разделения ароматических соединений, при этом указанный катализатор содержит благородный металл VIII группы на носителе.
Изобретение относится к способу получения автомобильного бензина. Способ включает каталитический риформинг прямогонной гидроочищенной бензиновой фракции с предварительным разделением бензиновой части реакционной смеси и разделением катализата каталитического риформинга. При этом бензиновую часть реакционной смеси предварительно путем фракционирования делят на головную, среднюю и остаточную фракции, выкипающие в интервале температур 62-85°C, 85-100°C и 100-190°C соответственно, остаточную фракцию подвергают каталитическому риформингу, катализат каталитического риформинга делят на легкокипящую и высококипящую фракции, выкипающие в интервале температур н.к.-90°C и 90°C-к.к. соответственно, и в процесс компаундирования вовлекают головку стабилизации н.к.-62°C, легкокипящую фракцию н.к.-90°C, высококипящую фракцию 90°C-к.к. с добавлением метилтретбутилового эфира. Способ позволяет получать автомобильный бензин с пониженным содержанием бензола, улучшить технологичность процесса риформинга с сохранением высоких антидетонационных характеристик топлива. 2 з.п. ф-лы, 5 пр.

Изобретение относится к способу получения ароматических соединений из потока углеводородного сырья, включающему пропускание потока углеводородного исходного сырья в первую установку риформинга, которую эксплуатируют при температуре от 500°C до 540°C, для получения отходящего потока из первой установки риформинга; нагревание отходящего потока из первой установки риформинга до второй температуры и пропускание нагретого потока во вторую установку риформинга, которую эксплуатируют при температуре, большей, чем 540°C, и в которой на внутренние металлические поверхности реактора нанесено покрытие из незакоксовывающегося материала, для получения тем самым, технологического потока, содержащего ароматические соединения; пропускание указанного технологического потока в установку фракционирования для получения, тем самым, головного потока, содержащего С4 и более легкие углеводороды, и кубового потока, содержащего С5 и более тяжелые углеводороды; и пропускание указанного кубового потока в установку экстрагирования ароматических соединений для получения, тем самым, технологического потока ароматических соединений и потока рафината. Причем указанные установки риформинга содержат катализатор, содержащий благородный металл из группы VIII на носителе, причем указанный катализатор имеет уменьшенное содержание хлорида. Технический результат - предотвращение увеличения термического крекинга и предотвращения увеличения закоксовывания. 8 н.п. ф-лы, 11 ил.

Изобретение относится к способу производства олефинов и бензина с низким содержанием бензола из нафты. Способ включает стадии: 1) проведение экстрактивной перегонки нафты с получением нефтяного экстракта, содержащего циклоалканы и ароматические углеводороды, и очищенной нефти, содержащей алканы и C6-циклоалканы, при этом весовое отношение между C6-циклоалканами, содержащимися в очищенной нефти, и C6-циклоалканами, содержащимися в нафте, составляет 80-95%; 2) контактирование нефтяного экстракта с катализатором риформинга в реакционных условиях каталитического риформинга: 0,01-3,0 МПа, 300-600°C, молярное отношение водород/углеводороды 0,5-20 и объемная (волюмометрическая) скорость 0,1-50 час-1, с получением риформата с низким содержанием бензола; 3) подача очищенной нефти в установку парового крекинга для осуществления реакции крекинга с получением легких олефинов. Способ приводит к повышенной степени использования нафты и к получению компонента бензина с низким содержанием бензола вдобавок к производству из нафты этилена, пропилена и бутадиена с повышенными выходами. 13 з.п. ф-лы, 2 ил., 7 табл., 9 пр.

Изобретение относится к способу конверсии сланцевого масла или смеси сланцевых масел, имеющих содержание азота по меньшей мере 0.1 мас. %, содержащему следующие стадии: a) сырье вводится в часть для гидроконверсии в присутствии водорода, причем указанная часть содержит, по меньшей мере, реактор с кипящем слоем, работающий в режиме газообразного и жидкого восходящего потока и содержащий по меньшей мере один катализатор гидроконверсии на подложке, b) выходящий поток, полученный на стадии а), вводится по меньшей мере частично в зону фракционирования, из которой, посредством атмосферной дистилляции, выходят газообразная фракция, фракция лигроина, фракция газойля и фракция, более тяжелая, чем фракция газойля, c) указанная фракция лигроина обрабатывается по меньшей мере частично в первой части для гидрообработки в присутствии водорода, причем указанная часть содержит по меньшей мере один реактор с фиксированным слоем, содержащий по меньшей мере один катализатор гидрообработки, d) указанная фракция газойля обрабатывается по меньшей мере частично во второй части для гидрообработки в присутствии водорода, причем указанная часть содержит по меньшей мере один реактор с фиксированным слоем, содержащий по меньшей мере один катализатор гидрообработки, e) фракция, более тяжелая, чем фракция газойля, обрабатывается по меньшей мере частично в части для гидрокрекинга в присутствии водорода. Изобретение также относится к установке для обработки сланцевого масла вышеуказанным способом. Изобретение способствует максимизации выхода топливной базы. 2 н. и 26 з.п. ф-лы, 2 ил., 2 табл., 1 пр.

Изобретение относится к способу и устройству для гидрообработки риформата. Способ включает приведение риформата в контакт с обладающим каталитическим гидрирующим действием катализатором в условиях жидкофазной гидрообработки в реакторе гидрирования, при этом часть водородсодержащего газа для гидрообработки получена из растворенного водорода, содержащегося в риформате; где гидрообработку проводят в присутствии дополнительного водородсодержащего газа, который инжектируют в риформат перед проведением контактирования и/или во время контактирования через поры с помощью смесителя, который содержит, по меньшей мере, один канал для жидкости, предназначенный для риформата, и, по меньшей мере, один канал для газа, предназначенный для дополнительного водородсодержащего газа, при этом канал для жидкости соединен с каналом для газа посредством компонента, по меньшей мере, часть которого представляет собой пористую область; при этом риформат получают из нижней части газожидкостного сепаратора путем инжекции смеси каталитического риформинга в газожидкостной сепаратор и в продукте, полученном путем проведения контактирования, удаляют летучие компоненты, причем риформат поступает в реактор гидрирования после теплообмена с нефтяным сырьем с удаленными летучими компонентами, нефтяное сырье с удаленными летучими компонентами инжектируют в колонну для удаления тяжелых компонентов и для извлечения ароматических углеводородов из верхней части колонны. Устройство включает реактор каталитического риформинга (5) для приведения углеводородного масла в контакт с катализатором, обладающим каталитическим риформирующим действием в условиях каталитического риформинга, с получением смеси каталитического риформинга; газожидкостной сепаратор (6) для удаления летучих компонентов (7) из смеси каталитичесого риформинга путем газожидкостного разделения с получением риформата из нижней части газожидкостного сепаратора (6); смеситель (8) для инжекции дополнительного водородсодержащего газа в риформат с получением водородсодержащего риформата; реактор гидрирования (9) для приведения водородсодержащего риформата в контакт с катализатором, обладающим каталитическим гидрирующим действием в условиях жидкофазной гидрообработки, колонну (10) для удаления летучих компонентов; колонну (13) удаления тяжелых компонентов; теплообменник (11) для осуществления теплообмена с риформатом. В соответствии со способом по настоящему изобретению риформат, отделенный в сепараторе продуктов риформинга, может напрямую подвергаться жидкофазной гидрообработке; таким образом, не только может быть полностью использован водород, растворенный в риформате, но также могут быть удалены олефины, содержащиеся в риформате, при этом исключается необходимость в рециркуляции водорода и в оборудовании для циркуляции. Риформат, полученный способом по настоящему изобретению, имеет пониженное бромное число ниже 50 мгBr2/100 г и потерю ароматических углеводородов менее 0,5 масс. %. 2 н. и 23 з.п. ф-лы, 8 ил., 2 табл., 6 пр.

Изобретение относится к способу производства олефинов и ароматических углеводородов из нафты, содержащему стадии: 1) проведения экстракционного разделения нафты с получением очищенной нефти, содержащей алканы и циклоалканы, и нефтяного экстракта, содержащего циклоалканы и ароматические углеводороды, при этом весовое отношение между циклоалканами, содержащимися в очищенной нефти, и циклоалканами, содержащимися в нафте, составляет 10-35%, 2) контактирования нефтяного экстракта, содержащего циклоалканы и ароматические углеводороды, с катализатором риформинга в реакционных условиях каталитического риформинга: давление 0,2-3,0 МПа, температура 300-550°C, молярное отношение водород/углеводороды 0,5-20 и объемная (волюмометрическая) скорость (подачи) 0,1-50 ч-1 с получением риформата с высоким содержанием ароматических углеводородов, 3) проведения реакций крекинга очищенной нефти, содержащей алканы и циклоалканы, с получением олефинов. В способе в качестве сырья применяется нафта и можно получать легкие олефины и легкие ароматические углеводороды с повышенными выходами. 13 з.п. ф-лы, 2 ил., 8 пр., 5 табл.

Изобретение относится к установке каталитической ароматизации легкого углеводородного сырья, включающей расположенные на линии подачи сырья по меньшей мере один блок каталитической переработки и блок выделения концентрата ароматических углеводородов с линией подачи циркулирующего газа в блок каталитической переработки. Установка характеризуется тем, что на линии циркулирующего газа установлен блок мембранного выделения водорода. Технический результат - повышение выхода целевых продуктов и упрощение установки. 2 н. и 2 з.п. ф-лы, 1 ил.
Наверх