Золотниковый клапан для гидравлического демпфера

Изобретение относится к машиностроению. Клапан содержит корпус, втулку, золотник и упругий элемент накопления энергии. Корпус содержит первую камеру, вторую камеру и цилиндрический проход, соединяющий первую и вторую камеры. Втулка расположена в цилиндрическом проходе с возможностью перемещения. Золотник с возможностью перемещения расположен в отверстии втулки. Упругий элемент может быть расположен между втулкой и золотником. Упругий элемент сжимается, когда в первой камере или второй камере создается давление, при этом втулка и золотник перемещаются относительно друг друга. Таким образом, часть фигурного отверстия открывается в первую или вторую камеру, чтобы позволить пропорциональному количеству рабочей жидкости протекать между первой камерой и второй камерой. Достигается упрощение конструкции и повышение стабильности демпфирующей характеристики. 13 з.п. ф-лы, 8 ил.

 

Область техники, к которой относится настоящее изобретение

Настоящее изобретение относится к клапану для гидравлического демпфера, в том числе для гидравлического демпфера, предназначенного для использования в подвеске колесного транспортного средства.

Предшествующий уровень техники настоящего изобретения

В гидравлических демпферах, используемых для управления динамическими системами, как правило, используют поршень, приспособленный для скольжения в цилиндрическом основном корпусе и уплотненный по окружности относительно его стенок. Поршень конструктивно исполнен для крепления к узлу штока. Поршень делит цилиндрический основной корпус на две части (верхнюю часть и нижнюю часть), соединенные ограничительными проходами, которые ограничивают скорость потока текучей среды между верхней частью и нижней частью при перемещении узла штока относительно основного корпуса. При этом основная рабочая характеристика демпфера, определяемая зависимостью между давлением и расходом, задается геометрической конфигурацией ограничительных проходов между верхней частью и нижней частью.

Если ограничительные проходы характеризуются простой конфигурацией в виде отверстий с фиксированным пропускным сечением, то перепад давления, создаваемого на поршне демпфера, повышается как квадрат расхода рабочей жидкости через отверстия. К сожалению, эта квадратичная зависимость между давлением и расходом не является желательной характеристикой для управления большинством динамических систем. В случае системы автомобильной подвески демпфер обычно называется амортизатором, и характеристика давление-расход является прямо пропорциональной определяющей зависимости амортизатора сила-скорость, которая обычно должна быть линейной или даже несколько дигрессивной. Способ достижения характеристик демпфера, отличающихся от базисного закона квадратичной зависимости для отверстий с фиксированным пропускным сечением, заключается в изменении площади отверстия в заданной зависимости с перепадом давления на поршне.

Наиболее распространенная конструкция клапана демпфера с переменным пропускным сечением состоит из пакета податливых пластин, закрепленных над несколькими проходами, соединяющими верхнюю часть и нижнюю часть либо через поршень, либо вокруг него. Перепад давления на поршне прикладывает нагрузку на пластины, заставляя их отклоняться, что, в свою очередь, открывает проходы и создает путь для рабочей жидкости демпфера. Величина отклонения пластин изменяется пропорционально перепаду давления на поршне и, таким образом, создает вид переменного пропускного сечения. В документе US 2748898 (DeCarbon) встречается самое раннее упоминание такой конструкции и раскрыт амортизатор двойного действия, в котором поршень конструктивно исполнен с системой проходов, уплотненных упругими листовыми элементами, которые напряжены и упруго сгибаются текучей средой, выходящей под давлением из проходов. Кроме того, в патенте '898 раскрыт уникальный, но в настоящее время широко применяемый способ расположения проходов и двух наборов листовых элементов выше и ниже поршня с таким расчетом, чтобы обеспечить независимые и, возможно, асимметричные характеристики давление-расход в двух разных рабочих направлениях.

Наиболее значительным недостатком использования податливых пластин для создания клапана демпфера с переменным пропускным сечением является то, что характеристика давление-расход в высокой степени зависит от деформированной формы податливых пластин, которая, в свою очередь, крайне чувствительна к толщине пластин, свойствам материала пластин, размерным допускам формы пластин, технологическому процессу сборки, трению между пластинами в пакете, предварительной нагрузке на пластины в пакете, допускам на точность расположения проходов относительно пластин, размерным допускам поперечных сечений проходов и чистоте узла. Эти чувствительности в конечном итоге создают значительные трудности в достижении требуемой характеристики давление-расход или в попытке подогнать характеристику двух демпферов. Дополнительным недостатком конструкции с использованием податливых пластин является то, что из-за ее сложного рабочего механизма невозможно легко предсказать математическими методами характеристику давление-расход. Еще одним недостатком этого конструктивного исполнения является то, что характеристика давление-расход имеет тенденцию к отклонению со временем от своей первоначальной формы из-за того, что материал податливых пластин устает и утрачивает свою жесткость и прочность, а также из-за того, что между пластинами попадают мелкие частицы, образованные в результате износа уплотнения, поршня и штока.

В документе US 5547050 (Beck) раскрыта сложность, связанная с изготовлением и сборкой демпфера, в котором в качестве переменного пропускного сечения используются податливые пластины. В патенте '050 раскрыт способ крепления пластин и поршня к штоку для устранения некоторых размерных недостатков, связанных с конструкцией. Однако, хотя подход к сборке, описанный в патенте '050, и устраняет допустимые отклонения, связанные с креплением податливых пластин, он не улучшает ситуацию в части изменения, связанного с размерной точностью самих пластин, или отклонения от первоначальной характеристики давление-расход, происходящего со временем. Более того, в патенте US 5547050 не описывается конструкция, для которой можно математически предсказать характеристику.

В документе US 5709290 (Ekert et al.) раскрыт способ выполнения упорных поверхностей, используемых при сжатии и обратном ходе, которые равномерно поддерживают податливые пластины в их отклоненном состоянии в обеих предельных точках хода отклонения. Решение согласно патенту '290 позволяет предотвратить пластическую деформацию податливых пластин в деформированное состояние, которое может значительно изменить заложенные в конструкции рабочие характеристики узла демпфера. Эта конструкция с упорной поверхностью значительно улучшает способность демпфера поддерживать со временем свою первоначальную характеристику давление-расход. Однако недостатком этой системы является то, что она очень чувствительна к точным допускам, так что незначительные изменения конкретных конструктивных признаков могут привести к значительным нежелательным изменениям рабочих характеристик.

Недостатки клапанов демпфера с переменным пропускным сечением, в которых использованы пакеты податливых пластин, известны. Несмотря на то, что многочисленные альтернативы предложены и использованы в уровне техники, эта конструкция остается полностью доминирующим подходом к обеспечению требуемых характеристик давление-расход у амортизаторов, используемых в системах автомобильной подвески.

В документе US 6311812 (Sonsterad et al.) предложена альтернатива подходу с использованием податливых пластин посредством раскрытия тарельчатого регулятора давления, в котором используется давление, уравновешивающееся на тарелке, для регулирования площади образующегося кольцевого отверстия. Форма передней стороны тарелки может быть изменена для регулирования уравновешивания давления. Таким образом, общей характеристикой давление-расход регулятора давления и, в конечном итоге, демпфера, в котором использовано это устройство, управляют при помощи изменения площади кольцевого отверстия. Хотя решение согласно патенту '812 позволяет решить многие проблемы чувствительности к допускам, связанные с клапанами демпфера с переменным пропускным сечением с податливыми пластинами, его основному конструктивному исполнению присущ тот недостаток, что предлагается лишь ограничение пропускным сечения кольцевого отверстия. Этот недостаток устраняют в альтернативных вариантах осуществления раскрытого изобретения, но лишь за счет привнесения значительной сложности, что опять-таки привносит дополнительную чувствительность к производственным допускам. Однако самым существенным недостатком конструкции клапана согласно патенту '812 является то, что конструкция клапана является однонаправленной. Для того чтобы регулятор давления согласно патенту '812 мог быть использован в амортизаторе двойного действия, предусмотрен ряд однопутевых шаровых клапанов, предназначенных для действия как в направлении сжатия, так и в направлении обратного хода. Это ограничивает характеристику давление-расход демпфера идентичностью в направлениях сжатия и обратного хода, что редко является желательным. Кроме того, регулятор давления согласно патенту '812 является громоздким и сложным и не может быть выполнен встраиваемым в поршень демпфера. Наконец, подобно конструктивным исполнениям с использованием податливых пластин, в патенте '812 не раскрыта конструкция, для которой можно математически предсказать характеристику давление-расход.

Эффективное, но сложное решение проблем чувствительности к допускам, которые присущи пассивным клапанам с переменным пропускным сечением, раскрыто в документе US 5996745 (Jones et al.). В патенте '745 раскрыт клапан демпфера, предназначенный для регулирования характеристики давление-расход и, следовательно, характеристики сила-скорость, амортизатора, который состоит из изгибного устройства со встроенным в него пьезоэлектрическим материалом. Изгибное устройство используется подобно податливым пластинам обычного клапана демпфера, но при прикладывании электрического напряжения к пьезоэлектрическому материалу жесткость изгибного устройства изменяется, и при этом изменяется давление, необходимое для деформации изгибного устройства. Для измерения скорости поршня используют электронный датчик, и напряжение, прикладываемое к изгибному устройству, изменяется в зависимости от измеренной скорости. Таким образом, жесткость изгибного устройства выполнена зависящей от скорости демпфера, а характеристика сила-скорость и, следовательно, характеристика давление-расход, активно управляемыми с использованием системы обратной связи. Хотя клапан с переменным пропускным сечением на основе пьезоэлектрического материала согласно решению Jones позволяет устранить связанные с чувствительностью к допускам недостатки пассивных клапанов демпфера, его сложность и стоимость являются непомерно высокими. Кроме того, в патенте '745 не раскрыто устройство, для которого можно математически просто предсказать характеристику давление-расход.

Соответственно, существует необходимость в создании клапана демпфера, позволяющего устранить сложность, связанную с существующими типами конструкций с переменным пропускным сечением, и при этом характеризующегося простым конструктивным исполнением, обеспечивающим математически прогнозируемую, повторяющуюся и надежную характеристику давление-расход.

Краткое описание настоящего изобретения

Таким образом, целью настоящего изобретения является создание клапана для гидравлического демпфера, который позволяет уменьшить количество необходимых компонентов, упростить способ сборки, снизить производственные издержки и улучшить общую рабочую характеристику демпфера. Соответственно, клапан конструктивно исполнен для регулирования расхода рабочей жидкости через основной поршень демпфера по заданной зависимости от перепада давления на основном поршне посредством конструкции с переменным пропускным сечением на основании пропорционально блокируемого фигурного отверстия. Фигурное отверстие конструктивно исполнено для обеспечения одного пути для рабочей жидкости между верхней частью и нижней частью основного корпуса и предназначено для открытия и закрытия в ответ на перепад давления на основном поршне. При этом рабочая характеристика демпфера просто и предсказуемо задается геометрической конфигурацией фигурного отверстия. Точно определенная площадь пропускного сечения фигурного отверстия обеспечивает математически прогнозируемое ограничение потока рабочей жидкости, которое действует преимущественно в турбулентном режиме, что дает в результате нечувствительность к вязкости рабочей жидкости и, следовательно, изменению температуры.

Таким образом, клапан демпфера согласно настоящему изобретению содержит корпус клапана, конструктивно исполненный с первой камерой и второй камерой, одна из которых гидравлически связана с верхней частью основного корпуса, а вторая из которых гидравлически связана с нижней частью основного корпуса. Поршень демпфера конструктивно исполнен для соединения с узлом штока и предназначен для скольжения в цилиндрическом основном корпусе и уплотнен по окружности. Первая камера и вторая камера, содержащиеся в корпусе клапана, соединены цилиндрическим проходом, предназначенным для приема наружной цилиндрической поверхности полой втулки клапана. Полая втулка клапана, в свою очередь, предназначена для приема цилиндрического золотника клапана, конструктивно исполненного с фигурным отверстием, расположенным в цилиндрической стенке золотника клапана, так, что весь поток рабочей жидкости, вызванный перемещением узла штока и поршня демпфера, направляется через фигурное отверстие. Полая втулка клапана конструктивно исполнена так, чтобы полностью блокировать фигурное отверстие, когда узел штока и поршень демпфера неподвижны. Перемещение узла штока и поршня демпфера создает рабочие давления в первой и второй камерах корпуса клапана, которые заставляют золотник клапана и полую втулку клапана перемещаться относительно друг друга, тем самым постепенно открывая фигурное отверстие и создавая гидравлический путь потока между первой и второй камерами и, следовательно, между верхней частью и нижней частью основного корпуса. Точно определенная площадь пропускного сечения фигурного отверстия обеспечивает математически прогнозируемое ограничение потока рабочей жидкости, которое изменяется непосредственно в ответ на рабочие давления демпфера. При этом достигается высоко предсказуемая и точная зависимость давление-расход при использовании лишь двух движущихся компонентов, что значительно снижает сложность клапана демпфера и дает точную и повторяющуюся рабочую характеристику.

Согласно варианту осуществления настоящего изобретения полая втулка клапана конструктивно исполнена с заостренной верхней гранью, которая точно определяет протяженность блокирования фигурного отверстия. Когда узел штока и поршень демпфера перемещают в направлении обратного хода, полая втулка клапана конструктивно исполнена для перемещения относительно неподвижного золотника клапана, и перемещение заостренной верхней грани постепенно открывает неподвижное фигурное отверстие. Когда узел штока и поршень демпфера перемещают в направлении сжатия, золотник клапана конструктивно исполнен для перемещения относительно неподвижной полой втулки клапана, и неподвижная заостренная верхняя грань постепенно открывает движущееся фигурное отверстие.

Согласно варианту осуществления настоящего изобретения внутреннее отверстие полой втулки клапана и наружная цилиндрическая стенка золотника клапана конструктивно исполнены с радиальным зазором с жестким допуском, что обеспечивает относительное продольное перемещение, одновременно предотвращая поток рабочей жидкости через радиальный зазор. Наружная цилиндрическая поверхность полой втулки клапана и цилиндрический проход корпуса клапана тоже конструктивно исполнены с радиальным зазором с жестким допуском, что обеспечивает относительное продольное перемещение втулки клапана, одновременно предотвращая поток рабочей жидкости через радиальный зазор. Цилиндрическая пружина или подобный упругий элемент накопления энергии расположен между втулкой клапана и золотником клапана, чтобы смещать их в противоположных направлениях. Втулка клапана и золотник клапана конструктивно исполнены с упорными торцами, которые ограничивают их относительное продольное перемещение до неподвижного предела упором в упорные поверхности на корпусе клапана. Когда втулка клапана и золотник клапана находятся в положениях их неподвижных пределов, фигурное отверстие полностью блокируется втулкой клапана, и при этом нет гидравлического пути между первой и второй камерами и, следовательно, сообщения по текучей среде между верхней и нижней частями основного корпуса.

Для целей настоящего изобретения следует понимать, что рабочая поверхность поршня элемента является фактической площадью поверхности, на которую действует разница давлений на противоположных сторонах элемента для приложения гидравлического усилия к элементу.

Когда узел штока и поршень демпфера перемещают в направлении обратного хода, в верхней части основного корпуса может быть создано избыточное давление, которое передается в первую камеру корпуса клапана, действуя непосредственно на первую рабочую поверхность поршня, образуемую открытой кольцевой поверхностью втулки клапана. Рабочее давление, действующее на первую рабочую поверхность поршня, вызывает продольное перемещение втулки • клапана с преодолением силы цилиндрической пружины. В этом рабочем состоянии золотник клапана удерживается в положении своего неподвижного предела своим упорным торцом, упирающимся в упорную поверхность на корпусе клапана, и при этом втулка клапана перемещается относительно неподвижного золотника клапана, и движущаяся заостренная верхняя кромка постепенно открывает неподвижное фигурное отверстие.

Кроме того, когда узел штока и поршень демпфера перемещают в направлении сжатия, в нижней части основного корпуса может быть создано избыточное давление, которое передается во вторую камеру корпуса клапана, действуя непосредственно на вторую рабочую поверхность поршня, образуемую закрытым концом золотника клапана. Рабочее давление, действующее на вторую рабочую поверхность поршня, вызывает продольное перемещение золотника клапана с преодолением силы цилиндрической пружины. В этом рабочем состоянии втулка клапана удерживается в положении своего неподвижного предела упорным торцом втулки клапана, упирающимся в упорную поверхность на корпусе клапана, и при этом золотник клапана перемещается относительно неподвижной втулки клапана, и неподвижная заостренная верхняя кромка постепенно открывает движущееся фигурное отверстие.

Таким образом, в настоящем описании раскрыта высокопредсказуемая и точная двунаправленная зависимость давление-расход при использовании лишь двух движущихся компонентов, что значительно снижает сложность клапана демпфера и обеспечивает точную и повторяющуюся рабочую характеристику в направлении сжатия и направлении обратного хода. Асимметричной рабочей характеристики можно добиться конструктивным исполнением первой рабочей поверхности поршня и второй рабочей поверхности поршня разными, чтобы зависимость давление-расход при сжатии и отдаче были разными, несмотря на то, что поток рабочей жидкости ограничен прохождением через одно и то же фигурное отверстие в обоих рабочих направлениях.

Зависимость между давлением и расходом гидравлического демпфера может быть точно настроена путем изменения жесткости цилиндрической пружины, изменения предварительной нагрузки на цилиндрическую пружину, увеличения или уменьшения первой или второй рабочей поверхности поршня или изменения профиля фигурного отверстия.

Согласно альтернативному варианту осуществления настоящего изобретения для независимого смещения полой втулки клапана и золотника клапана соответственно предусмотрены две цилиндрические пружины или подобные упругие средства накопления энергии. Корпус клапана конструктивно исполнен с гнездом пружины, предназначенным нести неподвижный конец цилиндрической пружины, благодаря чему можно добиться даже более высокого уровня асимметрии рабочей характеристики.

Согласно дополнительному альтернативному варианту осуществления настоящего изобретения корпус клапана установлен в цилиндрическом основном корпусе гидравлического демпфера и оснащен проходами для рабочей жидкости, и перемещение узла штока и поршня демпфера направляет весь создаваемый поток рабочей жидкости через фигурное отверстие. При этом корпус клапана неподвижен, но фигурное отверстие конструктивно исполнено для обеспечения одного пути для рабочей жидкости между двумя сторонами основного поршня и предназначено для постепенного открытия и закрытия в ответ на перепад давления на основном поршне.

Дальнейшие аспекты настоящего изобретения станут очевидными из последующего описания.

На фиг.1 представлен вид в перспективном изображении варианта осуществления золотникового клапана гидравлического демпфера согласно настоящему изобретению;

на фиг.2 представлен вид в перспективном изображении с частичным вырезом золотникового клапана гидравлического демпфера согласно настоящему изобретению;

на фиг.3 представлен частичный разрез золотникового клапана гидравлического демпфера согласно настоящему изобретению;

на фиг.4 представлен выбранный разрез корпуса клапана и основного поршня золотникового клапана гидравлического демпфера согласно настоящему изобретению;

на фиг.5 представлен покомпонентный вид в перспективном изображении золотникового клапана гидравлического демпфера согласно настоящему изобретению;

на фиг.6 представлен частичный увеличенный разрез другого варианта осуществления золотникового клапана гидравлического демпфера согласно настоящему изобретению;

на фиг.7 представлен разрез еще одного варианта осуществления золотникового клапана гидравлического демпфера согласно настоящему изобретению;

на фиг.8 представлен разрез еще одного варианта осуществления золотника гидравлического демпфера согласно настоящему изобретению, на котором показан перепускной канал.

Подробное описание настоящего изобретения

Согласно фиг.1, 2 и 4 узел гидравлического демпфера (1) состоит из основного корпуса (5), узла штока (10) и основного поршня (15), конструктивно исполненного таким, что делит внутреннюю камеру основного корпуса (5) на верхнюю часть (16) и нижнюю часть (18). Верхняя часть (16) и нижняя часть (18) гидравлического демпфера содержат рабочую жидкость (19). Согласно варианту осуществления настоящего изобретения корпус (30) клапана установлен на основном поршне (15) гидравлического демпфера. Корпус (30) клапана может быть прикреплен к основному поршню (15) механической крепежной деталью или подобным образом. Как показано в неограничивающем примере на фиг.1, 2 и 4, между корпусом (30) клапана и основным поршнем (15) могут быть расположены одно или несколько уплотнений (80). Кроме того, узел штока (10) может иметь резьбу с таким расчетом, чтобы узел штока мог зацепляться как с основным поршнем (15), так и корпусом (30) клапана, как показано в неограничивающем примере на фиг.4.

Согласно фиг.3 и 4 корпус (30) клапана конструктивно исполнен с первой камерой (31), второй камерой (32) и цилиндрическим проходом (33), соединяющим первую камеру (31) и вторую камеру (32). Первый проход (35) предназначен для создания беспрепятственного гидравлического пути между верхней частью (16) демпфера и первой камерой (31). Более того, второй проход (37) предназначен для создания беспрепятственного гидравлического пути между нижней частью (18) демпфера и второй камерой (32). Корпус (30) клапана дополнительно выполнен с упорными поверхностями (38, 39).

Согласно фиг.3 и 5 подвижная полая втулка (40) клапана содержит внутреннее цилиндрическое отверстие (41), наружную цилиндрическую поверхность (42), заостренную верхнюю грань (43), первую рабочую поверхность поршня (44) и упорный торец (46). Цилиндрический проход (33) корпуса (30) клапана предназначен для приема наружной цилиндрической поверхности (42) втулки (40) клапана с радиальным зазором с заданным жестким допуском, предназначенным для того, чтобы допускать продольное перемещение втулки (40) клапана в цилиндрическом проходе (33), одновременно предотвращая протекание рабочей жидкости через радиальный зазор. Подвижный полый цилиндрический золотник (50) клапана выполнен с цилиндрической стенкой (55), открытым концом (51), закрытым концом (52), который образует вторую рабочую поверхность поршня (54), упорным торцом (56)и фигурным отверстием (53), выполненным в цилиндрической стенке (55). Внутреннее цилиндрическое отверстие (41) втулки (40) клапана функционально предназначено для приема золотника (50) клапана с радиальным зазором с заданным жестким допуском, предназначенным для того, чтобы допускать продольное перемещение золотника (50) клапана во внутреннем цилиндрическом отверстии (41) втулки (40) клапана, одновременно предотвращая протекание рабочей жидкости через радиальный зазор между втулкой (40) клапана и золотником (50) клапана. Между втулкой (40) клапана и золотником (50) клапана может быть расположена цилиндрическая пружина (60) или подобное упругое средство накопления энергии для того, чтобы смещать втулку (40) клапана и золотник (50) клапана в противоположных направлениях.

Когда узел гидравлического демпфера (1) находится в состоянии покоя, какой-либо созданный перепад давления между верхней частью (16) и нижней частью (18) отсутствует. Цилиндрическая пружина (60) смещает втулку (40) клапана так, что упорный торец (46) втулки клапана упирается в упорную поверхность (38) для втулки корпуса (30) клапана. Кроме того, цилиндрическая пружина (60) смещает золотник (50) клапана в сторону от втулки (40) клапана так, что упорный торец (56)золотника упирается в упорную поверхность (39) для золотника корпуса (30) клапана. Когда втулку (40) клапана и золотник (50) клапана смещают в разные стороны с упором в упорные поверхности (38, 39), заостренная верхняя грань (43) конструктивно исполнена таким образом, что втулка (40) клапана полностью блокирует фигурное отверстие (53) золотника (50) клапана. Когда фигурное отверстие (53) полностью блокировано втулкой (40) клапана, рабочая жидкость (19) не может перемещаться между первой камерой (31) и второй камерой (32). Следовательно, когда фигурное отверстие (53) полностью блокировано втулкой (40) клапана, нет движения рабочей жидкости между верхней частью (16) и нижней частью (18) основного корпуса (5).

Когда основной поршень (15) гидравлического демпфера перемещают в первом направлении - направлении обратного хода (100), рабочее давление, создаваемое в рабочей жидкости (19), содержащейся в верхней части (16) гидравлического демпфера, действует на первую рабочую поверхность поршня (44) и вызывает продольное перемещение втулки (40) клапана с преодолением смещающей силы цилиндрической пружины (60). Когда втулка (40) клапана перемещается в продольном направлении, это вызывает перемещение заостренной верхней кромки (43) втулки (40) клапана относительно неподвижного золотника (50) клапана и при этом сжатие цилиндрической пружины (60). Соответственно, фигурное отверстие (53) золотника (50) открывается для рабочей жидкости в верхней части (16) через первую камеру (31), и образуется гидравлический путь между верхней частью (16) и нижней частью (18) гидравлического демпфера.

Изменение созданного рабочего давления рабочей жидкости (19) в верхней части (16) гидравлического демпфера вызывает пропорциональное продольное перемещение втулки (40) клапана с преодолением силы смещения цилиндрической пружины (60), что, в свою очередь, изменяет площадь ограничения потока рабочей жидкости посредством пропорционального открытия большей и меньшей площадей фигурного отверстия (53) при скольжении втулки (40) клапана относительно золотника (50). Рабочие характеристики гидравлического демпфера (1) во время обратного хода определяются пропорциональным открытием и закрытием фигурного отверстия (53), что обеспечивает математически предсказуемую и устойчивую зависимость между давлением и расходом. Эта зависимость между давлением и расходом гидравлического демпфера (1) может быть точно настроена при перемещении в первом направлении (100) путем изменения жесткости цилиндрической пружины (60), изменения предварительной нагрузки на цилиндрическую пружину (60), изменения первой рабочей поверхности поршня (44) или изменения профиля фигурного отверстия (53).

Когда основной поршень (15) гидравлического демпфера перемещают во втором направлении - направлении сжатия (101), рабочее давление, создаваемое в рабочей жидкости (19), содержащейся в нижней части (18) гидравлического демпфера, действует на вторую рабочую поверхность поршня (54) и вызывает продольное перемещение золотника (50) клапана с преодолением смещающей силы цилиндрической пружины (60). Когда золотник (50) клапана перемещается в продольном направлении, это вызывает перемещение фигурного отверстия (53) относительно неподвижной втулки (40) клапана и, тем самым, открытие гидравлического пути между нижней частью (18) и верхней частью (16) гидравлического демпфера.

Изменение созданного рабочего давления рабочей жидкости (19), содержащейся в нижней части (18) гидравлического демпфера, вызывает пропорциональное продольное перемещение золотника (50) клапана с преодолением силы смещения цилиндрической пружины (60), что, в свою очередь, изменяет площадь ограничения потока рабочей жидкости посредством пропорционального открытия большей и меньшей площадей фигурного отверстия (53). При этом рабочая характеристика гидравлического демпфера (1) при сжатии определяется пропорциональным открытием и закрытием фигурного отверстия (53), что обеспечивает математически предсказуемую и устойчивую зависимость между давлением и расходом. Эта зависимость между давлением и расходом гидравлического демпфера (1) может быть точно настроена при перемещении во втором направлении (101) путем изменения жесткости цилиндрической пружины (60), изменения предварительной нагрузки на цилиндрическую пружину (60), изменения второй рабочей поверхности поршня (54) или изменения профиля фигурного отверстия (53).

Следует понимать, что в золотнике (50) клапана может быть выполнен ряд фигурных отверстий (53) или группа (не показана) фигурных отверстий. Независимо от числа фигурных отверстий (53) фигурное отверстие (53) выполнено с заданным профилем, имеющим переменную ширину, что, в свою очередь, обеспечивает требуемые характеристики давление-расход между первой камерой (31) и второй камерой (32). В любой точке при относительном перемещении золотника (50) клапана и втулки (40) клапана открытие фигурного отверстия (53) обеспечивает математически предсказуемое ограничение потока рабочей жидкости, основанное на устоявшейся теории потока через отверстие. Для данных жесткости и предварительной нагрузки цилиндрической пружины (60) профиль фигурного отверстия может быть выполнен таким, чтобы обеспечить широкий диапазон характеристик давление-расход, каждая из которых является предсказуемой при помощи устоявшихся математических методов анализа на основе ряда решений. Геометрическая форма профиля фигурного отверстия (53) не ограничивается и обычно является сложной и неправильной.

Согласно альтернативному варианту осуществления настоящего изобретения отдельный перепускной проход (90) может создавать гидравлический путь потока между верхней частью (16) и нижней частью (18) демпфера. Перепускной проход (90) конструктивно исполнен так, что рабочая жидкость (19) может проходить между верхней частью (16) и нижней частью (18), когда фигурное отверстие (53) золотника (50) клапана полностью блокировано втулкой (40) клапана. Перепускной проход (90) конструктивно исполнен с фиксированным пропускным сечением, что обеспечивает заданную квадратичную зависимость давление-расход при низких уровнях перемещения основного поршня (15). При этом удается избежать резкого перехода в характеристике давление-расход при начальном открытии фигурного отверстия (53). Перепускной проход может проходить непосредственно через основной поршень (15) между верхней стороной (92) и нижней стороной (94) основного поршня (15), через первую и вторую камеры (31, 32) корпуса (30) клапана или через закрытый конец (52) золотника (50) клапана.

Согласно дополнительному альтернативному варианту осуществления настоящего изобретения фигурное отверстие (53) блокируется не полностью, когда втулка (40) клапана и золотник (50) клапана смещаются в разные стороны с упором в упорные поверхности (38, 39). При этом небольшая незаблокированная часть фигурного отверстия (53) обеспечивает заданную квадратичную зависимость давление-расход при низких уровнях перемещения основного поршня (15). Следует понимать, что в этом положении фигурное отверстие (53) частично открыто, когда втулка клапана и золотник клапана упираются в соответствующие им упорные поверхности - упорную поверхность (38) для втулки и упорную поверхность (39) для золотника. При этом удается избежать резкого перехода в характеристике давление-расход при первоначальном относительном продольном перемещении золотника (50) клапана и втулки (40) клапана.

На фиг.6 представлен альтернативный вариант осуществления настоящего изобретения, согласно которому для независимого смещения втулки (40) клапана и золотника (50) клапана в направлениях, противоположных вектору силы (98), создаваемому рабочими давлениями в рабочей жидкости (19) демпфера (1), предусмотрены две цилиндрические пружины (61, 62) или подобные упругие элементы или средства накопления энергии. Корпус (30) клапана конструктивно исполнен с гнездом (34) пружины, предназначенным нести неподвижные концы двух цилиндрических пружин (61, 62). Изменение созданного рабочего давления рабочей жидкости (19), содержащейся в верхней части (16) гидравлического демпфера (и первой камере (31)), вызывает пропорциональное продольное перемещение втулки (40) клапана с преодолением силы смещения цилиндрической пружины (61), что, в свою очередь, изменяет площадь ограничения потока рабочей жидкости посредством пропорционального открытия большей и меньшей площадей фигурного отверстия (53). Изменение созданного рабочего давления рабочей жидкости (19), содержащейся в нижней части (18) гидравлического демпфера (и второй камере (32)), вызывает пропорциональное продольное перемещение золотника (50) клапана с преодолением силы смещения цилиндрической пружины (62), что, в свою очередь, изменяет площадь ограничения потока рабочей жидкости посредством пропорционального открытия большей и меньшей площадей фигурного отверстия (53). При этом зависимость давление-расход гидравлического демпфера (1) может быть независимо точно настроена в его направлении обратного хода (100) путем изменения жесткости или предварительной нагрузки первой цилиндрической пружины (61) и независимо точно настроена в его направлении сжатия (101) путем изменения жесткости или предварительной нагрузки второй цилиндрической пружины (62). Эта конструкция обеспечивает более высокие уровни асимметрии рабочей характеристики, чем при использовании одной цилиндрической пружины или подобного упругого средства накопления энергии.

На фиг.7 представлен дополнительный альтернативный вариант осуществления настоящего изобретения, согласно которому корпус (30) клапана установлен в основном корпусе (5) узла гидравлического демпфера (1). Основной корпус (5) оснащен проточными проходами (6), обеспечивающими беспрепятственный гидравлический путь между верхней частью (16) и первой камерой (31) демпфера, причем второй проход (37) предназначен для обеспечения беспрепятственного гидравлического пути между нижней частью (18) и второй камерой (32) демпфера. При этом корпус (30) клапана неподвижен, но фигурное отверстие (53) конструктивно исполнено для обеспечения одного пути для рабочей жидкости (19) между верхней частью (16) и нижней частью (18) основного корпуса (5) демпфера и предназначено для постепенного открытия и закрытия в ответ на перепад давления на основном поршне (15).

1. Золотниковый клапан для гидравлического демпфера, содержащий:
втулку клапана, имеющую внутреннее цилиндрическое отверстие, открытое на обоих концах, внешнюю цилиндрическую поверхность, заостренную управляющую кромку и первую рабочую поверхность поршня;
цилиндрический золотник клапана, имеющий открытый конец, закрытый конец, образующий вторую рабочую поверхность поршня, и фигурное отверстие, выполненное в стенке золотника клапана, причем втулка клапана выполнена с возможностью приема золотника клапана с заданным радиальным зазором с жестким допуском, таким что обеспечена возможность продольного перемещения золотника клапана во внутреннем цилиндрическом отверстии втулки клапана и вместе с тем предотвращен поток рабочей жидкости через радиальный зазор;
корпус клапана, имеющий первую камеру и вторую камеру, соединенные цилиндрическим проходом, причем цилиндрический проход выполнен с возможностью приема втулки клапана с заданным радиальным зазором с жестким допуском, таким что обеспечена возможность продольного перемещения втулки клапана в цилиндрическом проходе и вместе с тем предотвращен поток рабочей жидкости через радиальный зазор;
причем корпус клапана содержит первый проход, обеспечивающий беспрепятственный гидравлический путь между верхней частью гидравлического демпфера и первой камерой, и второй проход, обеспечивающий беспрепятственный гидравлический путь между нижней частью гидравлического демпфера и второй камерой;
упругий элемент накопления энергии, расположенный между втулкой клапана и золотником клапана таким образом, чтобы смещать втулку клапана и золотник клапана в направлении, противоположном вектору силы, создаваемому рабочими давлениями в рабочей жидкости демпфера;
при этом при перемещении основного поршня в первом направлении рабочее давление, создаваемое в рабочей жидкости демпфера, действует на первую рабочую поверхность поршня и вызывает продольное перемещение втулки клапана с преодолением смещающей силы упругого элемента накопления энергии, заставляя заостренную управляющую кромку перемещаться относительно фигурного отверстия, тем самым изменяя поток рабочей жидкости через изменяющееся открытое пропускное сечение фигурного отверстия, и при перемещении основного поршня гидравлического демпфера во втором направлении, рабочее давление, создаваемое в рабочей жидкости демпфера, действует на вторую рабочую поверхность поршня и вызывает продольное перемещение золотника клапана с преодолением смещающей силы упругого элемента накопления энергии, заставляя перемещаться фигурное отверстие относительно заостренной управляющей кромки с изменением потока рабочей жидкости через изменяющееся открытое пропускное сечение фигурного отверстия.

2. Золотниковый клапан для гидравлического демпфера по п. 1, отличающийся тем, что втулка клапана дополнительно содержит упорный торец втулки, конструктивно исполненный для упора в соответствующую упорную поверхность для втулки, расположенную на корпусе клапана.

3. Золотниковый клапан для гидравлического демпфера по любому из пп. 1 и 2, отличающийся тем, что золотник клапана дополнительно содержит упорный торец золотника, конструктивно исполненный для упора в соответствующую упорную поверхность для золотника, расположенную на корпусе клапана.

4. Золотниковый клапан для гидравлического демпфера по п. 3, отличающийся тем, что упругий элемент накопления энергии выполнен с возможностью смещения втулки клапана и золотника клапана в противоположных направлениях так, чтобы упорный торец золотника и упорный торец втулки упирались в соответствующие упорные поверхности для золотника и втулки на корпусе клапана.

5. Золотниковый клапан для гидравлического демпфера по п. 4, отличающийся тем, что когда упорные торцы втулки клапана и золотника клапана упираются в упорные поверхности на корпусе клапана, фигурное отверстие полностью блокируется втулкой клапана.

6. Золотниковый клапан для гидравлического демпфера по п. 1, отличающийся тем, что фигурное отверстие конструктивно исполнено таким, чтобы обеспечить переменное отверстие, обеспечивающее требуемую характеристику давление-расход.

7. Золотниковый клапан для гидравлического демпфера по п. 1, отличающийся тем, что в стенке золотника клапана выполнен ряд фигурных отверстий.

8. Золотниковый клапан для гидравлического демпфера по п. 1, отличающийся тем, что между верхней частью основного корпуса и нижней частью основного корпуса предусмотрен перепускной проход для создания гидравлического пути потока, действующего наряду с фигурным отверстием.

9. Золотниковый клапан для гидравлического демпфера по п. 1, отличающийся тем, что когда упорные торцы втулки клапана и золотника клапана упираются в упорные поверхности на корпусе клапана, фигурное отверстие частично открыто.

10. Золотниковый клапан для гидравлического демпфера по п. 1, отличающийся тем, что выполнены два упругих элемента накопления энергии, каждый из которых действует между корпусом клапана и соответствующего одного из втулки клапана и золотника клапана для независимого смещения втулки клапана и золотника клапана в противоположных направлениях вектору силы, создаваемому рабочими давлениями в рабочей жидкости демпфера.

11. Золотниковый клапан для гидравлического демпфера по п. 10, отличающийся тем, что упругий элемент накопления энергии или каждый из упругих элементов накопления энергии являются цилиндрическими пружинами.

12. Золотниковый клапан для гидравлического демпфера по п. 11, отличающийся тем, что упругий элемент накопления энергии или каждый из упругих элементов накопления энергии конструктивно исполнен таким образом, чтобы располагаться соосно с золотником клапана и втулкой клапана.

13. Золотниковый клапан для гидравлического демпфера по п. 1, в котором демпфер содержит шток, выполненный с возможностью перемещения в цилиндре, при этом корпус клапана золотникового клапана установлен с возможностью перемещения со штоком демпфера.

14. Золотниковый клапан для гидравлического демпфера по п. 1, в котором демпфер содержит шток, выполненный с возможностью перемещения в цилиндре, при этом золотник клапана неподвижно установлен в цилиндре.



 

Похожие патенты:

Изобретение относится к машиностроениию. Пневматическая пружина содержит резервуар (1), размещенные в нем шток (4) с поршнем (6) и уплотнительный элемент (5) штока.

Изобретение относится к машиностроению. Пневматическая пружина содержит резервуар (1), шток (4) с поршнем (6) и уплотнительный элемент (5) штока.

Изобретение относится к транспортному машиностроению, а именно, к подвеске транспортных средств. .

Изобретение относится к транспортному машиностроению, а именно к подвеске транспортных средств. .

Группа изобретений относится к машиностроению. Поршень с перепускными отверстиями содержит кольцевые буртики для создания уплотнительных соединений сверху с тарелкой перепускного клапана и снизу с диском клапана отдачи.

Изобретение относится к машиностроению. Демпфер содержит полый корпус (10), поршень (20) с поршневой головкой, которая образует две активные гидравлические камеры, шток и отклоняющие средства.

Изобретение относится к машиностроению. Демпфер содержит корпус, в котором коаксиально установлен с образованием рекуперативной полости цилиндр с поршнем.

Группа изобретений относится к машиностроению. Амортизатор содержит цилиндр, корпус поршня с каналами сжатия и отдачи, поршневой шток.

Группа изобретений относится к машиностроению. Клапан (1) амортизатора содержит затвор (4), перемещающийся со скольжением в держателе (6) затвора, и основание (8), опирающееся на дно амортизатора.

Изобретение относится к машиностроению. Амортизатор содержит наружную трубку-резервуар и рабочий цилиндр, образующие кольцевую полость.

Изобретение относится к машиностроению. .

Изобретение относится к транспортному машиностроению и предназначено для использования в конструкции регулируемых амортизаторов транспортных средств, преимущественно автомобилей.

Изобретение относится к машиностроению и может быть использовано в подвесках транспортных средств. .

Изобретение относится к ходовой части подвижного состава, в частности, к конструктивным элементам, установленным в рессорном подвешивании, а именно к гидравлическим амортизаторам.

Группа изобретений относится к области машиностроения. Амортизатор содержит цилиндр с рабочей текучей средой. Поршень вставлен в цилиндр и разделяет цилиндр на две камеры. Поршневой шток соединен с поршнем. Демпфирующий клапан установлен в первом канале. Механизм регулирования проходного сечения установлен в поршне и регулирует проходное сечение второго канала на основе положения поршневого штока. Демпфирующая сила уменьшается для растяжения и увеличивается для сжатия в заданном положении штока при большом выдвижении. Демпфирующая сила увеличивается для растяжения и уменьшается для сжатия в заданном положении штока при малом выдвижении. В амортизаторе по второму варианту демпфирующая сила уменьшается для растяжения и сжатия в заданном положении штока при малом выдвижении. В амортизаторе по третьему варианту демпфирующая сила уменьшается для растяжения и сжатия в заданном положении штока при большом выдвижении. Демпфирующая сила увеличивается для растяжения и уменьшается для сжатия в заданном положении штока при малом выдвижении. Амортизатор по четвертому варианту установлен между колесом и корпусом транспортного средства. Механизм регулирования высоты транспортного средства установлен параллельно амортизатору. Достигается расширение характеристик демпфирования. 4 н. и 12 з.п. ф-лы, 25 ил.

Клапан управления тягой для телескопического гидравлического амортизатора содержит напорную трубку (10), которая внутри делится на камеру сжатия (СС) и камеру тяги (ТС), поршень (20), полый в осевом направлении и имеющий канал тяги (22), камеру сжатия (21), шток (30), внутренний конец (31) которого соединен с поршнем, а наружный конец (32) - с автомобилем. Клапан также содержит камеру противодавления (СРС), приводимую в движение поршнем внутри полого корпуса (50), включающего верхнюю часть колпачка (50А), вмещающую герметизирующую пробку (60) и возвратную пружину (65) и чья нижняя стенка (57) прикрепляется к осевому удлинителю (33) штока (30) и на ней предусматривается одно сквозное отверстие (57а), и нижнюю часть колпачка (50В), герметически соединенную с верхней частью колпачка, вмещающую инерционное уплотнение (70) и чья нижняя стенка (58) ограничивается стенкой дна (52) полого корпуса. Герметизирующая пробка также содержит перемещаемую верхнюю крышку верхней части полого корпуса камеры противодавления. Обеспечивается простая конструкция клапана, имеющая возможность легкого приспосабливания к поршню амортизатора. 8 з.п. ф-лы, 3 ил.

Клапан управления тягой для телескопического гидравлического амортизатора содержит напорную трубку (10), которая внутри делится на камеру сжатия (СС) и камеру тяги (ТС), поршень (20), полый в осевом направлении и имеющий канал тяги (22), камеру сжатия (21), шток (30), внутренний конец (31) которого соединен с поршнем, а наружный конец (32) - с автомобилем. Клапан также содержит камеру противодавления (СРС), приводимую в движение поршнем внутри полого корпуса (50), включающего верхнюю часть колпачка (50А), вмещающую герметизирующую пробку (60) и возвратную пружину (65) и чья нижняя стенка (57) прикрепляется к осевому удлинителю (33) штока (30) и на ней предусматривается одно сквозное отверстие (57а), и нижнюю часть колпачка (50В), герметически соединенную с верхней частью колпачка, вмещающую инерционное уплотнение (70) и чья нижняя стенка (58) ограничивается стенкой дна (52) полого корпуса. Герметизирующая пробка также содержит перемещаемую верхнюю крышку верхней части полого корпуса камеры противодавления. Обеспечивается простая конструкция клапана, имеющая возможность легкого приспосабливания к поршню амортизатора. 8 з.п. ф-лы, 3 ил.

Изобретение относится к области машиностроения. Демпфер содержит корпус, в котором коаксиально установлен с образованием рекуперативной полости цилиндр с поршневым узлом. Разгрузочный клапан ходов сжатия и растяжения выполнен в виде одного пружинного диска. Клапанный блок установлен с противоположной стороны цилиндра и содержит обратный и предохранительный клапаны и как минимум один дроссельный канал, сообщающий поршневую и рекуперативную полости. Как минимум один дополнительный дроссельный канал расположен в поршневом узле параллельно сквозному дроссельному каналу, сообщающему поршневую и штоковую полости. Обратный клапан перекрывает со стороны штоковой полости дополнительный дроссельный канал. Отношение суммарной площади проходного сечения сквозных и дополнительных дроссельных каналов к площади проходного сечения дроссельных каналов, расположенных в клапанном блоке и сообщающих поршневую и рекуперативную полости, не меньше отношения площади штоковой полости к площади штока. Обеспечивается симметричность силовой характеристики. 3 ил.

Изобретение относится к устройству подвески транспортного средства. Устройство подвески содержит амортизатор и механизм регулировки рабочей силы, предназначенный для регулировки или наклона автомобиля в поперечном направлении, или наклона автомобиля в продольном направлении. Амортизатор включает в себя цилиндр с рабочей жидкостью, поршень, делящий внутреннее пространство цилиндра на две камеры, шток поршня, канал, соединяющий две камеры, расположенный в канале механизм создания демпфирующей силы торможения течения рабочей жидкости при перемещении поршня, и механизм регулирования демпфирующей силы в зависимости от положения штока поршня, Механизм регулирования демпфирующей силы выполнен с возможностью обеспечения одной из следующих характеристик в диапазоне, когда шток поршня выдвинут из цилиндра за пределы первого заданного положения, демпфирующая сила зоны выдвижения находится в мягком режиме, а демпфирующая сила зоны сжатия находится в жестком режиме, в диапазоне, когда шток поршня втянут внутрь цилиндра за пределы второго заданного положения, демпфирующая сила зоны выдвижения находится в жестком режиме, а демпфирующая сила зоны сжатия находится в мягком режиме. Достигается улучшение комфорта во время движения автомобиля и улучшение стабильности управляемости. 6 з.п. ф-лы, 18 ил.

Изобретение относится к машиностроению. Амортизатор 1 содержит корпус 2, заполненный сжимаемым жидким эластомером 3, и погруженные в него шток 4 с поршнем 5. Поршень 5 расположен в корпусе 2 с дроссельным зазором. Внутренняя полость корпуса 2 плотно закрыта с одной стороны посредством крышки 6 с отверстием 17 для предварительного заполнения жидким эластомером 3, а с другой стороны - посредством крышки 7 с манжетным уплотнением 8, сквозь которое наружу пропущен шток 4 поршня 5. В корпусе 2 между поршнем 5 и крышкой 7 установлена вставка 9, направляющая ход поршня 5. Во вставке 9 выполнен сквозной канал 10, через который пропущена часть 11 штока 4. Со стороны вставки 9 расположен подвижный кольцевой клапан 14 и ограничитель хода этого клапана 15. В поршне 5 выполнено сквозное отверстие 16, сообщающее между собой части 12 и 13 внутренней полости корпуса. С одной стороны поршня 5 расположена вставка 9, направляющая ход поршня 5, а с другой стороны - крышка 6 с отверстием 17. Достигается повышение надежности и эффективности работы амортизатора. 1 з.п. ф-лы., 4 ил.

Изобретение относится к машиностроению. Двухштоковый амортизатор содержит корпус цилиндра, в котором образована жидкостная камера, и группу штоков, один конец которых проходит в корпус цилиндра, а другой выступает наружу с каждой стороны корпуса. Два поршня установлены с возможностью перемещения на штоке при приложении давления жидкости. Поршни образуют первую и вторую поршневые камеры, а также камеру для хранения жидкости между ними. Проточный зазор образован между наружными поверхностями поршней и внутренней поверхностью жидкостной камеры. Однонаправленные каналы выполнены с возможностью закрытия перетекания жидкости в одном направлении посредством перемещения поршней относительно штока. Достигается упрощение конструкции и возможность двусторонней работы амортизатора. 7 з.п. ф-лы, 6 ил.
Наверх