Способ определения суммарной антиоксидантной активности экстрактов чаев методом вольтамперометрии на модифицированном электроде



Способ определения суммарной антиоксидантной активности экстрактов чаев методом вольтамперометрии на модифицированном электроде

Владельцы патента RU 2567727:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" (RU)

Изобретение относится к фармацевтической промышленности, в частности к способу определения суммарной антиоксидантной активности экстрактов чаев методом вольтамперометрии на модифицированном фталоцианином кобальта Co(II) платиновом электроде. Способ определения суммарной антиоксидантной активности экстрактов чаев методом вольтамперометрии на модифицированном фталоцианином кобальта Со(II) платиновом электроде включает подготовку модифицированного электрода и определение антиоксидантной активности экстрактов чаев, которое проводят при определенной скорости развертки потенциала и определенном рабочем диапазоне потенциалов, используя для расчета кинетический критерий, отражающий количество активных кислородных форм, прореагировавших с антиоксидантами за минуту времени; в качестве фонового электролита для водно-спиртовых сред используют 0,1 моль/дм3 NaСlO4, растворенный в диметилформамиде. Вышеописанный способ позволяет с высокой точностью и воспроизводимостью оценивать суммарную антиоксидантную активность экстрактов чаев методом вольтамперометрии на модифицированном электроде. 1 табл., 1 пр.

 

Изобретение относится к аналитической химии и может быть использовано для оценки антиоксидантной активности разных экстрактов чаев.

Потребляемая нами пища и состояние окружающей среды оказывают существенное влияние на биологическое производство свободных радикалов.

Свободные радикалы имеют один и более одного неспаренных электрона и обладают повышенной реакционной способностью в радикально-цепных процессах в организме человека и животных. На сегодняшний день медиками и биохимиками доказано, что в избытке радикалы способны вызывать развитие патологических состояний, таких как: рак, инфаркты, сахарный диабет и др. Соединения, способные связывать содержащие неспаренные электроны частицы с образованием менее активных, являются антиоксидантами. Антиоксиданты играют важную роль в регуляции протекания свободно-радикальных превращений в организме, существенно влияя на его состояние, поэтому антиоксиданты и исследование антиокислительных свойств биологически активных соединений в последнее время получили широкое распространение. Однако для контролируемого потребления антиоксидантов необходимо знать не только их содержание в продуктах питания и напитках, а также их антиоксидантную активность. При большом содержании антиоксиданты становятся проантиоксидантами.

Среди традиционных продуктов питания, характеризующихся антиоксидантной активностью, особое место занимает чай. Этот популярный напиток давно зарекомендовал себя как продукт, содержащий антиоксиданты, что привело к появлению широкого спектра фармакологических, косметических препаратов и разнообразных биологических добавок на основе экстрактов чая (чаще всего зеленого). Предполагается, что такие препараты препятствуют оксидативному стрессу благодаря фенольным соединениям, входящим в состав таннино-катехиновой смеси чая (фенолкарбоновым кислотам, низкомолекулярным катехинам, таннинам и т.д.).

Поэтому первоочередной задачей становится проведение достоверных измерений антиоксидантной активности экстрактов чая.

Среди электрохимических способов определения суммарной антиоксидантной активности биологически активных веществ известен способ с использованием амперометрического метода (RU 2238554 С1, опубл. 20.10.04).

Изобретение относится к области фармакологии, фармации и может быть использовано для оценки антиоксидантной активности различных многокомпонентных смесей без их предварительного разделения. Способ включает подготовку проб анализируемого и стандартного веществ, их электрохимическое окисление в ячейке амперометрического детектора, усиление электрических сигналов, их регистрацию и расчет антиоксидантной активности по предложенной математической зависимости. Подготовку анализируемых проб осуществляют путем смешения соответствующих веществ с растворителем, не обладающим антиоксидантной способностью.

Недостатком этого способа является использование дорогостоящих стандартных веществ, обладающих высоким редокс-потенциалом.

Известен способ вольтамперометрического определения суммарной антиоксидной активности биологически активных веществ на стационарном стеклоуглеродном электроде в аммиачных буферных растворах методом вольтамперометрии (RU 2356050 С1, опубл. 20.05.09), который включает подготовку проб анализируемого и стандартного веществ, их электрохимическое окисление на стеклоуглеродном электроде в трехэлектродной электрохимической ячейке в аммиачных буферных растворах. Регистрацию вольтамперограмм осуществляют в классическом или дифференциальном режиме с последующим использованием значений высоты регистрируемых волн (пиков) для расчета антиоксидантной активности по формуле. Этот способ осуществляют в обычной стеклянной термостатируемой трехэлектродной электрохимической ячейке с использованием электронного полярографа и двухкоординатного самописца.

Недостатком известного способа является громоздкая установка и использование дорогостоящих стандартных веществ.

Известен способ, позволяющий определить суммарную антиоксидантную активность биологически активных веществ методом катодной вольтамперометрии на ртутно-пленочном электроде в различных фоновых электролитах в области потенциалов от 0,0 до -0,6 В (Короткова А.Н., Лукина А.Н., Гончаров Л.А. и др. Сборник докладов научно-практического семинара «Методы оценки антиоксидантной активности биологически активных веществ лечебного и профилактического назначения». М., 2004. - С. 182-192). Суть этого способа заключается в том, что в качестве модельной реакции, лежащей в основе методики, используется процесс электровосстановления кислорода, идущий по механизму, подобному восстановлению кислорода в клетках организма человека и животных, а также в тканях растений.

Измеряется первая катодная волна восстановления кислорода на ртутно-пленочном электроде в различных фоновых электролитах (фосфатный буфер, для апротонных сред 0.1 M NaClO4 и для биологических объектов - 0,9% NaCl) в области потенциалов от 0,0 до -0,6 В. В качестве критерия антиоксидантной активности биологически активных веществ предлагается использовать параметр, отражающий количество «обезвреженных» активных кислородных радикалов за минуту времени, мг/л·мин.

Несмотря на хорошую воспроизводимость метода к недостатку способа определения антиоксидантной активности следует отнести использование ртутно-пленочного электрода, для получения которого применяют токсичные соли ртути или металлическую ртуть.

Наиболее близким по назначению и совокупности существенных признаков является способ определения суммарной антиоксидантной активности экстрактов смесей чая вольтамперометрическим методом на ртутно-пленочном электроде (В.М. Мисин, Н.Н. Сажина, Е.И. Короткова. Измерение антиоксидантной активности экстрактов смесей чая электрохимическими методами // Химия растительного сырья. 2011. №2. - С. 137-143).

Недостатком этого способа является использование ртутно-пленочного электрода, для получения которого применяют токсичные соли ртути или металлическую ртуть.

Задачей изобретения является разработка способа, позволяющего с высокой точностью и воспроизводимостью оценивать суммарную антиоксидантную активность экстрактов чаев методом вольтамперометрии на модифицированном электроде.

Согласно изобретению способ определения суммарной антиоксидантной активности экстрактов чаев методом вольтамперометрии на модифицированном фталоцианином кобальта Со(II) платиновом электроде включает подготовку модифицированного электрода и определение антиоксидантной активности экстрактов чаев, которое проводят при скорости развертки потенциала 40 мВ/с и рабочем диапазоне потенциалов от 0 до -1,2 В, используя для расчета кинетический критерий, отражающий количество активных кислородных форм, прореагировавших с антиоксидантами за минуту времени. В качестве фонового электролита для водно-спиртовых сред используют 0,1 моль/дм3 NaClO4, растворенный в диметилформамиде.

Модифицированный электрод представляет собой платиновый электрод (PtЭ), на поверхности которого закреплен модификатор - фталоцианин из насыщенного раствора серной кислоты посредством сил адсорбции.

Методика модификации платинового электрода

Методика включает следующие стадии:

1. Обработка поверхности платинового электрода азотной кислотой для удаления всевозможных органических и неорганических загрязнителей.

2. Удаление азотной кислоты, промывание электрода дистиллированной водой, сушка поверхности.

3. Нанесение фталоцианин Со (PtCo(II)) на платиновый электрод посредством сил адсорбции из насыщенного раствора данного металлокомплекса, растворенного в серной кислоте (0,1 М).

4. Чтобы закрепить модификатор на подложке электрода, удаляется серная кислота посредством кратковременного погружения рабочей поверхности электрода в дистиллированную воду.

5. После этого электрод сушится до полного высыхания в сушильном шкафу при температуре не более 100°С.

Для уменьшения ошибки эксперимента, индикаторный электрод проходил предварительную поляризацию в области потенциалов: Е равно от +2 до -2 В, для PtCo(II) электрода в течение 5-10 мин, используя метод циклической вольтамперометрии.

В качестве электрода сравнения использовали хлоридсеребряный электрод.

Методика определения антиоксидантной активности экстрактов чаев

В электрохимическую ячейку помещали 10 см3 раствора фонового электролита. В качестве фонового электролита для водно-спиртовых сред использовали 0,1 моль/дм3 NaClO4, растворенный в диметилформамиде. Для работы собирали трехэлектродную ячейку, состоящую из рабочего модифицированного платинового электрода, хлоридсеребряного электрода, используемого в качестве электрода сравнения, и вспомогательного хлоридсеребряный электрода. Электроды опускали в раствор фонового электролита и подключали к анализатору ТА-2 (ООО «НИП «Томаналит», Томск). Использовался постоянно-токовый режим катодной вольтамперометрии, скорость развертки потенциала составляла W=40 мВ/с, рабочий диапазон потенциалов - от 0 до -1,2 В. Перемешивали раствор с помощью вибрации электродов 20 сек, 10 сек - стадия успокоение раствора. Далее снимали первую волну катодного восстановления кислорода, растворенного в фоновом растворителе, в указанной области потенциалов. Повторяли съемку вольтамперограммы не менее трех раз. Делали добавки экстрактов чаев, каждый раз снимая вольтамперограммы первой волны катодного восстановления кислорода. По полученным результатам строили график зависимости относительного тока электровосстановления кислорода ( I i I 0 ) от времени взаимодействия антиоксидантов с активными кислородными формами. По тангенсу угла наклона касательной к прямолинейному участку данной кривой проводили расчет кинетического (kкинетич. (мкмоль/л·мин)) критерия антиоксидантной активности.

Кинетический критерий отражает количество активных кислородных форм, прореагировавших с антиоксидантами (или суммарным содержанием антиоксидантов) за минуту времени. Размерность: мкмоль/л·мин.

где Ii - ток электровосстановления О2 в присутствии антиоксидантов в растворе, мкА;

IO - ток электровосстановления О2 в отсутствии антиоксидантов в растворе, мкА;

- исходная концентрация кислорода в растворе, мкмоль/л;

t - время реакции взаимодействия антиоксидантов с активными кислородными формами, мин.

Пример

В качестве объектов исследования были выбраны чаи: зеленый китайский, красный китайский, Оолонг, белый китайский, цветочный (прошедший частичную ферментативную обработку).

Пробоподготовка экстрактов чаев

Все чаи отдельно растирали до порошкообразного состояния в шарообразной мельнице, после чего экстрагировали 0,5 г измельченного чая в 25 мл экстрагента этанол:вода (70:30). Через 10 мин настои фильтровали. Для исследования антиоксидантной активности экстрактов чаев использовалась аликвота 1 мл.

Количественную оценку антиоксидантной активности экстрактов чаев проводили расчетным путем по формуле (1). Результаты определения антиоксидантной активности экстрактов чаев (k, мкмоль/(л·мин)) представлены в таблице 1.

Предложенный способ определения суммарной антиоксидантной активности экстрактов чаев методом вольтамперометрии отличается простотой, не требует больших трудозатрат, значительного количества реактивов и отличается высокой экспрессностью и чувствительностью. Предложенный способ может быть использован для оценки антиоксидантной активности биологически активных веществ.

Способ определения суммарной антиоксидантной активности экстрактов чаев методом вольтамперометрии на модифицированном фталоцианином кобальта Со(II) платиновом электроде, включающий подготовку модифицированного электрода и определение антиоксидантной активности экстрактов чаев, которое проводят при скорости развертки потенциала 40 мВ/с и рабочем диапазоне потенциалов от 0 до -1,2 В, используя для расчета кинетический критерий, отражающий количество активных кислородных форм, прореагировавших с антиоксидантами за минуту времени, в качестве фонового электролита для водно-спиртовых сред используют 0,1 моль/дм3 NaClO4, растворенный в диметилформамиде.



 

Похожие патенты:

Изобретение относится к текстильной, легкой и пищевой промышленности, а именно к технологии сушки и термовлажностной обработки пористых проницаемых материалов, и может быть использовано для определения коэффициента массоотдачи пористых материалов.

Изобретение относится к области анализа качества нефтепромысловых реагентов, в частности технологических жидкостей, содержащих поверхностно-активные вещества (ПАВ) анионного типа.

Изобретение относится к экологии и может найти применение при оценке степени токсичности определенного участка территории. Оценка состояния окружающей среды осуществляется путем оценки чистоты атмосферы по хвое деревьев, причем используется хвоя деревьев 2-3- летнего возраста, которую срезают на высоте 1,5 с части кроны, обращенной к источнику загрязнения, и оценивают экологическое состояние окружающей среды на основании определения соответствия отделяемых хвоинок биологическим особенностям путем осмотра на предмет проявления хлорозов и некрозов, класса повреждения хвои, класса усыхания хвои, при этом в случае, если соответствие биологическим особенностям составляет 95-100%, класс повреждения хвои соответствует хвое без пятен, а класс усыхания хвои соответствует неусохшей хвое, то это соответствует экологически безопасной зоне, если соответствие биологическим особенностям составляет 80-94%, класс повреждения хвои соответствует хвое с небольшим числом пятен, а класс усыхания хвои соответствует усыханию 1/3 длины хвоинки, то это соответствует зоне относительного экологического благополучия, если соответствие биологическим особенностям составляет менее 80%, класс повреждения хвои соответствует хвое с большим числом черных и желтых пятен, а класс усыхания хвои соответствует усыханию более 1/2 длины хвоинки, то это соответствует зоне повышенного экологического риска.

Изобретение относится к определению механических характеристик грунтов в лабораторных и полевых условиях. Для этого используют сдвиговое устройство для испытания на срез образцов мелкозернистых связных и несвязных грунтов и снега.

Изобретение относится к области аналитической химии, а именно к экспресс-обнаружению агрессивных химических веществ кислого характера на горизонтальных, наклонных и вертикальных поверхностях.

Группа изобретений относится к газовому анализу. Представлен электрохимический газовый датчик, включающий: корпус, первый рабочий электрод внутри корпуса, имеющий первую часть средства газопереноса с первым слоем катализатора на ней, и по меньшей мере второй рабочий электрод внутри корпуса, имеющий вторую часть средства газопереноса со вторым слоем катализатора на ней, при этом по меньшей мере одна из первой и второй частей средства газопереноса включает по меньшей мере одну область, в которой ее структура необратимо изменена посредством по меньшей мере одного из термического сваривания, химической реакции и осаждения материала для предотвращения газопереноса через упомянутую по меньшей мере одну из первой и второй частей средства газопереноса в направлении другой из упомянутой по меньшей мере одной из первой и второй частей средства газопереноса.

Изобретение относится к аналитической химии, а именно к исследованию и анализу высокомолекулярных материалов с помощью ИК-спектроскопии при определени состава сополимеров полиакрилата и полиакрилонитрила (ПАН) для обеспечения контроля качества углеродного волокна.

Изобретение относится к области генетической инженерии и биотехнологии. Предложен способ оценки биоактивности химических соединений, где на первой стадии проводят транзиентную трансфекцию клеток линии HEK 293 плазмидным вектором pX-Y-neo (X - любой транскрипционный фактор эукариот, Y - протеотипический пептид, соответствующий данному транскрипционному фактору), содержащим минимальный промотор аденовируса человека типа 5; ген зеленого флуоресцирующего белка; последовательность нуклеотидов, кодирующих сайт связывания транскрипционного фактора; последовательность нуклеотидов, кодирующих протеотипический пептид; ген устойчивости к неомицину, затем на второй стадии определяют активность транскрипционного фактора путем флуоресцентного анализа и хромато-масс-спектрометрического измерения содержания протеотипического пептида в трансфицированной культуре клеток в присутствии тестируемого вещества в сравнении с трансфицированной интактной культурой клеток.

Изобретение относится к области сельского хозяйства и может быть использовано для исследования физико-механических свойств корнеклубнеплодов. Устройство для исследования физико-механических свойств корнеклубнеплодов содержит раму (1) с прикрепленными к ней электродвигателем (2), на валу которого установлен сменный диск (3) с исследуемой поверхностью, и направляющей (4), на которой установлена подвижная тележка (5).

Изобретение относится к области оценки степени загрязненности атмосферного воздуха и может быть использовано при мониторинге атмосферного воздуха фоновой и урбанизированной территории.

Использование: для обнаружения анализируемых веществ в физиологических жидкостях. Сущность изобретения заключается в том, что электрохимическая система содержит: электрохимический датчик; испытательный измерительный прибор, выполненный с возможностью приема электрохимического датчика; и схему внутри испытательного измерительного прибора, причем схема выполнена с возможностью формирования электрического соединения с электрохимическим датчиком, когда этот датчик расположен в испытательном измерительном приборе, и дополнительно выполнена с возможностью обнаружения первого напряжения, указывающего, что никакой электрохимический датчик не расположен в испытательном измерительном приборе, второго напряжения, отличающегося от первого напряжения и указывающего, что в испытательном измерительном приборе находится электрохимический датчик без пробы физиологической жидкости, и третьего напряжения, отличающегося от первого и второго напряжений и указывающего, что электрохимический датчик расположен в испытательном измерительном приборе, а проба физиологической жидкости нанесена на электрохимический датчик.

Изобретение относится к медицине, а именно к оториноларингологии, и может быть использовано при выборе тактики лечения гипертрофии глоточной миндалины и хронического аденоидита.

Изобретение относится к медицине и описывает способы для определения концентрации аналита в пробе, приборы и системы, используемые в связи с ними. В одном из вариантов осуществления изобретения способ включает обнаружение содержащей аналит пробы, введенной в электрохимический сенсор, содержащий два электрода в разнесенной конфигурации; реагирование аналита с вызыванием физического превращения аналита между двумя электродами; измерение выходов тока на дискретных интервалах для выведения времени заполнения сенсора пробой и емкости сенсора с пробой; определение первого значения концентрации аналита по выходам тока; расчет второго значения концентрации аналита по выходам тока и первому значению концентрации аналита; корректировку второго значения концентрации аналита на влияния температуры для обеспечения третьего значения концентрации аналита; корректировку третьего значения концентрации аналита как функции времени заполнения сенсора для обеспечения четвертого значения концентрации аналита; и корректировку четвертого значения концентрации аналита как функции емкости для обеспечения конечного значения концентрации аналита.

Изобретение относится к области аналитической химии, в частности к анализу минеральных вод на предмет определения гидрокарбонат-ионов объекта исследования. Способ включает титрование пробы минеральной воды кислотным титрантом и измерение сопротивления в растворе кондуктометрической ячейки при добавлении каждой порции титранта, всего до 20 замеров, отличается тем, что в качестве титранта при определении гидрокарбонат-ионов в минеральной воде используют раствор хлористоводородной кислоты (HCl), для этого 10 мл минеральной воды вносят в электрохимическую ячейку с двумя платиновыми электродами со строго зафиксированным между ними расстоянием, затем в электрохимическую ячейку добавляют одну каплю 0,1% индикатора метилового оранжевого, бюретку для титрования заполняют раствором хлористоводородной кислоты (HCl), в электрохимическую ячейку опускают магнитик и включают магнитную мешалку для перемешивания раствора в ячейке, электроды с помощью электрических проводов крокодилами подключают к настольному портативному цифровому LCR-метр ELC-131D прибору и включают его, при титровании получают экспериментальные данные одновременно двумя методами - методом кислотно-основного титрования, основанным на нейтрализации гидрокарбонат-ионов соляной кислотой в присутствии индикатора метилового оранжевого, и кондуктометрическим титрованием, после прибавления каждой порции титранта фиксируют по прибору значение сопротивления (R) анализируемого раствора, что соответствует кондуктометрическому титрованию, а после изменения цвета раствора в присутствии индикатора, а именно перехода розового цвета раствора в желтый, измеряют общий объем титранта (VТЭ) по бюретке (метод кислотно-основного титрования), далее аналогично описанному выше подвергают анализу еще 3 пробы воды каждая объемом 10 мл, причем при определении содержания гидрокарбонат-ионов в питьевых минеральных водах предварительно устанавливают точную концентрацию титранта HCl по буре (натрий тетраборнокислый - Na2B4O7·10Н2О).

Изобретение относится к исследованию и анализу материалов и может быть использовано для определения структурного состояния талой воды в разное время после таяния.

Изобретение относится к аналитической химии азота, в частности к определению общего азота в сельскохозяйственном сырье и продуктах его переработки. Способ характеризуется тем, что предусматривает термическое кислотное разложение пробы растительного образца, кратное разбавление пробы до содержания аммонийного азота не более 1000 мг/дм3 и выполнение анализа методом капиллярного электрофореза в кварцевом капилляре, эффективной длиной 0,5 м, внутренним диаметром 75 мкм с получением электрофореграммы, причем общий азот определяют по содержанию аммонийного азота и остаточному содержанию нитрат- и нитрит- ионов, причем для определения аммонийного азота используют водный раствор ведущего электролита, содержащий бензимидазол, 18-краун-эфир-6, сульфат натрия при положительном напряжении на капилляре 12 кВ и длине волны детектирования - 254 нм, а для определения методом капиллярного электрофореза остаточного содержания нитрат- и нитрит-ионов применяют водный раствор ведущего электролита, содержащего хромат калия, уротропин и Трилон Б при отрицательном напряжении на капилляре 14 кВ и длине волны детектирования -254 нм.

Группа изобретений относится к медицине, косметологии, производству продуктов питания, витаминов, БАДов, лекарственных средств и описывает варианты устройства для реализации неинвазивного потенциометрического определения оксидантной/антиоксидантной активности биологических тканей, включающего прибор для измерения потенциалов и двухсторонний электрод, выполненный в виде пластины с одинаковыми рабочими поверхностями, покрытыми электропроводящим гелем, содержащим медиаторную систему.

Использование: для исследования процессов массопереноса и для определения коэффициентов диффузии растворителей в изделиях из ортотропных капиллярно-пористых материалов в строительной, химической и других отраслях промышленности.
Изобретение относится к медицине, а именно к лабораторной диагностике, и предназначено для исследования глюкозы и общего белка в сыворотке крови. Способ предусматривает для исследования сыворотки крови применять биполярный метод поличастотной электроимпедансометрии с определением модульного значения импеданса (|Z|) и фазового угла (φ) на частотах 20, 98, 1000, 5000, 10000, и 20000 Гц переменного электрического тока малой мощности с помощью программно-аппаратного комплекса, оснащенного программой для ЭВМ «БИА-лаб Композитум», при этом проводят измерение в микрокамере объемом 50 мкл, при этом программа автоматически рассчитывает концентрацию общего белка, глюкозы, хлоридов и двухвалентных ионов в сыворотке крови на основании решения системы математических уравнений, а результат отображается на дисплее и может быть распечатан на принтере.

Изобретение относится к области аналитической химии и может быть использовано для автоматического или экспресс-анализа в лабораторных или промышленных условиях.

Изобретение относится к контрольно-измерительной технике и может быть использовано для определения адгезионных свойств различных типов покрытий стальных объектов и сооружений методом катодной поляризации. Устройство управления электрохимическими потенциалами для контроля адгезии покрытия методом катодной поляризации содержит по меньшей мере две электрохимические ячейки, подключенные к источнику постоянного тока, и по меньшей мере две группы элементов, каждая из которых включает измерительный блок и блок управления потенциалами, подключенные параллельно к одному источнику постоянного тока. Каждая электрохимическая ячейка состоит из исследуемого образца с покрытием, электрода сравнения и инертного электрода, которые размещены в емкости из инертного материала с электролитом. Элементы каждой ячейки могут быть подключены к источнику постоянного тока с помощью одного многоконтактного разъема. Измерительный блок состоит из двух вольтметров, эталонного сопротивления и подключенных параллельно двух стабилизированных преобразователей переменного тока в постоянный. Блок управления потенциалами состоит по меньшей мере из двух реостатов, которые имеют различные максимальные сопротивления и подключены последовательно к положительному полюсу источника постоянного тока. Кроме того, измерительные блоки и блоки управления потенциалами могут быть размещены в корпусе, а устройство может быть снабжено экранирующим контуром. Использование устройства позволяет повысить точность измерения и установки электрохимического потенциала, обеспечить регулировку потенциала в каждой электрохимической ячейке и повысить производительность при проведении испытаний. 2 з.п. ф-лы, 3 табл., 2 ил.
Наверх