Способ извлечения полезных компонентов из хвостов обогащения в виде глинистого рудного материала.

Изобретение относится к способу извлечения полезных компонентов из хвостов обогащения в виде глинистого рудного материала. Способ включает укладку исходного материала в штабель и выщелачивание полезных компонентов с использованием выщелачивающих реагентов. При этом исходный глинистый материал укладывают в штабель наклонными слоями при чередовании слоя исходного материала со слоем волокнистого капиллярно-пористого материала. Слой волокнистого капиллярно-пористого материала армируют. Предварительно волокнистому капиллярно-пористому материалу придают кусковую форму. Волокнистый капиллярно-пористый материал предварительно перед укладкой пропитывают концентрированным выщелачивающим реагентом, а штабель в процессе выщелачивания орошают водой. Волокнистый капиллярно-пористый материал изготавливают из выщелачивающих реагентов. Техническим результатом является снижение трудоемкости извлечения полезных компонентов из хвостов обогащения в виде глинистого рудного материала. 4 з.п. ф-лы, 1 ил., 1 пр.

 

Изобретение относится к области обогащения кучным выщелачиванием и физико-химических методов извлечения полезных компонентов.

Известны способы кучного выщелачивания полезных компонентов, включающие укладку материала на площадках; его орошение выщелачивающим раствором; дренаж; сбор продукционных растворов и извлечение металла из раствора (Г.Д. Лисовский, Д.П. Лобанов, В.П. Назаркин и др. Под ред. Волощука С.Н. Кучное и подземное выщелачивание металлов. - М.: Недра, 1982. - 113 с.).

Недостатком способов является низкая эффективность выщелачивания глинистого материала.

Более близким аналогом по технической сущности является технологическое решение по кучному выщелачиванию металлов (см. патент Российской Федерации 2283879, С22В 3/04 (2006.01), С22В 11/00 (2006.01), 20.09.2006), включающее подготовку исходного материала посредством разделения на узкие фракции и последовательную укладку по фракциям в штабель.

Недостатком такого решения кучного выщелачивания является трудоемкость подготовительных операций.

Задачей предлагаемого изобретения является снижение трудоемкости и повышение эффективности извлечения полезных компонентов из техногенных объектов.

Для решения поставленной задачи предлагается глинистый материал укладывать наклонными слоями в штабель, чередуя слой исходного материала со слоем волокнистого капиллярно-пористого материала. Слоевая укладка глинистого материала и наличие смежных слоев из волокнистого капиллярно-пористого материала позволяет сохранить высокие фильтрационные свойства штабеля в целом. Свойства волокнистого капиллярно-пористого материала обеспечивают перемещение выщелачивающих растворов сверху вниз вдоль слоя. Применение наклонных слоев обеспечивает постоянную подпитку выщелачиваемого материала раствором по нижней плоскости контакта слоя волокнистого капиллярно-пористого материала для условий воздействия гравитационных сил при передвижении растворов по штабелю сверху вниз. Это обусловливает полное и равномерное распределение выщелачивающих растворов по всему материалу штабеля, обеспечивая проницаемость штабеля на протяжении всего процесса выщелачивания.

Слой волокнистого капиллярно-пористого материала армируют. Для того чтобы исключить нарушение капиллярной пористости при формировании штабеля и в процессе эксплуатации из-за смятия, толщину слоя волокнистого капиллярно-пористого материала фиксируют, например, каркасными силовыми элементами.

Волокнистый капиллярно-пористый материал укладывают в штабель одновременно с исходным глинистым материалом, причем предварительно волокнистому капиллярно-пористому материалу придают кусковую форму. Равномерное распределение волокнистого капиллярно-пористого материала в кусковой форме по всему объему штабеля препятствует уплотнению глинистого исходного материала в штабеле при его увлажнении и движении по нему растворов. Даже в случае уплотнения глинистого материала до полного нарушения пористости в участках между кусками волокнистого капиллярно-пористого материала в объеме штабеля движение выщелачивающих растворов не прекратится и будет осуществляться по кускам волокнистого капиллярно-пористого материала, осуществляя при этом смачивание глинистого материала по границам куска. Процесс извлечения выщелачиванием в таком варианте хоть и замедлится, но не прекратится.

Исходный глинистый материал руды смешивают с волокнистым капиллярно-пористым материалом и затем укладывают в штабель. Дополнение пористости при равномерном перемешивании снизит долю глинистости и соответственно уменьшит возможность полного нарушения пористости материала в штабеле.

Волокнистый капиллярно-пористый материал предварительно перед укладкой пропитывают концентрированным выщелачивающим реагентом, а штабель в процессе выщелачивания орошают водой. Применение волокнистого капиллярно-пористого материала в массиве штабеля играет организующую роль в распределении по массиву и в траектории перемещения растворов. А поскольку раствор первоначально поступает в поры волокнистого капиллярно-пористого материала, то логичным решением служит закладывание реагента в этот материал, что позволяет равномерно распределить реагент по массиву и упростить операцию орошения штабеля (в том числе исключает применение специального оросительного оборудования).

Волокнистый капиллярно-пористый материал изготавливают непосредственно из выщелачивающих реагентов.

Рассмотрим способ на примере конкретного исполнения.

На фиг. 1 показана схема хвостохранилища, где 1 - массив хвостов обогащения, 2 - зумпф, 3 - слой гигроскопического материала, 4 - геохимический барьер, 5 - наклонные слои волокнистого материала.

В центральной части хвостохранилища, до его ложа массива хвостов 1, проходит зумпф 2. Откачиванием воды из зумпфа 2 проводят осушение всего массива хвостов обогащения 1. Во время осушения на поверхность хвостов обогащения 1 укладывают слой гигроскопического материала 3. После того, как массив хвостов обогащения 1 осушен и уложен слой гигроскопического материала 3, массив хвостов обогащения 1 насыщают выщелачивающим раствором. Насыщение осуществляют подачей раствора через зумпф 2. Выщелачивающий раствор заполняет массив 1. После заполнения выщелачивающим раствором до уровня поверхности слой гигроскопического материала начинает впитывать продукционный раствор по всей поверхности и накапливать его внутри слоя. По мере заполнения гигроскопического слоя 3 продуктивный раствор удаляют либо принудительно методом отжима, испарением или волновыми колебаниями, либо самотеком по сформированным уклонам по поверхности к месту сбора. Продукционный раствор откачивают на извлечение из него полезных компонентов и восстановление выщелачивающих свойств. Восстановленный выщелачивающий раствор вновь подают в массив.

При наличии слоя геохимического барьера 4 перед слоем гигроскопического материала 3 продукционный раствор перед впитыванием слоем гигроскопического материала 3 проходит через геохимический барьер 4. В нем происходит осаждение и накапливание полезных компонентов, а сам раствор откачивают, восстанавливают выщелачивающие свойства и затем также возвращают в массив.

Технический результат представленного способа извлечения полезных компонентов из хвостов обогащения заключается в:

- повышении эффективности добычи за счет использования природных механизмов и ресурсов недр;

- расширении минерально-сырьевой базы за счет вовлечения в разработку техногенных объектов;

- доизвлечении полезных компонентов из хвостов обогащения.

1. Способ извлечения полезных компонентов из хвостов обогащения в виде глинистого рудного материала, включающий укладку исходного глинистого рудного материала в штабель и выщелачивание полезных компонентов с использованием выщелачивающих реагентов, при этом в штабель исходный глинистый рудный материал укладывают наклонными слоями с чередованием слоев исходного материала со слоями волокнистого капиллярно-пористого материала.

2. Способ по п. 1, отличающийся тем, что слой волокнистого капиллярно-пористого материала армируют.

3. Способ по п. 1, отличающийся тем, что предварительно перед укладкой волокнистому капиллярно-пористому материалу придают кусковую форму.

4. Способ по п. 1, отличающийся тем, что волокнистый капиллярно-пористый материал предварительно пропитывают концентрированным выщелачивающим реагентом, а штабель в процессе выщелачивания орошают водой.

5. Способ по п. 1, отличающийся тем, что используют волокнистый капиллярно-пористый материал, который изготовлен из упомянутых выщелачивающих реагентов.



 

Похожие патенты:

Изобретение относится к извлечению металлов и металлических соединений из металлоносного сырья. Способ включает смешивание с водной средой металлоносной руды и/или источника сырья, содержащего первый металл в нерастворимой форме, хромоносный материал в качестве второго металла, и другие соединения, для получения суспензии, содержащей первый металл в нерастворимой форме, соединения Cr и другие соединения.
Группа изобретений относится к извлечению дисперсного золота из упорных руд и техногенного минерального сырья. Способ включает агломерацию золотосодержащей минеральной массы исходного сырья путем добавки к ней связующего материала, формирование штабеля, выщелачивание золота подачей в штабель раствора реагента, выщелачивающего золото, сбор рабочих растворов с последующим выделением из него золота.

Изобретение относится к гидрометаллургии, в частности к технологии переработки рудных концентратов ниобия и тантала. Способ получения оксидов ниобия и тантала из колумбитового (танталитового) концентрата включает его вскрытие фторидами аммония и серной кислотой, последующее выделение, очистку и разделение солей ниобия и тантала экстракцией.

Изобретение относится к способу извлечения ценных компонентов из сульфидного сырья. Способ включает промывку сырья водой с получением твердого осадка, получение сульфатного раствора, из которого извлекают железо, медь и цинк путем перевода железа в осадок в виде гидроксида железа Fe(OH)3, осаждения меди из фильтрата железным скрапом, осаждения цинка из фильтрата сероводородом.

Изобретение относится к извлечению полезных компонентов из руд. Способ выщелачивания полезных компонентов из руды включает подготовку исходной руды, укладку рудного материала, подачу выщелачивающих растворов и сбор продукционных растворов.

Изобретение относится к области переработки отходов полупроводниковых соединений на основе галлия. Способ заключается в том, что отходы смешивают с селитрой и содой в соотношении 1:(1-1,25):(1-1,25), теоретически необходимом для реакции окисления.
Изобретение относится к способу выщелачивания ценных минералов из проницаемого рудного тела или из твердых частиц, полученных из руды, содержащей компоненты карбоната металла и сульфида металла.

Изобретение относится к технологии редких и радиоактивных элементов и может быть использовано для получения концентратов редких и редкоземельных элементов из монацита.

Изобретение относится к технологии получения оксида цинка и может быть использовано для получения оксида цинка со смещенным изотопным составом. Способ включает получение гидроксида цинка из диэтилцинка, которое ведут в проточном реакторе в струе воды или водной пульпы, содержащей гидроксид цинка, с расходом диэтилцинка до 40 кг в час с получением пульпы, содержащей частицы гидроксида цинка.

Изобретение относится к способу переработки доманиковых образований. Способ включает агитационную нейтрализацию-декарбонизацию обработкой пульпой измельченной руды или нейтрализатором укрепленного раствора, очищенного от алюминия, с получением продуктивного раствора и декарбонизированного кека.

Изобретение относится к переработке полиметаллических руд грануляцией и последующим кучным выщелачиванием. Грануляцию руды осуществляют раствором серной кислоты с расходом 0,033-0,2 т/т руды. В качестве связующей добавки используют жидкое стекло с расходом 0,0-2,0%. Расход жидкого стекла зависит от содержания глинистых минералов в руде. Расход серной кислоты выбирают в зависимости от кислотоемкости руды. Состав исходного материала может продиктовать необходимость введения добавок - окислителей и дополнительных вяжущих. Затем следует стадия вылеживания, при которой удаляется лишняя влага, а гранулы приобретают прочность. Вылежанные гранулы штабелируют в кучи и выщелачивают водой или слабокислым раствором серной кислоты. Техническим результатом является повышение извлечения ценных компонентов в продуктивный раствор, снижение расхода выщелачивающего раствора, уменьшение времени отработки штабеля, уменьшение объемов продуктивных растворов и, как следствие, объемов сбросных растворов; предотвращение кольматации кучи. 4 з.п. ф-лы, 1 ил., 2 табл., 3 пр.

Изобретение относится к области утилизации отходов гальванического производства, например шламов, путем переработки последних и может быть использовано на предприятиях цветной металлургии и предприятиях, использующих в своем производственном цикле соединения цветных металлов. Способ переработки шлама гальванического производства включает введение в суспензию шлама влажностью более 90% пирокатехина в количестве 0,7-0,9 г на 1 л суспензии, перемешивание в течение 48 ч и отделение осадка фильтрацией. Полученный фильтрат содержит пирокатехиновые комплексы металлов, извлеченных из гальванического шлама. Технический результат - снижение количества операций, отсутствие агрессивных реагентов в процессе извлечения, образование с выходом до 89,7% товарного продукта - пирокатехиновых комплексов металлов. 4 табл., 2 пр.

Изобретение относится к технологии редких и редкоземельных металлов и может быть использовано на рудоперерабатывающих предприятиях для вскрытия и переработки трудно разлагаемых концентратов для извлечения редкоземельных металлов (РЗМ), циркония, титана и других металлов. Способ бифторидной переработки особо упорного редкого и редкоземельного минерального сырья включает смешивание исходного сырья в виде порошка с твердым фторирующим реагентом и обработку во фторопластовых реакторах со стальным кожухом закрытого типа при температурах 140-190°C при избыточном давлении. При этом в качестве фторирующего агента используют смесь бифторида (гидродифторида) аммония (NH4HF2) и фтористоводородной кислоты в количестве, достаточном для полного поглощения выделяющегося аммиака Техническим результатом изобретения является разработка бифторидного способа разложения концентратов Р3М и упорных редкометальных концентратов, в том числе содержащих Р3М, обеспечивающего концентрирование Р3М в виде нерастворимых фторидов и их дальнейший перевод в удобную растворимую форму. 1 табл., 2 пр.
Изобретение относится к технологии выделения редкоземельных элементов (РЗЭ) из природных фосфорсодержащих концентратов. Монацитовый концентрат обрабатывают при нагревании серной кислотой c получением спека, содержащего сульфаты редкоземельных элементов. Далее осуществляют отмывку спека в две стадии, на первой стадии обработку ведут маточником после выделения осадка редкоземельных элементов, полученного из водного раствора со второй стадии отмывки. На первой стадии отмывку проводят в режиме противотока при T:Ж=1:2÷3, на второй стадии проводят отмывку водой при температуре 5-20°C при T:Ж=1:6÷8. Технический результат заключается в повышении содержания РЗЭ в коллективном редкоземельном концентрате, обеспечении высокой степени очистки от тория, фосфорных соединений, снижении расхода реагентов. 2 з.п. ф-лы, 3 пр.

Изобретение относится к способу добычи ванадия, никеля и молибдена из остатков очистки тяжелой сырой нефти. Способ включает пиролиз и сжигание остатков при температурах до 900°C для образования золы. Далее ведут преобразование золы в водную суспензию и экстракцию солей и оксидов ванадия, никеля и молибдена из суспензии. Техническим результатом является переработка остатков от применения новых каталитических технологий суспензионного типа для глубокого гидрокрекинга тяжелого вакуумного остатка. 20 з.п. ф-лы, 3 ил.

Изобретение относится к гидрометаллургической переработке золотосодержащих упорных руд и техногенного минерального сырья и предназначено для извлечения золота из них. Способ заключается в том, что штабель из упорной руды одновременно или в виде смеси орошают раствором, содержащим комплексообразователь для золота, и раствором, подвергнутым обработке в фотоэлектрохимическом реакторе. Полученные продуктивные растворы направляют на сорбцию, часть маточных обеззолоченных растворов реактивируют электролизом, доукрепляют комплексообразователем, кондиционируют pH и подают на орошение штабеля параллельно или в виде смеси с раствором, подвергнутым обработке в фотоэлектрохимическом реакторе. Техническим результатом является повышение эффективности способа за счет сокращения расхода комплексообразователя и щелочей и повышения извлечения дисперсного и инкапсулированного золота. 3 ил., 1 табл., 1 пр.

Изобретение относится к технологии извлечения скандия из различных видов сырья и техногенных отходов и может быть использовано для избирательного извлечения скандия из отходов производства алюминия (красные шламы), титана (отработанные расплавы), диоксида титана (гидролизная серная кислота или солянокислые раствора), циркония, олова, вольфрама, урана. Cпособ получения оксида скандия из скандийсодержащих концентратов включает сорбцию скандия из раствора ионообменными сорбентами, промывку и отделение сорбента от пульпы сорбции, конверсию сорбента. Далее ведут десорбцию скандия карбонатными растворами, отмывку сорбента от десорбирующего раствора, последующую переработку растворов десорбции с получением скандиевых концентратов. При этом в качестве сорбента для сорбции скандия используют фосфорсодержащие иониты. Процесс сорбции ведут непрерывно в противоточном режиме в системе «пульпа-сорбент» и контролем pH пульпы в диапазоне 1,5-2,0 введением в нее концентрированной серной кислоты. Техническим результатом является повышение степени извлечения скандия из скандийсодержащего материала. 2 з.п. ф-лы, 2 ил., 8 табл.

Изобретение относится к металлургии. Способ химического обогащения полиметаллических марганецсодержащих руд включает дробление и размол руды, который ведут до крупности минус 0,125, автоклавное выщелачивание присутствующих в руде элементов путем смешивания ее с 18%-ным раствором хлористого железа в соотношении 1:9 с последующим нагревом до температуры 475-500 K в течение 3 часов. Полученную после выщелачивания пульпу охлаждают до температуры 353-363 K и отделяют раствор от осадка. Проводят селективное осаждение из раствора марганца, никеля, железа и кобальта в виде их соединений. Марганец осаждают раствором известкового молока при pH=7-8 и T=298 K, железо - раствором аммиака при pH=4-5 и T=298 K, никель - раствором гипохлорита кальция и известковым молоком при pH=10 и T=298 K, а кобальт - раствором соды при pH=8-9 и T=323 K. После осаждения соединений упомянутых элементов, осадок отделяют от раствора и прокаливают осадки соединений железа, марганца и кобальта. Обеспечивается повышение извлечения марганца, никеля, кобальта. 1 ил., 1 табл., 1 пр.

Изобретение относится к способу кучного выщелачивания золота из исходного сырья в виде золотосодержащих упорных руд и техногенного минерального сырья. Способ включает агломерацию исходного сырья путем добавки к нему связующего материала, формирование штабеля, выщелачивание золота путем подачи в штабель раствора выщелачивающего реагента, рециркуляцию рабочих растворов, сбор продуктивных растворов и выделение из них золота. Первичное выщелачивание свободного золота и золота в сростках ведут раствором реагента-комплексообразователя, затем проводят выдержку и подают в штабель сернокислотно-пероксидный и карбонатно-пероксидный растворы, прошедшие фотоэлектрохимическую обработку, после чего проводят следующую выдержку и довыщелачивание тонкого и дисперсного золота, вскрытого при окислении магнетита, сульфидно-сульфосолевых минералов и трансформации структуры кварца-халцедона. Обеспечивается повышение эффективности выщелачивания золота из исходного сырья. 1 з.п. ф-лы, 1 пр.

Изобретение относится к металлургии цветных металлов. Способ переработки сульфидного никелевого сырья включает обжиг шихты, содержащей сульфидное никелевое сырье и хлорид натрия, при температуре 350-400°С с доступом кислорода в течение 1,5-2 ч и выщелачивание полученного огарка водой при температуре до 100°С. Шихту готовят из смеси сульфидного никелевого сырья и сульфидного медного концентрата и хлорида натрия при массовом соотношении смеси сульфидного никелевого сырья и сульфидного медного концентрата к хлориду натрия 1:0,5-2,0 и массовом соотношении Cu/Ni в шихте больше 3. Выщелачивание ведут с переводом в раствор водорастворимых соединений никеля и меди. Обеспечивается максимально полный перевод никеля в водорастворимую форму для выщелачивания его водой, а также сокращение выделения диоксида серы в атмосферу. 2 ил., 4 пр.
Наверх