Способ измерения расстояния от излучателя до контролируемого объекта на основе чм локатора

Изобретение относится к области ближней локации и технике промышленных уровнемеров. Достигаемый технический результат - исключение методической ошибки дискретности, упрощение за счет сокращения объема измерения, простота реализации при аналоговой и цифровой модуляции излучаемого сигнала. Указанный результат достигается за счет того, что способ основан на методе обработки сигнала разностной частоты, получаемого путем смешивания излучаемого сигнала, модулированного по частоте по линейному закону, и отраженного, при этом обработка ведется во временной области и включает измерение на интервале анализа числа полупериодов сигнала разностной частоты, времени начала первого полупериода, времени окончания последнего полупериода сигнала разностной частоты и на их основе, с учетом параметров модуляции, вычисление измеряемого расстояния. 3 ил.

 

Изобретение относится к области ближней локации и технике промышленных уровнемеров.

Известен способ измерения расстояния [1], являющийся аналогом, состоящий в излучении в направлении контролируемого объекта частотно-модулируемого сигнала, приеме отраженного от объекта сигнала, преобразования на смесителе излучаемого и принятого сигналов и выделения сигнала разностной частоты (СРЧ), измерения ее величины и по ней определения расстояния до объекта.

Обработка СРЧ производится либо во временной области [2, 3], (счетный метод и его разновидности, весовые методы усреднения), являющаяся аналогом, либо в частотной области. И временному, и спектральному методам определения расстояния присуща методическая ошибка дискретности (ОД), величина которой обратно пропорциональна девиации частоты. Необходимость снижения ОД вынуждает увеличивать девиацию и усложнять обработку СРЧ. Это является недостатком аналогов.

Известен способ измерения расстояния [4] с помощью ЧМ уровнемера, являющийся прототипом, при котором расстояние определяется по числу полупериодов СРЧ на интервале наблюдения и величине частоты излучения в моменты времени, соответствующие началу первого и концу последнего полупериода СРЧ. Недостаток прототипа заключается в сложности измерения (с необходимой точностью) мгновенного значения частоты ЧМ СВЧ колебания при непрерывной модуляции.

Технические задачи, решаемые предлагаемым способом, - обеспечение отсутствия методической ошибки дискретности и устранение трудности измерения частоты fn+m и fn, присущей прототипу при аналоговой модуляции частоты излучения.

Технические задачи решаются следующим образом. В направлении контролируемого объекта излучается сигнал, модулированный по частоте по линейному закону (модуляционная характеристика треугольная), принимается отраженный от объекта сигнал, который на смесителе смешивается с излучаемым сигналом и выделяется сигнал разностной частоты. По нулевым значениям СРЧ определяется число полупериодов m, укладывающихся на интервале анализа, измеряется время начала первого полупериода tn, измеряется время окончания m-го полупериода tn+m, а измеряемое расстояния рассчитывается по формуле:

для симметричной треугольной модуляционной характеристики;

для пилообразной модуляционной характеристики с нулевым обратным ходом, где ν - скорость электромагнитных волн, Tm - период модуляции, ΔF - диапазон перестройки частоты.

Выражения (1) и (2) получены на основании формулы, предложенной в [4]:

Если обозначить начало произвольного периода модуляции t1, нижнюю границу перестройки - f1, то для восходящей ветви симметричной треугольной модуляционной характеристики можно записать:

С учетом (3) получаем (1) и (2).

Аналогичный результат получается для нисходящей ветви.

В соответствии с (1) были проведены расчеты относительной ошибки измерения расстояния где - измеренное расстояние, для симметричной треугольной модуляционной характеристики при различных значениях параметров измерителя.

При расчетах сигнал разностной частоты задавался в виде выражения

где - время задержки отраженного сигнала, α - произвольная фаза, n(t) - аддитивный белый гауссовский шум. Расчеты проводились методом статистических испытаний при следующих параметрах зондирующего сигнала: период модуляции Tm=16 мс, интервал времени девиация частоты ΔF = 300; 500; 800 МГц, количество отсчетов СРЧ на интервале анализа - 2000; 4000, величина α варьировалась в пределах [0÷π], усреднение в точках осуществлялось по 106 значениям.

Результаты расчетов приведены на Фиг. 1 и Фиг. 2. Из приведенных зависимостей следует:

- методическая ошибка измерения R зависит от R и находится в пределах (10-2÷10-4)% при N=4000;

- частота дискретизации сильно влияет на относительную ошибку, для разной девиации ΔF это влияние различно;

- при отношении сигнал/шум = 60 дБ, влияние шума незначительно, при отношении сигнал/шум = 30 дБ ошибка определения R достигает (2·10-1÷4·10-3)%;

- влияние шума наиболее сильно сказывается при минимальной девиации.

Предлагаемый способ измерения расстояния в соответствии с (1) не известен для способов и устройств ЧМ ближней локации, из чего следует соответствие его критерию «новизна».

Изобретательский уровень следует из следующих особенностей предлагаемого способа.

Методическая ошибка дискретности отсутствует. Это следует из достаточно очевидного соотношения для R=const:

откуда получаем, что R(m)=R(m±1).

Отсутствие ошибки дискретности позволяет делать девиацию частоты ΔF достаточно небольшой.

В отличие от прототипа, операции измерения частоты излучения нет, что при аналоговой модуляции делает систему обработки гораздо более простой.

Предлагаемый способ работоспособен как при аналоговой модуляции частоты, так и при цифровом синтезе.

Указанные отличия в доступных источниках не наблюдаются, что указывает на соответствие заявляемого способа критерию «изобретательский уровень».

Возможная структурная схема реализации предлагаемого способа приведена на Фиг. 3. Обозначенные блоки выполняют следующие функции: 1 - интегральный приемо-передающий СВЧ модуль; 2, 3 - передающая и приемная антенны, 4 - модулятор, 5 - блок аналоговой обработки СРЧ (усиление, фильтрация, ограничение), 6 - микропроцессор, 7 - индикатор.

В микропроцессоре происходит измерение величин m, tn, tn+m и в соответствии с (1) определяется R.

Из структурной схемы следует, что методическая ошибка предлагаемого метода будет связана с цифровой обработкой СРЧ. Для ее снижения могут применяться различные алгоритмы определения величин m, tn, tn+m.

Библиографические данные

1. А.С. Виницкий. Очерк основ радиолокации при непрерывном излучении радиоволн. M.: Сов. радио. 1961, 495 с.

2. Б.А. Атаянц, В.В. Езерский и др. Прецизионные промышленные системы ЧМ радиолокации ближнего действия. // Успехи современной радиоэлектроники. 2008. №2, С. 3-23.

3. Патент РФ №2159923 МКИ G01F 23/284. Опубл. 27.11.2000.

4. Патент РФ №2436117 МКИ G01S 13/34. Опубл. 10.12.2011.

Способ измерения расстояния до контролируемого объекта, включающий излучение в направлении объекта радиосигнала, модулированного по частоте по периодическому симметричному треугольному закону с периодом модуляции Tm и девиацией частоты ΔF, прием отраженного сигнала, получение сигнала разностной частоты путем смешивания принятого и излучаемого сигналов, отличающийся тем, что на каждом полупериоде модуляции осуществляются: измерение tn - времени начала первого полупериода сигнала разностной частоты, измерение m - числа полупериодов сигнала разностной частоты, измерение tn+m - времени окончания m-го полупериода сигнала разностной частоты, а измеряемое расстояние определяется по формуле:

где ν - скорость электромагнитной волны.



 

Похожие патенты:

Изобретение относится к системам вооружения и может быть использовано при реализации комплексов защиты объектов от средств нападения противника. Достигаемый технический результат - возможность защиты объектов с использованием преимуществ, обеспечиваемых применением четырехчастотного частотного радиолокатора, а именно, точность наведения ракеты на цель.
Изобретение относится к области обработки радиосигналов и может быть использовано в радиолокационной технике. Достигаемый технический результат - обеспечение возможности измерения радиальной скорости движущегося объекта при сохранении возможности измерения дальности до объекта.

Изобретение относится к радиолокации протяженных целей. Изобретение может быть использовано в бортовых радиовысотомерах.

Изобретение может быть использовано для построения высотомеров или высокоточных измерителей уровня жидкостей или сыпучих веществ в резервуарах. Достигаемый технический результат - повышение точности измерения расстояния.

Изобретение относится к радиолокации, а именно к радиовысотомерам с частотной модуляцией зондирующего сигнала. Достигаемый технический результат - упрощение устройства и повышение его надежности и помехозащищенности.

Изобретение относится к радиолокационной технике и может быть использовано при разработке бортовых средств измерения высоты полета летательных аппаратов. Рециркуляционный радиовысотомер содержит генератор старт-импульсов, генератор тактовых импульсов, два элемента И, два элемента ИЛИ, три линии задержки, передатчик, направленный ответвитель, развязывающий блок, антенный блок, амплитудный детектор, СВЧ-выключатель, триггер, приемник, следящий блок и блок расчета высоты, определенным образом соединенные между собой.

Радиолокационный уровнемер относится к радиотехнике и может быть использован для построения высокоточных измерителей уровня жидкостей или сыпучих веществ в резервуарах и высотомеров малых высот.

Изобретение относится к области ближней локации и, в частности, к измерителям уровня методом ЧМ-локации. .

Изобретение относится к области измерительной техники, в частности к измерению расстояния, например, в закрытых резервуарах при измерении уровня жидкости, и основано на принципе радиолокации с частотной модуляцией зондирующих радиоволн.

Изобретение относится к области измерительной техники, в частности к измерению расстояния, например, в закрытых резервуарах при измерении уровня жидкости, и основано на принципе радиолокации с частотной модуляцией зондирующих радиоволн.

Изобретение относится к области радиоэлектроники и позволяет осуществлять дистанционный контроль источников радиоизлучений (ИРИ). Достигаемый технический результат - повышение помехоустойчивости и достоверности приема сигналов источников радиоизлучений и обмена аналоговой и дискретной информацией между вертолетом и пунктом контроля путем подавления ложных сигналов (помех), принимаемых по дополнительным каналам. Указанный результат достигается за счет того, что вертолетный радиоэлектронный комплекс содержит антенное устройство, приемник, пеленгаторное устройство, анализатор параметров принимаемого сигнала, устройство запоминания и обработки полученной информации и телеметрическое устройство, определенным образом выполненные и соединенные между собой. 6 ил.
Наверх