Парогенераторная установка


 


Владельцы патента RU 2568032:

ДУШКИНА КСЕНИЯ СЕРГЕЕВНА (RU)
ТРУШИН ВЛАДИМИР ВИТАЛЬЕВИЧ (RU)
ТРУШИНА СОФЬЯ ВИТАЛЬЕВНА (RU)
КРАСИЛЬНИКОВ ЮРИЙ МИХАЙЛОВИЧ (RU)

Изобретение относится к области энергетики, а именно к парогенераторной установке, которая может быть использована при создании двухконтурных атомных электростанций с принудительной циркуляцией. Парогенераторная установка содержит ядерный реактор, блок нагрева воды, насос, вихревой парогенератор, турбину, электрогенератор, конденсатор, конденсатный насос, циркуляционный насос, блок подачи добавочной воды, дополнительные парогенераторы, подкачивающие насосы, паропровод, биологический защитный элемент, при этом каждый из вихревых парогенераторов имеет одинаковое конструктивное выполнение и включает цилиндрическую входную камеру, имеющую входной тангенциальный канал, центральную полость, диффузор, дроссель и выходную камеру. Причем каждый из подкачивающих насосов установлен перед каждым дополнительным вихревым парогенератором и соединяет выход предыдущего вихревого парогенератора со входом последующего, а все вихревые парогенераторы соединены между собой последовательно и каждый из них имеет одинаковое конструктивное исполнение, при этом выход последнего дополнительного вихревого парогенератора соединен со входом циркуляционного насоса. 1 ил.

 

Изобретение относится к области энергетики, а именно к парогенераторной установке, которая может быть использована при создании двухконтурных атомных электростанций (АЭС) с принудительной циркуляцией.

В настоящее время задача создания современных парогенераторных установок, обеспечивающих более высокую производительность, безопасность АЭС, надежность и экономическую эффективность, является одной из основных проблем развития атомной энергетики.

Известна парогенераторная установка, содержащая парогенератор с испарителем, основной перегреватель острого пара, соединенный с турбиной, промежуточный паровой перегреватель и сепаратор, установленные между цилиндрами высокого и низкого давления (патент Франции №2116671, F22G, 1972 г.).

Недостатком указанной установки является низкий коэффициент полезного действия, обусловленный тем, что имеет место увеличение поверхности нагрева основного перегревателя и повышенное падение в нем давления. К тому же падение давления приводит к снижению температуры конденсации пара в промежуточном перегревателе по сравнению с температурой кипения в основном перегревателе, приводящему к уменьшению температурного напора в промежуточном перегревателе и увеличению его поверхности нагрева. Известна парогенераторная установка АЭС с принудительной циркуляцией, в которой для выработки подаваемого на турбину пара используется тепло от ядерного реактора и содержащая реактор, блок нагрева воды, турбину, электрогенератор, конденсатор, разделительное устройство (сепаратор), кондесатный насос, циркуляционный насос и блок подачи добавочной воды (Η.Г. Рассохин «Парогенераторные установки атомных электростанций», Атомиздат, 1972, с. 11-13, 57-64).

Одним из недостатков данной установки является то, что в испарительной зоне ядерного реактора, где питательная вода нагревается до температуры насыщения, происходит частичное испарение воды в количестве, соответствующем расходу пара на турбину, приводящее к пульсации расхода пароводяной смеси в нагревательных каналах и, как следствие, к снижению надежности работы установки в целом. Другим недостатком является низкий выход пара с единицы поверхности зеркала испарения сепаратора, который, как выявлено, обусловлен низкой скоростью (не более 0,4 м/сек) всплытия паровых пузырей. К тому же для получения насыщенного пара высоту парового объема в сепараторе следует задавать значительных размеров, в частности 0,5-0,6 м, и устанавливать различные дополнительные сепарационные устройства, например, в виде жалюзей или дроссельных листов с отверстиями. Все указанные действия увеличивают размеры сепаратора и приводят к утяжелению конструкции установки в целом.

Наиболее близкой по технической сущности и достигаемому эффекту является парогенераторная установка одноконтурной атомной электростанции, содержащая ядерный реактор, блок нагрева воды, турбину, блок перегрева пара, электрогенератор, конденсатор, конденсатный насос, блок подачи добавочной воды, циркуляционный насос и вихревой парогенератор, вход которого подключен к участку нагрева воды с подачей ее в перегретом состоянии, а выход - к трубопроводу участка перегрева пара (патент RU, №2493482 C2, F22B 1/02, 20.09.2013 г.).

Недостатком указанной установки является то, что рабочее тело, которым является радиоактивная вода, из активной зоны реактора непосредственно поступает в парогенератор, повышая тем самым радиационную опасность.

Кроме того, установка имеет низкую производительность и не может быть использована в двухконтурной АЭС.

Задачей заявленного изобретения является создание такой парогенераторной установки, которая имела бы высокую радиационную безопасность, высокую паропроизводительность и была бы использована в двухконтурной АЭС.

Настоящее изобретение направлено на достижение технического результата, заключающегося в снижении радиационной опасности атомной электростанции, позволяющей использовать ее в густонаселенных регионах страны, в повышении производительности установки в целом и в расширении диапазона использования установки, а именно в двухконтурной АЭС.

Указанные технические результаты достигаются тем, что известная парогенераторная установка, содержащая ядерный реактор, участок нагрева воды, турбину, электрогенератор, конденсатор, конденсатный насос, блок подачи добавочной воды, циркуляционный насос и вихревой парогенератор, она содержит дополнительные вихревые парогенераторы, в количестве не меньше одного, и подкачивающие насосы, каждый из которых установлен перед каждым дополнительным вихревым парогенератором и соединяет выход предыдущего вихревого парогенератора со входом последующего, при этом все вихревые парогенераторы соединены между собой последовательно, и каждый из них имеет одинаковое конструктивное исполнение, а выход последнего дополнительного вихревого парогенератора соединен со входом циркуляционного насоса.

На чертеже схематично представлена предлагаемая парогенераторная установка, которая содержит ядерный реактор 1, блок 2 нагрева воды, насос 3, вихревой парогенератор 4, турбину 5, электрогенератор 6, конденсатор 7, конденсатный насос 8, циркуляционный насос 9, блок 10 подачи добавочной воды, дополнительные парогенераторы 11 и 12 и подкачивающие насосы 13 и 14, паропровод 15 и биологический защитный элемент 16, при этом каждый из вихревых парогенераторов 4, 11 и 12 имеет одинаковое конструктивное выполнение и включает цилиндрическую входную камеру 17, имеющую входной тангенциальный канал 18, центральную полость 19, диффузор 20, дроссель 21 и выходную камеру 22.

Работает парогенераторная установка следующим образом.

С помощью циркуляционного насоса 9 жидкость (воду) под заданным давлением подают в блок нагрева воды 2 ядерного реактора 1, где нагревают до температуры выше температуры кипения, т.е. до перегретого состояния. Далее жидкость в перегретом состоянии из блока нагрева воды 2 поступает последовательно в первый вихревой парогенератор 4 и далее в дополнительные вихревые парогенераторы 11 и 12, при этом в каждый дополнительный вихревой парогенератор жидкость подают также в перегретом состоянии с помощью подкачивающих насосов 13 и 14 соответственно.

Каждый из указанных выше вихревых парогенераторов 4, 11 и 12 имеет одинаковое конструктивное исполнение, и в них проходят аналогичные процессы выработки пара для турбины 5.

В каждом парогенераторе 4, 11 и 12 жидкость поступает в цилиндрическую входную камеру 17 через входной тангенциальный канал 18 и далее по кольцевому зазору, образованному расширяющимся диффузором 20 и дросселем 21, в виде усеченного конуса, и далее поступает в выходную камеру 22.

При движении воды в цилиндрической входной камере 17 ее скорость будет возрастать, а статическое давление в соответствии с законом Бернулли падать. Это обусловлено тем, что за счет сохранения момента количества движения во входной камере происходит закручивание жидкости с большого радиуса на меньший. На определенном радиусе закрутки давление станет ниже давления насыщения для заданной температуры и на участке, где давление стало ниже давления насыщения, наступит термодинамическое неравновесие, в результате чего произойдет частичное испарение жидкости за счет отбора от нее тепла. Образовавшийся в жидкости пар понизит ее температуру до равновесного состояния. Однако если жидкость и далее будет закручиваться на еще меньший радиус, то скорость ее еще более возрастет, а давление в жидкости вновь станет ниже давления насыщения, что приведет к образованию новой порции пара.

Таким образом, во входной камере 17 вихревых парогенераторов 4, 11 и 12 на участке, начиная с некоторого радиуса закрутки, на котором давление в жидкости снизилось до величины, меньшей давления насыщения при первоначальной температуре, и кончая радиусом свободной поверхности закрученной жидкости, будет происходить объемное кипение. Так как при этом тепло на образование пара отбирается от самой жидкости, то температура ее в зоне кипения будет понижаться. Поскольку в жидкости имеется градиент давления по радиусу закрутки, то на образовавшиеся пузырьки пара будет действовать сила, обусловленная действием градиента давления, под действием которой они всплывают к свободной поверхности закрученной жидкости и собираются в центральной полости 19 входной камеры 17 вихревых парогенераторов. При своем движении в зоне кипения каждого вихревого парогенератора 4, 11 и 12 пузырьки пара будут поступать из области повышенного давления, вследствие чего объем их будет увеличиваться и будут изменяться параметры пара внутри самих пузырьков.

Выявлено, что на изменение параметров пара внутри пузырьков оказывает влияние и теплообмен с окружающей жидкостью. Конечное значение температуры пара внутри пузырька в момент вылета его из жидкости будет зависеть от теплопроводности пара, скорости испарения с поверхности жидкости внутри пузырька, от теплоемкости, времени контакта с жидкостью, от инерционных сил пленки, окружающей пузырек, и величины их поверхности и др. причин. Однако в любом случае температура пара отдельных пузырьков, покидающих жидкость, будет отличаться от температуры поверхности жидкости. Исследовано, что за счет того, что в паровой полости молекулы пара обладают тепловой скоростью и за счет постоянного обмена энергией между ними и поверхностью закрученной жидкости средние температуры их выравниваются и обе фазы будут находиться в термодинамическом равновесии, т.е. температура и давление на поверхности жидкости будут равны по величине температуры и давлению находящегося под ней пара.

В каждом из вихревых парогенераторов 4, 11 и 12 выработанный пар из паровых полостей 19 поступает по паропроводу 15 в турбину 5. При этом пар над поверхностью закрученной жидкости будет насыщенным, так как всплывающие пузырьки пара участвуют во вращательном движении вместе с жидкостью и вылетающие из жидкости капли при разрыве пленки пузырька снова возвращаются на ее поверхность.

При движении жидкости в диффузоре 20 каждого вихревого парогенератора давление в жидкости будет частично восстанавливаться, но не полностью, так как часть давления тратится на преодоление трения. С помощью подкачивающих насосов 13 и 14 давление жидкости доводят до заданного значения. Определено, что температура пара, вырабатываемого в дополнительных вихревых парогенераторах 11 и 12, несколько ниже, чем температура пара, вырабатываемого в первом вихревом парогенераторе 4. Однако на снижение производительности парогенераторной установки двухконтурной атомной электростанции этот момент существенно не влияет.

Предлагаемая парогенераторная установка предназначена для двухконтурной АЭС, снижает радиационную опасность АЭС, позволяющую использовать АЭС в густонаселенных регионах страны, и имеет повышенную производительность по сравнению с прототипом.

Парогенераторная установка, содержащая ядерный реактор, блок нагрева воды, турбину, электрогенератор, конденсатор, конденсатный насос, блок подачи добавочной воды, циркуляционный насос и вихревой парогенератор, отличающаяся тем, что она содержит дополнительные вихревые парогенераторы в количестве не меньше одного и подкачивающие насосы, каждый из которых установлен перед каждым дополнительным вихревым парогенератором и соединяет выход предыдущего вихревого парогенератора со входом последующего, при этом все вихревые парогенераторы соединены между собой последовательно и каждый из них имеет одинаковое конструктивное выполнение, а выход последнего дополнительного вихревого парогенератора соединен со входом циркуляционного насоса.



 

Похожие патенты:

Изобретение относится к энергетике, в частности к парогенераторам, которые могут быть использованы в ядерных энергетических установках. Сущность изобретения заключается в том, что в парогенераторе на каждом днище корпуса выполнены коллекторные камеры подвода и отвода греющего теплоносителя, причем часть труб теплообменной поверхности подключена к коллекторным камерам подвода и отвода греющего теплоносителя, расположенным на одном днище, а другая часть - соответственно на втором днище, образуя секции, кроме того по высоте теплообменные трубы размещены слоями с чередованием по секциям так, что слои «горячих» или «холодных» ветвей одной секции размещены между слоями «холодных» или «горячих» ветвей другой секции.

Изобретение относится к области использования атомной энергетики, в частности к системе паровыделения в проектах серийной реакторной установки ВВЭР-1000. Парогенератор содержит горизонтальный корпус с коллекторами подвода и отвода теплоносителя и трубный пучок, набранный из горизонтально расположенных U-образных теплообменных трубок и снабженный устройством дистанционирования в виде профильных и плоских металлических полос.

Изобретение относится к теплоэнергетике и может быть использовано для получения пара в различных отраслях промышленности. Способ генерации пара в жаротрубном котле со сквозными вертикальными трубами для потоков горячего твердого теплоносителя заключается в том, что горячий сыпучий теплоноситель в виде нагретого циркулирующего потока извлекают из источника тепла, например топки с псевдоожиженным слоем сыпучего материала, и через распределитель, расположенный над котлом, подают на расширенные входы сквозных вертикальных труб с образованием нисходящих гравитационных течений в тепловом контакте со стенками труб.

Изобретение относится к области теплоэнергетики и может быть использовано при создании одноконтурных атомных электростанций с принудительной циркуляцией и водоводяным энергетическим реактором.

Изобретение относится к энергетике и может использоваться на парогенераторах с жидкометаллическим теплоносителем. .

Изобретение относится к теплообменной технике и может быть использовано в прямоточных вертикальных парогенераторах модульного типа, работающих в режиме переменных нагрузок.

Изобретение относится к области атомной энергетики и может быть использовано в теплообменном оборудовании ядерных энергетических установок. .

Изобретение относится к конструкционным элементам теплообменных аппаратов. .

Изобретение относится к ядерным энергетическим установкам, а более конкретно - к парогенераторам атомных электростанций. .

Изобретение относится к области энергетики и может быть использовано на атомных электростанциях в двухконтурных ядерных энергетических установках с водо-водяным энергетическим реактором с водой под давлением и ядерной паропроизводящей установкой, разделенной на несколько самостоятельных циркуляционных контуров (петель), для повышения надежности работы парогенератора за счет эффективного удаления шлама.

Изобретение относится к электроэнергетике и может быть использовано в горизонтальных парогенераторах атомных электростанций (АЭС) с водо-водяным энергетическим реактором (ВВЭР). Заявлен коллектор теплоносителя первого контура парогенератора с U-образными трубами горизонтального теплообменного пучка, выполненный в виде сварного толстостенного сосуда, имеющего перфорированную среднюю цилиндрическую часть, выполненную с возможностью установки и закрепления в ней пучка U-образных теплообменных труб, которые сформированы в пакеты и разделены в пучке вертикальными межтрубными коридорами, нижнюю цилиндрическую часть, выполненную с возможностью сварного соединения с патрубком корпуса парогенератора, и верхнюю цилиндрическую часть с коническим переходом к фланцевому соединению люка с крышкой. Наружный диаметр Dкол коллектора первого контура в средней части выбран из заданного соотношения шага между теплообменными трубами, ширины коридора теплообменного пучка, наружного диаметра теплообменных труб, количества труб в горизонтальном ряду, минимального радиуса изгиба труб в теплообменном пучке. При этом отверстия для закрепления теплообменных труб размещены на средней цилиндрической части коллектора в шахматной компоновке. Технический результат изобретения заключается в обеспечении прочности перемычек стенки коллектора между отверстиями для закрепления теплообменных труб и герметичности соединения теплообменных труб с коллектором при том, что наружная поверхность перфорированной части коллектора наиболее эффективно используется для заведения труб в него. 2 н. и 12 з.п. ф-лы, 8 ил.

Изобретение относится к парогенераторам, в частности к горизонтальным парогенераторам для атомных электростанций с водо-водяным энергетическим реактором (ВВЭР). Заявлен горизонтальный парогенератор атомной электростанции, содержащий цилиндрический корпус, два эллиптических днища, по меньшей мере один патрубок подвода питательной воды и отвода пара, входной коллектор и выходной коллектор, а также присоединенный к указанным коллекторам пучок теплообменных труб, причем количество Nтр теплообменных труб в пучке выбрано в заявленной зависимости от наружного диаметра dтp теплообменной трубы, причем величина зазора между соседними теплообменными трубами в вертикальном направлении не превышает величину вертикального шага между теплообменными трубами в пучке. Техническим результатом изобретения является повышение эффективности теплопередачи в объеме парогенератора с одновременным ограничением количества и максимальной длины теплообменных труб, что позволяет использовать трубы, освоенные промышленностью. 2 н. и 9 з.п. ф-лы, 6 ил.

Изобретение относится к энергетике, в частности к горизонтальным парогенераторам для атомных электростанций с водо-водяным энергетическим реактором (ВВЭР) и к реакторной установке с ВВЭР и горизонтальным парогенератором. Реакторная установка с ВВЭР с горизонтальным парогенератором включает в себя ядерный реактор с четырьмя циркуляционными петлями, каждая из которых содержит парогенератор с горизонтальным пучком теплообменных труб, разделенных на пакеты межтрубными коридорами и соединенных с коллекторами теплоносителя первого контура внутри цилиндрического корпуса с эллиптическими днищами, главный циркуляционный насос, а также главный циркуляционный трубопровод теплоносителя первого контура. Внутренний диаметр корпуса Dкорп, расстояние S между осями коллекторов теплоносителя первого контура в поперечном направлении и длина парогенератора Lк по внутренним поверхностям эллиптических днищ выбраны из указанных соотношений. При этом угол α изгиба теплообменных труб и расстояние Δ выбраны из диапазонов: 90°≤α≤150° и 300 мм≤Δ≤1000 мм. Изобретение повышает интенсивность теплопередачи, надежность и долговечность парогенератора. 2 н. и 9 з.п. ф-лы, 10 ил.
Наверх