Гидроакустическая система для позиционирования

Использование: изобретение относится к области геофизической разведки, высокоточной навигации, в частности к области подводной навигации, и может быть использовано для определения географических координат глубоководных буксируемых объектов при проведении морских геолого-геофизических исследований. Сущность: гидроакустическая система для позиционирования, содержащая буксирующее судно, соединенные с ним кабель-тросом буксируемый подводный объект и буи с неподвижными рулями, предварительно установленными на заданный угол, расположенные на поверхности моря, в количестве не менее трех штук, и имеющие в своем составе последовательно соединенные антенну Global Positioning System (GPS), модуль GPS и контроллер, при этом буксируемый подводный объект выполнен в виде многоэлементной цифровой кабельной антенны, буксирующее судно снабжено блоком синхронизации и обработки данных, при этом каждый буй снабжен последовательно соединенными с первым выходом контроллера генератором, усилителем и гидроакустическим излучателем, а также блоком памяти, соединенным со вторым выходом контроллера, причем каждый буй соединен с буксирующим судном соответствующим тросом, причем блок синхронизации и обработки данных выполнен в виде последовательно соединенных антенны GPS, модуля GPS, контроллера, модуля сбора данных и компьютера, при этом первый вход модуля сбора данных соединен с выходом контроллера, а второй вход модуля сбора данных соединен через кабель-трос с выходом многоэлементной цифровой кабельной антенны. Технический результат: обеспечение возможности позиционирования многоэлементных буксируемых гидроакустических антенн. 1 з.п. ф-лы, 3 ил.

 

Изобретение относится к области геофизической разведки, высокоточной навигации, в частности к области подводной навигации, и может быть использовано для определения географических координат подводных буксируемых объектов при проведении морских геолого-геофизических исследований.

Известны несколько типов гидроакустических систем для позиционирования, а именно определения координат подводных объектов, с различными размерами измерительных баз. Это системы с короткой базой, системы со сверхкороткой базой, системы с длинной базой.

Системы со сверхкороткой базой относятся к угломерным системам, в которых направление на объект определяется путем измерения разности фаз между элементами антенны, образованной как минимум двумя гидроакустическими преобразователями, установленными в одном корпусе на расстояниях друг от друга менее длины волны несущего колебания, которое составляет сантиметры. Системы с короткой базой относятся к так называемым разностно-дальномерным системам, в которых координаты подводного объекта вычисляются по разности времен прихода передних фронтов импульсов, излучаемых гидроакустическим преобразователем с подводного объекта на три гидроакустических преобразователя, расположенных под водой и образующих две пересекающиеся базы. Точность определения координат снижается из-за неточности в ориентации базовых линий, а также из-за необходимости учета случайных ошибок, возникающих из-за крена и дифферента судна. Практическая дальность действия систем с короткой базой ограничивается расстоянием в 1-2 км.

Известна гидроакустическая система для позиционирования, в соответствии с которой в различных точках заданного района работ на поверхности моря устанавливаются свободно дрейфующие буи, образующие систему с длинной базой. Каждый буй имеет в своем составе навигационный приемник системы GPS и гидроакустическую систему преобразователем, заглубленным под поверхностью моря. Измеренные каждым буем собственные координаты передаются на подводный аппарат. Гидроакустическая система на подводном аппарате, получив данные о расстояниях до каждого буя и их координаты, вводит эту информацию в вычислительное устройство, которое определяет координаты подводного аппарата непосредственно на его борту. Однако подводный аппарат знает собственные координаты, но с судна невозможно отслеживать его местоположение (Патент США №5119341, опубликован 06.02.1992, МПК Н04В 001/59).

Недостатком является сложность обработки большого объема данных при передаче их по гидроакустическому каналу связи от каждого из буев и невозможность отслеживать местоположение подводного аппарата с судна.

Известна гидроакустическая система для позиционирования, в соответствии с которой в различных точках поверхности моря устанавливаются дрейфующие буи, образующие длинную базу. Каждый буй в своем составе имеет навигационный приемник GPS, часы, синхронизированные с часами GPS, гидроакустическую приемную систему с заглубленным преобразователем и радиомодем. Такие буи получили название GIB буи, а технология их применения - GIB технология (GIB - global intelligent buoy). Каждый буй измеряет собственные координаты и времена запаздывания в предустановленные моменты времени и передает вместе с координатами в стандарте NMEA по радиоканалу через радиомодем на судно. По данным принятых времен запаздывания сигналов пингера с учетом скорости звука в воде на борту судна вычисляются расстояния от подводного объекта до каждого из буев, и по известному алгоритму вычисляются и отображаются координаты подводного объекта и координаты всех буев (Патент США №5579285, МПК G01S 005/00; G01S 005/14; G01S 011/14 от 06.23.1994).

Недостатком данного устройства является то, что для определения координат глубоководных буксируемых комплексов требуется большое количество буев, так как траектория буксировки, как правило, имеет значительную протяженность. Кроме того, дрейфующие буи могут быть снесены из района работ на расстояния, превышающие дальность действия гидроакустической системы и радиомодемов.

Наиболее близким по технической сущности и достигаемому результату (прототипом) к предлагаемому изобретению является известная гидроакустическая система для позиционирования, содержащая буксирующее судно, соединенные с ним кабель-тросом буксируемый подводный объект и буи с неподвижными рулями, предварительно установленными на заданный угол, расположенные на поверхности моря, в количестве не менее трех штук, и имеющие в своем составе последовательно соединенные антенну Global Positioning System (GPS), модуль GPS и контроллер, гидроакустическую приемную систему, выделяющую и принимающую сигнал пингера, излучающего гидроакустический сигнал в предустановленные моменты времени, которым снабжен буксируемый подводный объект, и контроллером-измерителем временных интервалов, при этом буи и буксируемый подводный объект соединены каждый с буксирующим объектом кабелем-тросом, образуя систему с длинной базой с обеспечением постоянного пространственного нахождения буксируемого объекта внутри измерительной базы системы, сохраняя соотношения размеров измерительной базы при любых протяженных траекториях перемещениях подводного объекта, при этом буи снабжены неподвижными рулями, предварительно установленными на заданный угол, и преобразователем, размещенным под поверхностью моря (Патент РФ №2303275, МПК G01S 3/80 от 12.08.2004 г. )

Недостатком данного устройства является невозможность его применения для позиционирования многоэлементных цифровых кабельных антенн.

Техническим результатом изобретения является обеспечение возможности позиционирования многоэлементных буксируемых гидроакустических антенн, например, Патент РФ №2417383 от 27.04.2011 г, Патент РФ №2426146 от 10.08.2011 г, Патент РФ №2458359 от 10.08.2012 г., Патент РФ №2461845 от 20.09.2012 г.

Технический результат достигается за счет того, что в гидроакустической системе для позиционирования, содержащей буксирующее судно, соединенные с ним кабель-тросом буксируемый подводный объект и буи с неподвижными рулями, предварительно установленными на заданный угол, расположенные на поверхности моря, в количестве не менее трех штук, и имеющие в своем составе последовательно соединенные антенну Global Positioning System (GPS), модуль GPS и контроллер, согласно изобретению буксируемый подводный объект выполнен в виде многоэлементной цифровой кабельной антенны, буксирующее судно снабжено блоком синхронизации и обработки данных, при этом каждый буй снабжен последовательно соединенными с первым выходом контроллера генератором, усилителем и гидроакустическим излучателем, а также блоком памяти, соединенным со вторым выходом контроллера, причем каждый буй соединен с буксирующим судном соответствующим тросом, причем блок синхронизации и обработки данных выполнен в виде последовательно соединенных антенны GPS, модуля GPS, контроллера, модуля сбора данных и компьютера, при этом первый вход модуля сбора данных соединен с выходом контроллера, а второй вход модуля сбора данных соединен через кабель-трос с выходом многоэлементной цифровой кабельной антенны.

Сущность изобретения поясняется чертежами, где на фиг. 1 представлен общий вид предлагаемого устройства, на фиг. 2 представлена блок-схема элементов буя, на фиг. 3 представлена блок-схема блока синхронизации и обработки данных.

Устройство содержит буксирующее судно 1, соединенные с ним кабель-тросом 2 буксируемый подводный объект 3, выполненный в виде многоэлементной цифровой кабельной антенны, буи 4 в количестве не менее трех штук с неподвижными рулями 5, предварительно установленными на заданный угол, расположенные на поверхности моря и соединенные с буксирующим судном 1 соответствующими тросами 6, блок синхронизации и обработки данных 7.

Каждый буй 4 содержит в своем составе последовательно соединенные антенну Global Positioning System (GPS) 8, модуль GPS 9, контроллер 10, генератор 11, усилитель 12 и гидроакустический излучатель 13, а также блок памяти 14.

Блок синхронизации и обработки данных содержит последовательно соединенные антенну Global Positioning System (GPS) 15, модуль GPS 16, контроллер 17, модуль сбора данных 18 и компьютер 19, при этом многоэлементная кабельная цифровая антенна 3 соединена через кабель-трос 2 со вторым входом модуля сбора данных 18.

Устройство работает следующим образом.

Буксирующее судно 1 буксирует соединенные с ним кабель-тросом 2 буксируемый подводный объект 3, выполненный в виде многоэлементной цифровой кабельной антенны, буи 4 в количестве не менее трех штук с неподвижными рулями 5, предварительно установленными на заданный угол, расположенные на поверхности моря и соединенные с буксирующим судном 1 соответствующими тросами 6.

Буи 4 системы позиционирования представляет собой автономное устройство, буксируемое на тросе 5 за буксирующим судном 1. На фиг. 2 показана блок-схема работы буя 4. Антенна системы GPS 8 принимает сигналы от спутников, модуль GPS 9 обрабатывает сигналы и вычисляет координаты буя 4. Также модуль GPS 9 генерирует сигналы точного спутникового времени. Контроллер 10 производит обработку полученной информации и с первого выхода выдает команды для работы генератора 11. Генератор 11 формирует сигнал для управления усилителем мощности 12. Усилитель мощности 12 усиливает сигналы генератора 11 и передает их на гидроакустический излучатель 13. Гидроакустический излучатель 13 излучает сигнал буя 3.

Одновременно контроллер 10 со второго выхода передает полученную информацию от буя 4 в блок памяти 14.

Гидроакустический сигнал с буя 4 поступает на многоэлементную цифровую кабельную антенну 3.

Для разделения сигналов разных буев 4, работающих в системе, разные буи 4 настраиваются на излучение в разные моменты времени и излучают сигналы с различной формой огибающей. Это позволяет различать многоэлементной цифровой кабельной антенной 3 сигналы разных буев 4.

Блок синхронизации и обработки данных 7 предназначен для синхронизации по времени многоэлементной цифровой кабельной антенны 3. Блок-схема работы блока синхронизации 7 показана на фиг. 3. Антенна системы GPS 15 принимает сигналы от спутников, модуль GPS 16 обрабатывает сигналы и вычисляет координаты буя 4, также модуль GPS 16 генерирует сигналы точного спутникового времени. Контроллер 17 производит обработку полученной информации и передает сигналы точного времени и данные. Модуль сбора данных 18 обрабатывает информацию, поступающую с многоэлементной цифровой кабельной антенны 3, и синхронизирует ее по времени. Полученные данные передаются на компьютер 19 для сохранения и обработки.

Таким образом, предложенная гидроакустическая система для позиционирования позволяет использовать в составе исследовательского гидроакустического комплекса многоэлементную цифровую кабельную антенну.

1. Гидроакустическая система для позиционирования, содержащая буксирующее судно, соединенные с ним кабель-тросом буксируемый подводный объект и буи с неподвижными рулями, предварительно установленными на заданный угол, расположенные на поверхности моря, в количестве не менее трех штук, и имеющие в своем составе последовательно соединенные антенну Global Positioning System (GPS), модуль GPS и контроллер, отличающаяся тем, что буксируемый подводный объект выполнен в виде многоэлементной цифровой кабельной антенны, буксирующее судно снабжено блоком синхронизации и обработки данных, при этом каждый буй снабжен последовательно соединенными с первым выходом контроллера генератором, усилителем и гидроакустическим излучателем, а также блоком памяти, соединенным со вторым выходом контроллера, причем каждый буй соединен с буксирующим судном соответствующим тросом.

2. Гидроакустическая система для позиционирования по п. 1, отличающаяся тем, что блок синхронизации и обработки данных выполнен в виде последовательно соединенных антенны GPS, модуля GPS, контроллера, модуля сбора данных и компьютера, при этом первый вход модуля сбора данных соединен с выходом контроллера, а второй вход модуля сбора данных соединен через кабель-трос с выходом многоэлементной цифровой кабельной антенны.



 

Похожие патенты:

Изобретение относится к радиолокации, в частности к способу обнаружения, определения координат и сопровождения воздушных объектов при воздействии их акустическим полем на сеть разнесенных в пространстве волоконно-оптических линий связи, использующих при функционировании оптическое излучение.

Изобретение относится к области гидроакустики и может быть использовано в процессе проектирования гидроакустической аппаратуры специального назначения. Использование изобретения может повысить эффективность использования гидроакустической аппаратуры.

Изобретение относится к области способов акустической пеленгации и может быть использовано в геоакустике, геофизике, неразрушающем контроле прочности объектов, гидроакустике.

Использование: изобретение относится к области гидроакустики и может быть использовано для определения дистанции до шумящего объекта. Сущность: прием гидроакустического шумового сигнала производят половинами гидроакустической антенны, измеряют взаимный спектр между гидроакустическими шумовыми сигналами, принятыми половинами гидроакустической антенны; измеряют автокорреляционную функцию этого взаимного спектра (АКФ); определяют наличие перегибов автокорреляционной функции, и при отсутствии таковых измеряют ΔТизм - ширину основного максимума АКФ на уровне 0,1, определяют калибровочный коэффициент М=Дизв./ΔТд.изв.

Использование: измерительная техника, в частности пеленгаторы. Сущность: устройство для определения направления и дальности до источника сигнала содержит магнитные первую и вторую антенны, размещенные взаимно перпендикулярно, последовательно соединенные первый усилитель, первый фильтр, первый квадратор и сумматор, последовательно соединенные второй усилитель, второй фильтр и второй квадратор, подключенный ко второму входу сумматора, последовательно соединенные третью антенну, третий усилитель, третий фильтр и третий квадратор, ключ, связанный управляющим входом с одновибратором, а также блок вычитания, первый и второй пороговые блоки.

Изобретение относится к измерительной технике, в частности к пеленгаторам. Устройство состоит из следующих элементов: 1 - первая антенна, 2 - микробарометр, 3 - первый аналого-цифровой преобразователь (АЦП), 4 - второй АЦП, 5 - третий АЦП, 6 - четвертый АЦП, 7 - пятый АЦП, 8 - персональная электронно-вычислительная машина (ПЭВМ или микропроцессор), 9 - блок системы единого времени (GPS или Глонасс), 10 - блок связи с абонентами, 11 - первый усилитель, 12 - первый фильтр, 13 - второй усилитель, 14 - первый пороговый блок, 15 - схема ИЛИ, 16 - вторая антенна, 17 - третий усилитель, 18 - второй фильтр, 19 - четвертый усилитель, 20 - второй пороговый блок, 21 - третья антенна, 22 - пятый усилитель, 23 - третий фильтр, 24 - шестой усилитель, 25 - третий пороговый блок, 26 - седьмой усилитель, 27 - четвертый фильтр, 28 - восьмой усилитель, 29 - пятый фильтр, 30 - четвертый пороговый блок, 31 - первая схема И, 32 - первый цифроаналоговый преобразователь (ЦАП), 33 - первый калибратор, 34 - второй ЦАП, 35 - второй калибратор, 36 - третий ЦАП, 37 - третий калибратор, 38 - четвертый ЦАП, 39 - четвертый калибратор, 40 - пятый ЦАП, 41 - первый формирователь, 42 - шестой ЦАП, 43 - второй формирователь, 44 - первый таймер, 45 - вторая схема И, 46 - первый счетчик, 47 - тактовый генератор, 48 - второй таймер, 49 - первый квадратор, 50 - сумматор, 51 - первый делитель, 52 - пятый пороговый блок, 53 - третья схема И, 54 - третий таймер, 55 - четвертая схема И, 56 - второй счетчик, 57 - второй квадратор, 58 - третий квадратор, 59 - второй делитель, 60 - корректор, 61 - первый блок модуля, 62 - первый блок вычитания, 63 - второй блок модуля, 64 - шестой пороговый блок, 65 - пятая схема И, 66 - первый ключ, 67 - первое запоминающее устройство, 68 - третий блок модуля, 69 - шестая схема И, 70 - первый одновибратор, 71 - второй ключ, 72 -второе запоминающее устройство, 73 - второй блок вычитания, 74 - четвертый блок модуля, 75 - седьмая схема И, 76 - второй одновибратор, 77 - блок сравнения знаков.

Изобретение относится к измерительной технике, в частности к пеленгаторам. Устройство состоит из следующих элементов: 1 - первая антенна, 2 - вторая антенна, 3 - первый усилитель, 4 - первый фильтр, 5 - первый квадратор, 6 - сумматор, 7 - второй усилитель, 8 - второй фильтр, 9 - второй квадратор, 10 - третья антенна, 11 - третий усилитель, 12 - третий фильтр, 13 - третий квадратор, 14 - первый пороговый блок, 15 - второй пороговый блок, 16 - персональная электронно-вычислительная машина (ПЭВМ или микропроцессор), 17 - блок системы единого времени (GPS или Глонасс), 18 - блок связи с абонентами, 19 - четвертый усилитель, 20 - третий пороговый блок, 21 - схема ИЛИ, 22 - таймер, 23 - первая схема И, 24 - счетчик, 25 - первый цифроаналоговый преобразователь (ЦАП), 26 - первый калибратор, 27 - второй ЦАП, 28 - второй калибратор, 29 - третий ЦАП, 30 - третий калибратор, 31 - четвертый ЦАП, 32 - формирователь, 33 - тактовый генератор, 34 - первый АЦП, 35 - второй АЦП, 36 - третий АЦП, 37 - четвертый АЦП, 38 - пятый усилитель, 39 - шестой усилитель, 40 - делитель, 41 - четвертый пороговый блок, 42 - вторая схема И.
Устройство (100) для разрешения неоднозначности из оценки (105) DOA ( φ ^ amb) содержит анализатор (110) оценки DOA для анализирования оценки (105) DOA ( φ ^ amb) для получения множества (115) неоднозначных параметров анализа ( φ ˜ I... φ ˜ N; f( φ ˜ I)...f( φ ˜ N); fenh,I( φ ^ amb)...fenh,N( φ ^ amb); gP( φ ˜ I)...gp( φ ˜ N); D( φ ˜ I)...D( φ ˜ N)) посредством использования информации (101) смещения, причем информация (101) смещения представляет отношение ( φ ^ ↔φ) между смещенной ( φ ^ ) и несмещенной оценкой DOA (φ), и блок (120) разрешения неоднозначности для разрешения неоднозначности в множестве (115) неоднозначных параметров анализа ( φ ˜ I... φ ˜ N; f( φ ˜ I)...f( φ ˜ N); fenh,I( φ ^ amb)...fenh,N( φ ^ amb); gP( φ ˜ I)...gp( φ ˜ N); D( φ ˜ I)...D( φ ˜ N)) для получения однозначного разрешенного параметра ( φ ˜ res; fres, 125).

Изобретения относятся к области гидроакустики и могут быть использованы для контроля уровня шумоизлучения подводного объекта в натурном водоеме. Техническим результатом, получаемым от внедрения изобретений, является получение возможности измерений уровня шума подводного плавсредства непосредственно с самого плавсредства.

Предлагаемое изобретение относится к области гидроакустики, а именно к устройствам обнаружения шумовых гидроакустических сигналов в виде дискретных составляющих (ДС) на фоне аддитивной помехи.

Изобретение относится к области гидроакустики и может быть использовано для разработки систем классификации, использующих спектральные и корреляционные признаки. Технический результат заключается в повышении вероятности правильной классификации обнаруженных источников шумоизлучения. Способ классификации шумящих объектов содержит прием сигналов шумоизлучения, спектральный анализ принятых сигналов шумоизлучения, определение взаимного спектра, определение автокорреляционной функции, прием сигнала шумоизлучения производится одной антенной, осуществляется последовательный набор временных реализаций, осуществляется выделение взаимного спектра между последовательными наборами временных реализаций, производится накопление выделенных последовательных взаимных спектров, определяется автокорреляционная функция от накопленного взаимного спектра, определяется количество источников шумоизлучения по виду автокорреляционной функции и при наличии одного источника шумоизлучения производится классификация шумящего объекта по используемым классификационным признакам. 1 ил.

Использование: изобретение относится к области гидроакустики и предназначено для интеграции систем получения информации о шумящих в море объектах. Сущность: в каждой системе независимо по своим критериям качества осуществляют частотно-временную обработку сигнала с формированием уникального веера характеристик направленности и уникального индикаторного массива информации. Для интеграции систем без потери потенциала по обнаружению выбирают базовую систему с наилучшими свойствами по разрешающей способности по угловому направлению в горизонтальной плоскости. Индикаторные массивы остальных систем приводят к размеру индикаторного массива базовой системы путем интерполяции данных между отсчетами. Отображают индикаторные массивы всех систем на общем индикаторе с общей осью углового направления в общем секторе обзора. Обнаруживают шумящий объект и получают информацию о свойствах его сигнала по наличию локальных максимумов на одном угловом направлении в совокупности систем. Интерполяцию индикаторных массивов между отсчетами, необходимую для работы с индикаторами с растровой графикой, осуществляют, например, путем низкочастотной фильтрации после преобразования Фурье по пространству. Технический результат: возможность интеграции любого числа систем обнаружения, обладающих различными статическими веерами характеристик направленности и различными потенциалами по обнаружению, то есть возможность интеграции систем, работающих с использованием разных антенн и осуществляющих независимую частотно-временную обработку информации. Для интегрированной системы обеспечивается возможность обнаружения сигнала на допороговом уровне и получение информации о частотных и временных свойствах сигнала шумящего в море объекта, которая может быть выявлена в совокупности интегрируемых систем. 1 з.п. ф-лы, 2 ил.

Использование: изобретение относится к области гидроакустики и может быть использовано для контроля подводной обстановки вокруг охраняемых объектов, например буровых платформ, гидротехнических сооружений, судов, а также для обнаружения и сопровождения подводных объектов, вторгающихся в контролируемую акваторию натурного водоема, например в зону гидроакустического полигона, буровых платформ, судов. Технический результат: повышение дальности обнаружения и точности определения координат цели на рубежах повышенной ответственности. Сущность: в гидроакустической станции контроля подводной обстановки, включающей приемно-излучающую антенну, генератор, коммутатор, через который генератор подключен к приемно-излучающей антенне, надводный блок обработки и визуализации и подводный кабель, коммутатор и генератор вместе с приемно-излучающей антенной размещены в едином подводном модуле, в который дополнительно введены блок аналого-цифровых преобразователей, подключенный к коммутатору, блок управления, подключенный к блоку аналого-цифровых преобразователей, и блок интерфейса, подключенный между выходом блока управления и надводным блоком обработки и визуализации через подводный кабель, при этом в состав гидроакустической станции введена донная протяженная антенна, состоящая из совокупности последовательно соединенных приемных модулей, шины данных, блока управления, интерфейса и подводного кабеля, подключенного к блоку обработки и визуализации. 1 ил.

Изобретение относится к определению направления прихода сигнала от источника звука. Предложены способ предоставления информации направления на основании воспроизведенного аудиосигнала с внедренным водяным знаком и устройство для его осуществления, способ оценки пространственной позиции и устройство для его осуществления, машиночитаемый носитель, содержащий компьютерную программу для выполнения способов. Способ предоставления информации направления и способ оценки пространственной позиции включают этапы, на которых: принимают аудиосигналы с водяными знаками, причем каждый записанный аудиосигнал с водяными знаками содержит внедренный водяной знак, обрабатывают, по меньшей мере, два записанных аудиосигнала с водяными знаками, записанных, по меньшей мере, двумя аудиоприемниками в различных пространственных позициях, для определения информации фазы в качестве специфичной для приемника информации для каждого записанного аудиосигнала с водяными знаками, при этом специфичная для приемника информация зависит от внедренных водяных знаков, внедренных в записанные аудиосигналы с водяными знаками, и предоставляют информацию направления на основании специфичной для приемника информации для каждого записанного аудиосигнала с водяными знаками, при этом способ оценки пространственной позиции дополнительно содержит этап оценки позиции массива из, по меньшей мере, двух аудиоприемников, при этом позицию определяют на основании информации направления. Техническим результатом является обеспечение более точного определения направления прихода сигнала передачи и более точной оценки пространственной позиции. 5 н. и 11 з.п. ф-лы, 22 ил.

Изобретение относится к метрологии, в частности к средствам обнаружения источников звука. Устройство содержит микрофоны для приема звуковых сигналов, аналого-цифровые преобразователи, два средства вычисления автокорреляции между звуками, модуль вычисления взаимной корреляции, средство обнаружения источника звука, в частности, приближающегося транспортного средства, модуль определения неисправности. Средство вычисления автокорреляции вычисляет значение автокорреляции между сигналами, принимаемыми от первого и второго микрофонов, средство определения определяет больше ли значение автокорреляции первого модуля сбора звука, чем первое пороговое значение, и больше ли значение автокорреляции второго модуля сбора звука, чем второе пороговое значение, и определяет наличие приближающегося транспортного средства, когда значение автокорреляции первого модуля сбора звука больше, чем первое пороговое значение, а значение автокорреляции второго модуля сбора звука больше, чем второе пороговое значение. Средство определения неисправности функционирует посредством сравнения изменения значения автокорреляции первого модуля сбора звука с изменением значения автокорреляции второго модуля сбора звука. Технический результат - улучшение характеристик обнаружения источников звука. 11 ил.

Использование: изобретение относится к области гидроакустики и предназначено для распознавания морских судов по их шумоизлучению. Сущность: исследуют спектр шумового сигнала морского судна. В исследуемом спектре сигнала находят частоту гармоники максимальной амплитуды и предполагают, что это - основная частота лопастного звукоряда. Формируют N эталонных спектров для N гипотез о количестве лопастей гребного винта. Вычисляют для каждого эталонного спектра его меру сходства со спектром исследуемого сигнала. Строят график в полярных координатах для функции, зависящей от гипотез о количестве лопастей и мер сходства для каждой гипотезы. Делают вывод о количестве лопастей винта в случае, если результирующая фигура подобна контуру винта с определенным количеством лопастей. Технический результат: выявление в спектре наблюдаемого сигнала информации, характеризующей количество лопастей винта и наглядное, интуитивно-понятное отображение этой информации инвариантно к скорости движения объекта. 1 з.п. ф-лы, 3 ил.

(57) Изобретение относится к акустическим локационным системам, использующим параметрические излучающие системы, формирующие узконаправленные пучки низкочастотных акустических сигналов. Преимущественная область использования - гидроакустика, а также ультразвуковая дефектоскопия, медицина, рыболокация, геолокация. Излучающий тракт параметрического гидролокатора содержит два или более генераторов высокочастотных сигналов, выход каждого из них соединен с сигнальным входом соответствующего импульсного модулятора, управляющие входы всех импульсных модуляторов соединены с выходом импульсного генератора, а выходы импульсных модуляторов через усилители мощности соединены с элементами акустической антенны, элементы акустической антенны каждой частоты расположены на отдельном входе акустического волновода, входы волновода акустически не связаны между собой и акустически соединены с выходом волновода, акустически связанным со средой лоцирования. 2 ил.

Изобретение относится к гидроакустике и может быть использовано для гидроакустического обеспечения противоторпедной защиты судов. Для гидроакустического обеспечения противоторпедной защиты корабля включают обнаружение и прием шумоизлучения торпеды гидроакустической станцией с буксируемой антенной переменной глубины, выработку прогноза движения торпеды, расчет данных стрельбы средствами самообороны и выработки маневра уклонения. Обнаруженный сигнал поступает в дисплейный пульт оператора, в котором вырабатывают сигнал торпедной опасности и осуществляют сброс дрейфующей акустической ловушки. Акустическая ловушка работает в режиме излучения имитированного шума судна. В качестве буксируемой антенны переменной глубины используют многоканальную антенну со статическим веером из N характеристик направленности. Фиксируют время приема сигналов системы самонаведения торпеды и время приема сигнала, излученного акустической ловушкой. Определяют временной интервал между моментом приема сигнала самонаведения торпеды и моментом приема имитирующего сигнала. Достигается упрощение системы противоторпедной защиты судов. 2 ил.

Изобретение относится к гидроакустике. Устройство содержит разъемный маслозаполненный подводный цилиндрический корпус с размещенными в нем электродвигателем и механическим драйвером. Источник питания, блок программного управления, размещены в судовом блоке. Нижняя часть подводного корпуса выполнена звукопрозрачной и снабжена съемными торцевыми крышками, в верхней крышке выполнено цилиндрическое отверстие. Электродвигатель посредством муфты соединен с механическим драйвером. Драйвер содержит вал и два эксцентриковых устройства, представляющих собой пару параллельных дисков со ступицами, закрепленными на валу драйвера, и подшипниками, оси которых жестко закреплены в дисках. Вал драйвера размещен в торцевых подшипниках. Устройство содержит вертикальные и горизонтальные направляющие. Излучающий элемент выполнен в виде четырех вогнутых тонкостенных цилиндрических сегментов с углом раскрыва 90°. Между торцевыми горизонтальными поверхностями тонкостенных цилиндрических сегментов и их горизонтальными направляющими размещены упругие прокладки. Между верхней и нижней частями корпуса установлены уплотнительные прокладки. Технический результат - повышение достоверности имитации излучения звука подводных движущихся объектов. 5 з.п. ф-лы, 3 ил.

Изобретение относится к метрологии, в частности к средствам акустического обнаружения и идентификации летательных аппаратов. Устройство содержит многоканальный приемник звука, содержащий микрофоны, усилители, АЦП, датчик скорости ветра, цифровой обнаружитель, выполненный на перепрограммируемых логических микросхемах, устройство распознавания, индикатор, радиомодем. Цифровой обнаружитель содержит блок цифровых фильтров, блок расчета нижней границы частоты, блок расчета дисперсии атмосферных шумов, цифровой коррелятор, блок сравнения, блок расчета адаптивного порога обнаружения. При этом определение пеленга на цель осуществляется по временному сдвигу максимума взаимной корреляционной функции, а распознавание обнаруженного ЛА осуществляется путем сравнения спектра акустического излучения ЛА с библиотекой спектров типовых летательных аппаратов. Дополнительной информацией для распознавания является скорость цели и уровень ее акустического излучения. Технический результат - повышение точности обнаружения. 2 н.п. ф-лы, 8 ил.
Наверх