Способ транспортировки и слива высоковязких текучих сред


 

B67D7/04 - Устройства для разлива, отпуска или переливания жидкостей, не отнесенные к другим подклассам (чистка труб или трубок или систем труб или трубок B08B 9/02; способы и устройства для наполнения или опорожнения бутылок, банок, кувшинов, бочек или подобных сосудов, не отнесенные к другим рубрикам B67C; водоснабжение E03; трубопроводы F17D; системы горячего водоснабжения жилых зданий F24D; измерение объема расхода или уровня жидкости; объемное измерение G01F; монетные или подобные автоматы G07F)

Владельцы патента RU 2568084:

Общество с ограниченной ответственностью "Газ-Проект Инжиниринг" ООО "Газ-Проект Инжиниринг" (RU)

Изобретение относится к транспорту и разгрузке нефтепродуктов в холодном и вязком состоянии и может быть использовано для повышения эффективности трубопроводного транспорта высоковязких нефтепродуктов и иных текучих сред и для ускоренного опорожнения транспортных емкостей и емкостей хранения нефтепродуктов. Способ включает низкотемпературный нагрев и вибрацию пристеночного тонкого слоя продукта путем воздействия на металлическую стенку емкости или трубопровода импульсными токами, протекающими по приложенному к стенке емкости или трубопровода индуктору от импульсного генератора, установленными внутри емкости или трубопровода. Способ обеспечивает повышение эффективности трубопроводной перекачки и слива высоковязких текучих сред с одновременным снижением энергетических затрат.

 

Изобретение относится к транспорту и разгрузке нефтепродуктов в холодном и вязком состоянии и может быть использовано для повышения эффективности трубопроводного транспорта высоковязких нефтепродуктов и иных текучих сред и для ускоренного опорожнения транспортных емкостей и емкостей хранения нефтепродуктов.

Известен способ транспортировки и слива вязких нефтепродуктов, заключающийся в среднечастотном (от 500-10000 Гц) индукционном нагреве металлических стенок трубопроводов, резервуаров и цистерн. При наведении индуцированного (вихревого) тока внутри металла электромагнитная энергия превращается в тепловую. Выделение тепла способствует повышению температуры пристеночного слоя нефтепродукта и, следовательно, снижению его вязкости и повышению текучести [Макулов И.А., Мамаев Н.М., Конесев С.Г. Применение систем среднечастотного индукционного нагрева при транспортировке нефтепродукта// Научно-технический журнал ″Нефтегазовое дело″. Том 6 (2008). №2].

Недостатком этого способа является недостаточная эффективность при транспорте и разгрузке продуктов в холодном и вязком состоянии.

Наиболее близким к заявляемому объекту является способ транспортировки и слива высоковязких текучих сред, включающий индукционный низкотемпературный нагрев и одновременную вибрацию пристеночного тонкого слоя продукта. Нагрев и вибрационное воздействие осуществляют импульсными токами, протекающими в индукторе, установленном снаружи емкости, и создающими импульсное магнитное поле высокой напряженности, обеспечивающее дополнительно магнитострикционный эффект в корпусе емкости, выполненном из ферромагнитного материала [Патент RU №2458853, кл. B67D 7/04, опубл. 2012 г.].

Недостатком данного способа является расположение индуктора и импульсного генератора, создающего токи в индукторе, с наружной стороны емкости или трубопровода, что увеличивает опасность перегрева самого индуктора от нагреваемой стенки емкости, приводит к необходимости дополнительного применения теплоизоляции индуктора и охлаждения индуктора, приводит к необходимости охлаждения генератора, создающего импульсные токи в индукторе, что в целом снижает КПД системы «индуктор-генератор», а значит, снижает эффективность перекачки и слива высоковязких текучих сред и увеличивает энергетические затраты при перекачке и сливе продукта.

Кроме того, существенным недостатком способа является экранирующий эффект металлической стенки емкости (или трубопровода), что не позволяет создавать электромагнитные поля непосредственно в продукте для улучшения его текучести, и также приводит к повышению энергетических затрат при транспортировке и сливе высоковязкого продукта.

Изобретение направлено на повышение эффективности трубопроводной перекачки и слива высоковязких текучих сред с одновременным снижением энергетических затрат.

Поставленная задача достигается тем, что в способе транспортировки и слива высоковязких текучих сред, включающем низкотемпературный нагрев и вибрацию пристеночного тонкого слоя продукта путем воздействия на металлическую стенку емкости или трубопровода импульсными токами, протекающими по приложенному к стенке емкости или трубопровода индуктору от импульсного генератора, согласно изобретению индуктор и генератор устанавливают внутри емкости или трубопровода и воздействуют непосредственно на продукт электромагнитными, виброакустическими и тепловыми полями, излучаемыми индуктором и генератором.

Повышение эффективности трубопроводной перекачки и слива высоковязких текучих сред при использовании предлагаемого способа объясняется следующим.

Процесс индукционного нагрева корпуса емкости или трубопровода токами Фуко, создаваемыми импульсным электромагнитным полем индуктора, расположенного внутри емкости или трубопровода, сопровождается возникновением сил электромеханического взаимодействия между вихревыми токами, наведенными в стенках корпуса емкости или трубопровода при пересечении их силовыми магнитными линиями импульсного магнитного поля, и самим магнитным потоком. При этом электрическая энергия непосредственно преобразуется в механическую, и импульс давления магнитного поля действует непосредственно на корпус без участия какой-либо передающей среды. Это способствует как нагреву, так и повышению текучести за счет возникающих акустических полей в емкости или трубопроводе. Дополнительно к указанному эффекту создаются условия для воздействия электромагнитного поля на непосредственно сам продукт, что снижает его вязкость, так как при воздействии электромагнитного поля разрушаются высокомолекулярные соединения (парафиновые образования и эмульсии).

Кроме того, при нагреве и вибрационном воздействии импульсными токами, протекающими в индукторе от импульсного генератора, которые установлены внутри емкости или трубопровода, создаются дополнительные потоки циркуляции и перемещения продукта вдоль стенки емкости или трубопровода, что препятствует перегреву индуктора и генератора в процессе их функционирования.

Способ осуществляют следующим образом.

Индуктор и генератор устанавливают внутри емкости или трубопровода, воздействуя непосредственно на продукт электромагнитными, виброакустическими и тепловыми полями, излучаемыми индуктором и генератором, в процессе их функционирования. При этом создаются дополнительные потоки циркуляции и перемещения продукта вдоль стенки емкости или трубопровода, что обеспечивает эффективное охлаждение самого индуктора и генератора как основными, так и вновь созданными потоками движущегося продукта.

Нагрев металлической стенки емкости или трубопровода индукционными токами и вибрация пристеночного тонкого слоя продукта путем воздействия токов, протекающих от импульсного генератора по индуктору, приложенному к стенке емкости или трубопровода, происходит следующим образом.

1. Токи Фуко, наводимые в ферромагнитной металлической стенке трубопровода или емкости от индуктора, приложенного к этой стенке, нагревают металл, вследствие превращения энергии электромагнитного поля индуктора в Джоулево тепло, что обеспечивает значительное снижение вязкости транспортируемого продукта.

2. Ферромагнитные материалы, помещенные в магнитное поле, изменяют свои размеры (магнитострикционный эффект). Если по медному проводнику, из которого выполнен индуктор, наложенный на металлическую поверхность из ферромагнитного материала, из которого выполнен трубопровод или емкость, пропустить изменяющийся ток, то под воздействием изменяющегося магнитного поля, создаваемого вокруг медного проводника, ферромагнитный материал будет деформироваться. Кроме того, электромагнитное взаимодействие медного проводника с током и металлической поверхности из ферромагнитного материала приводит к возникновению притягивающей или отталкивающей электромагнитной силы максимальной при максимальной амплитуде тока и равной нулю при достижении током нулевого значения, и, соответственно, создаются механические колебания металлической поверхности стальной емкости или трубы на частоте пропускаемого по проводникам импульсов тока от генератора. Механическая энергия в свою очередь создает акустические волны, распространяющиеся в средах с разной скоростью распространения звуковой волны. Возникающие упругие колебания распространяются по всей длине трубопровода или емкости в перпендикулярном к ней направлении, причем с различными скоростями: в стали со скоростью звука ~5000 м/с, а в жидкости - со скоростью 1000-1500 м/с.

Эффект магнитострикции и электромагнитного взаимодействия приводит к сильному механическому воздействию на транспортируемый продукт, способствуя более энергичному движению продукта в трубопроводе и сливу продукта из емкости.

При использовании заявляемого способа создается эффект перераспределения механических вибраций, тепла и акустического воздействия, который обусловлен разной физической природой распределения электромагнитных и механических волн.

Таким образом, при размещении индуктора и генератора внутри емкости или трубопровода и воздействии непосредственно на продукт электромагнитными, виброакустическими и тепловыми полями, снижается вязкость продукта (улучшается его текучесть) и создаются дополнительные потоки циркуляции и перемещения продукта вдоль стенки емкости или трубопровода, обеспечивающие охлаждение индуктора и генератора. Это позволит повысить эффективность трубопроводной перекачки и слива высоковязких текучих сред с одновременным снижением энергетических затрат.

Кроме того, установка индуктора и генератора внутри емкости или трубопровода препятствует перегреву индуктора и генератора в процессе их функционирования, так как поток транспортируемого продукта всегда омывает как индуктор, так и генератор, что значительно снижает энергетические затраты и удешевляет индукционную систему в целом.

Способ транспортировки и слива высоковязких текучих сред, включающий низкотемпературный нагрев и вибрацию пристеночного тонкого слоя продукта путем воздействия на металлическую стенку емкости или трубопровода индукционными токами, протекающими по приложенному к стенке емкости или трубопровода индуктору от импульсного генератора, отличающийся тем, что индуктор и генератор устанавливают внутри емкости или трубопровода и воздействуют непосредственно на продукт электромагнитными, виброакустическими и тепловыми полями, излучаемыми индуктором и генератором.



 

Похожие патенты:

Изобретение относится к способам и устройствам для перекачки нефтепродуктов в накопительные емкости для хранения или транспортировки и может быть использовано на предприятиях по перевалке жидких продуктов.

Изобретение относится к узлу для подачи светлых нефтепродуктов под налив в системах выбора и коммерческого учета отгрузки нефтепродуктов на эстакадах железнодорожного или автомобильного налива галерейного или тактового типа.

Изобретение относится к системам измерения и реализации объема автомобильного топлива предназначено, в частности, для использования при дозировании объема топлива, реализуемого на АЗС.

Изобретение относится к топливозаправочным системам на АЗС. Система реализации топлива на АЗС содержит топливозаправочную колонку (ТРК) с возможностью измерения и отпуска топлива, блок обработки данных с возможностью определения температуры и блок коррекции, соединенный с ТРК и с блоком обработки данных с возможностью коррекции топлива на основании корректирующей температуры.

Изобретение относится к средствам генерирования возбуждающего сигнала. Технический результат заключается в обеспечении возможности генерирования возбуждающего ШИМ-сигнала, имеющего определенный электрический потенциал.

Настоящее изобретение относится к способу эксплуатации топливораздаточной колонки автозаправочной станции, при этом топливораздаточная колонка содержит по меньшей мере одну точку (I) раздачи с по меньшей мере двумя предлагаемыми продуктами (A, B, C) в виде топлива и одним дополнительным продуктом (A, B, C), а также устройство для расчета цены (Ib), связанное с применением коммуникационных технологий с системой (III) расчетов через кассовые терминалы автозаправочной станции, при этом устройство для расчета цены (Ib) содержит по меньшей мере информацию о ценах на продукты (A, B, C) в виде топлива и дополнительные продукты (A, B, C), при этом предусмотренные в точке (I) раздачи расходомеры пересылают информацию о расходе заливаемого количества продукта (A, B, C) в виде топлива или дополнительного продукта (A, B, C) устройству для расчета цены (Ib), и при этом устройство для расчета цены (Ib) на основании информации о ценах и информации о расходе рассчитывает закупочную цену осуществленного клиентом процесса заправки, при этом закупочная цена затем уплачивается клиентом через систему (III) расчетов через кассовые терминалы, при этом после окончания первого процесса заправки начинают измерение времени, которое представляет собой промежуток (21) времени разблокировки, в течение которого второй процесс заправки в той же точке (I) раздачи может начаться перед оплатой закупочной цены.

Группа изобретений относится к области транспортировки жидкости между судами. Способ транспортировки жидкости между первым судном, называемым баржей, и вторым судном, называемым челноком, заключающийся в том, что челнок размещают на заранее определенном расстоянии от баржи и направляют с баржи на челнок по крайней мере один гибкий трубопровод для транспортировки жидкости.

Изобретение относится к устройству для перекачки текучей среды от опорной конструкции (1), установленной в море, оснащенной устройством (4) складирования гибких трубопроводов, к которому прикреплены первые концы (3-1) множества гибких трубопроводов, предпочтительно проходящих между опорной конструкцией (1) и судном (2).

Устройство для забора текучих сред (например, воды, молока, нефти, суспензий) из естественных или искусственных источников (резервуаров, трубопроводов) выполнено в виде комплекта, состоящего из генератора пара рабочей жидкости 1 и по меньшей мере одной герметичной камеры 2, каждая из которых имеет паровой отвод 12 с запорным узлом 13, выполненным с возможностью периодического подключения его к паровому выходу генератора 1 и поступления через него пара рабочей жидкости в полость камеры 2.

Группа изобретений относится к системе транспортировки текучего продукта между двумя судами в открытом море. Система транспортировки содержит два трубчатых устройства (2), которые являются независимыми друг от друга и каждое из которых содержит два сегмента (2а, 2b), шарнирно соединенных друг с другом при помощи первого из своих концов.

Силовой узел, который может получать продолжительный выпуск продукта при одном повороте втулки привода для сжатия продукта и подготовки его для распыления. Указанный узел содержит поршень, переносимый корпусом поршня для совершения возвратно-поступательного движения в цилиндрическом стакане, имеющем насосную камеру. Втулка привода соединена через диск зацепления с ходовым винтом, который соединен для совершения возвратно-поступательного движения корпуса поршня и поршня при повороте втулки привода. Диск зацепления приводится в действие, во-первых, для выведения из зацепления втулки привода с ходовым винтом и затем для перемещения золотникового клапана в открытое положение при нажатии привода для распыления продукта. Силовой узел может быть использован с различными устройствами аккумулирования энергии, такими как пружины, газы или упругие материалы для приложения давления к распыляемому продукту, при повороте привода. 2 н. и 25 з.п. ф-лы, 97 ил.

Изобретение относится к системе для переноса углеводородов посредством канала между оборудованием для добычи и/или хранения и танкером снабжения. Система содержит две конструкции, расположенные в воде на расстоянии друг от друга, и канал для их соединения. Конструкции содержат средства для подвешивания соответствующих концов канала. Канал в воде имеет форму растянутой буквы W и содержит обеспечивающие плавучесть средства. Средняя область канала остаётся ниже поверхности воды. Канал дополнительно содержит по меньшей мере один обеспечивающий плавучесть элемент в области свободного конца. Вблизи соединительного средства свободный конец канала способен плавать на поверхности воды после отделения от второй конструкции. Достигается увеличение зазора между оборудованием для добычи и/или хранения углеводородов и танкером снабжения без увеличения массы наливного рукава, обеспечение безопасности и эксплуатационной гибкости. 2 н. и 9 з.п. ф-лы, 6 ил.

Модульная, экологически безопасная мобильная топливораздаточная станция, которая содержит топливный резервуар, опорную конструкцию с множеством стоек для поддержания указанного топливного резервуара в приподнятом положении на заданном расстоянии над поверхностью земли, альтернативный источник энергии, представляющий собой либо солнечный, либо ветровой генератор и используемый в качестве основного источника энергии для мобильной топливораздаточной станции, и центральную платформу, функционально соединенную по меньшей мере с двумя из указанных стоек, причем указанные по меньшей мере две стойки несут на себе весь вес центральной платформы, причем топливный резервуар и альтернативный источник энергии размещены на рабочей платформе. 17 з.п. ф-лы, 44 ил.

Изобретение обеспечивает сбалансированный рукав (201) для перемещения текучего продукта, содержащий транспортировочную стрелу, содержащую внутренний передающий элемент (208) и наружный передающий элемент (221), шарнирно соединенные вместе, и систему (203) противовеса для балансировки транспортировочной стрелы, причем упомянутый рукав отличается тем, что упомянутая стрела установлена на поворотной платформе (215), выполненной с возможностью вращения вокруг вертикальной оси, для приведения во вращение транспортировочной стрелы вокруг данной оси, при этом система балансировки содержит по меньшей мере один противовес (207; 207'), закрепленный с возможностью поворота вокруг оси (206), имеющей горизонтальную общую ориентацию, на опоре (251), прикрепленной к поворотной платформе и функционально связанной с внутренним передающим элементом для обеспечения балансировки транспортировочной стрелы. 22 з.п. ф-лы,8 ил.

Изобретение относится к системе (10) перекачивания текучей среды между первой морской установкой (11) и второй морской установкой (12), содержащей шланг (25) перекачивания, развертываемый между двумя морскими установками, первый конец (28) которого соединяют с трубопроводом первой морской установки (11), второй конец (29) предназначен для соединения с коллектором (20) второй морской установки (12). Шланг перекачивания содержит первую гибкую секцию (30), проходящую в виде подвесной линии, вторую гибкую секцию (32), проходящую по существу вертикально, направленный вниз свободный конец (29) которой оборудован соединительным устройством (27) для соединения с коллектором (20) второй морской установки (12), изогнутый переходник (31), расположенный между первой гибкой секцией и второй гибкой секцией (32), при этом шланг (25) перекачивания подвешен под опорно-направляющей конструкцией (40) при помощи стропа (52), соединяющего опорную конструкцию (40) и точку изогнутого переходника (31). Изобретение способствует улучшению эксплуатационных характеристик системы перекачивания текучей среды в морских условиях. 12 з.п. ф-лы, 6 ил.

Изобретение относится к области судостроения и касается транспортировки сжатого газа морским транспортом. Предложено судно для транспортировки сжатого газа, корпус которого разделен на ячейки с вертикальными направляющими, не менее чем одна переборка в которых водогазонепроницаемая, в направляющих установлены друг на друга унифицированные контейнеры с размещенными в них горизонтально емкостями для сжатого газа, которые соединены с судовой системой перегрузки сжатого газа, причем корпус судна разделен на ячейки так, что в зоне не менее чем одной ограничивающей ячейку переборки обеспечено расстояние от 0,8 до 2 метров и в этом пространстве расположены коллекторы распределения сжатого газа, трубопроводы с запорными клапанами, компрессор, приборы аварийного контроля и управления. Технический результат заключается в улучшении эксплуатационных характеристик судна для транспортировки сжатого газа, расширении его функциональных возможностей. 11 з.п. ф-лы, 6 ил.
Наверх