Способ отбора достоверной информации и идентификации отказов акселерометров и датчиков угловой скорости при пяти измерителях в каждом тракте в бесплатформенной инерциальной навигационной системе летательного аппарата

Изобретение относится к области создания систем управления летательных аппаратов, преимущественно к способам получения достоверной информации и диагностики работоспособности акселерометров и датчиков угловой скорости летательного аппарата с избыточным числом измерителей и идентификацией их отказов. В способе отбора достоверной информации и идентификации отказов измерителей, при пяти измерителях в каждом тракте в бесплатформенной инерциальной навигационной системе (БИНС), основанном на показаниях, полученных в результате циклического синхронного опроса измерителей, оси чувствительности любых трех из которых некомпланарны, и вычислении в каждом цикле векторов кажущегося ускорения и угловой скорости с использованием значений направляющих косинусов осей чувствительности измерителей, согласно изобретению, указанные векторы вычисляют при всех возможных комбинациях троек измерителей. Полученные векторы в каждом из трактов распределяют по группам, которые включают четыре вектора, вычисленные по показаниям четырех измерителей. По векторам групп рассчитывают средние векторы и показатели разброса относительно среднего вектора, находят группу с минимальным показателем разброса в текущем цикле и средний вектор этой группы принимают за достоверный вектор текущего цикла. Отказы измерителей тракта идентифицируют, исходя из исправности измерителей, по показаниям которых вычислен достоверный вектор, и результата сравнения с допуском модуля разности фактического показания измерителя, которое не использовано в расчете достоверного вектора и его расчетного показания. При этом расчетное показание определяют как проекцию достоверного вектора на ось чувствительности проверяемого измерителя. Технический результат - отбор достоверной информации и безотказная работа измерительных трактов с одним отказом измерителя и идентификация отказов измерителей при избыточной информации в каждом тракте в БИНС. 1 табл.

 

Изобретение относится к области создания систем управления (СУ) летательных аппаратов (ЛА) с избыточным числом измерителей с идентификацией их отказов.

Известен способ получения и обработки навигационной информации в комплексах, навигационным ядром которых является бесплатформенная инерциальная навигационная система (БИНС), корректируемая от спутниковой инерциальной навигационной системы [1]. В данной работе предложен способ идентификации номера отказавшего измерителя из пяти используемых. Факт отказа и номер неисправного измерителя определяют сравнением с допуском функций, аргументами которых являются показания и точностные характеристики измерителей.

Недостатками известного метода являются:

1. Допусковый контроль не обеспечивает отбор выходной информации, ближайшей к измеряемому параметру;

2. Сложность вычислительных процедур, требующих для реализации значительного быстродействия бортовой цифровой вычислительной машины (БЦВМ).

Наиболее близким к предлагаемому техническому решению является способ получения достоверной информации, реализованный в работе [2]. Его недостатком по сравнению с предлагаемым способом является снижение точности выходной информации как результат формирования достоверного вектора пo показаниям трех измерителей. Резерв повышения точности за счет избыточной информации исправных датчиков не используется.

Задачей изобретения является отбор достоверной информации и идентификация отказов акселерометров (АКС) и датчиков угловой скорости (ДУС) при пяти измерителях в каждом тракте в БИНС ЛА, что позволяет обеспечивать безотказную работу БИНС, идентифицировать отказы с определением номера неисправного измерителя, формировать достоверные векторы кажущегося ускорения и угловой скорости, ближайшие к векторам, измеряемым исправными датчиками.

Технический результат достигается тем, что в способе отбора достоверной информации и идентификации отказов АКС и ДУС, при пяти измерителях в каждом тракте в БИНС ЛА, основанном на показаниях, полученных в результате циклического синхронного опроса измерителей, оси чувствительности любых трех из которых некомпланарны, и вычислении в каждом цикле векторов кажущегося ускорения и угловой скорости с использованием значений направляющих косинусов осей чувствительности измерителей, согласно изобретению, указанные векторы вычисляют при всех возможных комбинациях троек измерителей. Полученные векторы в каждом из трактов распределяют по группам, которые включают четыре вектора, вычисленные по показаниям четырех измерителей. По векторам в каждой группе рассчитывают средний вектор и показатели разброса относительно среднего вектора, находят минимальный из показателей разброса всех групп тракта в текущем цикле и средний вектор группы с минимальным показателем разброса принимают за достоверный вектор, ближайший к измеряемому в текущем цикле. Отказы измерителей тракта идентифицируют, исходя из исправности измерителей, по показаниям которых вычислен достоверный вектор, и результата сравнения с допуском модуля разности фактического показания измерителя, которое не использовано в расчете достоверного вектора и его расчетного показания. При этом расчетное показание определяют как проекцию достоверного вектора на ось чувствительности проверяемого измерителя.

Описание предлагаемого способа приведено применительно к одному из рассматриваемых трактов под названием «измерительный тракт».

В качестве исходных данных используются показания измерителей и значения направляющих косинусов измерителей тракта. Оси чувствительности любых трех измерителей должны быть некомпланарными.

Способ осуществляется следующим образом.

Осуществляется циклический синхронный опрос измерителей, обеспечивающий идентичность векторов, вычисляемых по показаниям исправных измерителей.

Определяют векторы кажущегося ускорения и угловой скорости в цикле опроса показаний акселерометров и датчиков угловой скорости, жестко связанных с корпусом летательного аппарата при пяти измерителях в каждом тракте с использованием значений направляющих косинусов измерителей.

По показаниям измерителей в текущем цикле опроса вычисляют компоненты измеряемого вектора. Для всех возможных комбинаций измерителей решаются системы линейных уравнений, составленных как скалярные произведения матрицы направляющих косинусов измерителей на искомый измеряемый вектор:

где:

[ a i x a i y a i z a j x a j y a j z a k x a k y a k z ] - матрица направляющих косинусов осей чувствительности измерителей i, j, k;

bi, bj, bk - показания измерителей i, j, k;

W ¯ i j k = [ W i j k X W i j k Y W i j k Z ] - искомый вектор, определяемый по показаниям измерителей i, j, k.

Минимальное количество измерителей в каждом тракте, обеспечивающее безотказную работу тракта из пяти измерителей до одного отказа, равно пяти.

Число возможных векторов, рассчитанных по тройкам измерителей, равно числу сочетаний из пяти по три, т.е. C 5 3 = 10 .

Полученные 10 векторов распределяют по группам, каждая группа состоит из четырех векторов, рассчитанных по показаниям четырех измерителей. Так, первая группа включает векторы, вычисленные по показаниям измерителей с номерами 2, 3, 4, 5, обозначенные как 234, 235, 245, 345. Показания измерителя с номером 1 в расчете векторов первой группы не используются.

Число групп по четыре вектора равно числу сочетаний из пяти по четыре, т.е. C 5 4 = 5 групп. Состав групп с указанием номеров неиспользуемых измерителей представлен в приложении в таблице.

В каждой группе определяют средний вектор группы и показатель разброса векторов группы относительно среднего.

Так, средний вектор первой группы определяется как:

Соответствующий показатель разброса записывается следующим образом:

При пяти измерителях тракта и работе до одного отказа достоверный вектор тракта, ближайший к измеряемому, определяется как средний вектор группы с минимальным показателем разброса из всех (пяти) групп тракта. В работе до одного отказа достоверный вектор определяется по показаниям четырех исправных измерителей с учетом избыточной информации. Если все измерители тракта исправны, отбор достоверного вектора выполняется по десяти векторам, размещенным в пяти группах, в случае отказа - по четырем векторам одной группы. Исправность или отказ единственного измерителя, показания которого не использованы в расчете достоверного вектора, определяют сравнением с допуском модуля разности фактического показания проверяемого измерителя с его расчетным показанием. Допуск определяется погрешностью измерений. Расчетное показание вычисляется как проекция достоверного вектора текущего цикла на ось чувствительности проверяемого измерителя. Если модуль разности меньше допуска, проверяемый измеритель считается исправным, в противном случае его маркируют как неисправный в текущем цикле с указанием номера.

Предлагаемый способ дополнен решением, направленным на повышение живучести БИНС за счет возможного продолжения функционирования при возникновении нештатных ситуаций с одновременным отказом двух измерителей трактов из пяти. Данная задача решается выделением из десяти векторов тракта единственного вектора, полученного обработкой показаний трех исправных измерителей.

С этой целью выполняются следующие действия.

Вычисленный достоверный вектор текущего цикла сравнивают с достоверным вектором предыдущего цикла. Достоверный вектор предыдущего цикла представляет собой достоверный вектор, вычисленный по показаниям измерителей в текущем цикле и записанный в память вычислителя, предназначенную для размещения информации, необходимой для расчета достоверного вектора по показаниям в следующем цикле.

В качестве начальных условий достоверного вектора предыдущего цикла используют значения компонент вектора гравитационного ускорения и скорости вращения Земли в точке старта или в точке проведения испытаний аппаратуры.

Если модуль разности достоверных векторов текущего и предыдущего циклов превышает допуск, определяемый скоростью изменения модуля данного вектора на траектории полета, то число отказов измерителей данного тракта больше одного. Если в этом случае из векторов тракта (десяти) может быть выявлен вектор, модуль разности которого с достоверным вектором предыдущего цикла меньше допуска, то выявленный вектор является единственным вектором из векторов тракта, соответствующим измеряемому вектору.

Выявленный вектор тракта при двух отказах принимают за достоверный в текущем цикле, заменяя им средний вектор группы с минимальным показателем разброса, модуль разности которого с достоверным вектором предыдущего цикла оказался больше допуска.

Неисправными являются измерители, показания которых не использованы в расчете вектора тракта, принятого за достоверный.

Технический результат предлагаемого изобретения состоит в следующем:

1. Обеспечение безотказной работы БИНС при минимальном количестве измерителей кажущегося ускорения и угловой скорости до одного отказа в каждом тракте.

2. Идентификация отказов с определением номера неисправного измерителя.

3. Формирование в результате отбора достоверных векторов кажущегося ускорения и угловой скорости, ближайших к векторам, измеряемым исправными датчиками. Этому способствует оптимальный бездопусковый отбор показаний всех исправных датчиков с повышением точности за счет избыточной информации возможных комбинаций троек измерителей.

4. Осуществление отбора достоверной информации только на основании показаний АКС и ДУС и значений направляющих косинусов измерителей, без применения внешних данных и результатов точностных расчетов, что способствует упрощению вычислительных процедур при реализации предлагаемого способа.

5. Пригодность данного способа отбора для дефектации неисправных измерителей при проведении предполетных испытаний аппаратуры БИНС.

6. Предотвращение аварии ЛА при отказе двух измерителей тракта из пяти.

Работоспособность предлагаемого решения подтверждена результатами моделирования с использованием реальной телеметрической информации, записанной в полете ЛА с акселерометров, установленных на корпусе. Моделирование проведено при штатной работе и с имитацией отказов аппаратуры.

Таким образом, заявлен способ отбора достоверной информации и идентификации отказов акселерометров и датчиков угловой скорости, при пяти измерителях в каждом тракте в бесплатформенной инерциальной навигационной системе летательного аппарата, основанный на показаниях, полученных в результате циклического синхронного опроса измерителей, оси чувствительности любых трех из которых должны быть некомпланарными, и вычислении в каждом цикле векторов кажущегося ускорения и угловой скорости с использованием значений направляющих косинусов осей чувствительности измерителей. Отличительной особенностью способа является то, что векторы кажущегося ускорения и угловой скорости вычисляют при всех возможных комбинациях троек измерителей. Полученные векторы в каждом из трактов распределяют по группам, которые включают четыре вектора, вычисленные по показаниям четырех измерителей. По векторам в каждой группе рассчитывают средний вектор и показатели разброса относительно среднего вектора, находят минимальный из показателей разброса всех групп тракта в текущем цикле. Средний вектор группы с минимальным показателем разброса принимают за достоверный вектор, ближайший к измеряемому в текущем цикле. Отказы измерителей тракта идентифицируют, исходя из исправности измерителей, по показаниям которых вычислен достоверный вектор, и результата сравнения с допуском модуля разности фактического показания измерителя, которое не использовано в расчете достоверного вектора и его расчетного показания. При этом расчетное показание определяют как проекцию достоверного вектора на ось чувствительности проверяемого измерителя. Если модуль разности фактического и расчетного показаний не превышает допуск, определяемый погрешностью измерений, проверяемый измеритель считают исправным. В противном случае его маркируют, как неисправный в текущем цикле с указанием номера.

Литература

1. «Ориентация и навигация подвижных объектов: современные информационные технологии» / под ред. Б.С. Алешина, К.К. Веремеенко, А.И. Черноморского и др., М., Физматгиз, 2006, стр. 219-226.

2. «Устройство резервирования акселерометров в системе управления (СУ) », патент RU 2142645 G1 авторов Иванушкина С.В., Кончагина А.А., Нижегородова Л.А.

Способ отбора достоверной информации и идентификации отказов акселерометров и датчиков угловой скорости, при пяти измерителях в каждом тракте в бесплатформенной инерциальной навигационной системе летательного аппарата, основанный на показаниях, полученных в результате циклического синхронного опроса измерителей, оси чувствительности любых трех из которых должны быть некомпланарными, и вычислении в каждом цикле векторов кажущегося ускорения и угловой скорости с использованием значений направляющих косинусов осей чувствительности измерителей, отличающийся тем, что векторы кажущегося ускорения и угловой скорости вычисляют при всех возможных комбинациях троек измерителей, полученные векторы в каждом из трактов распределяют по группам, которые включают четыре вектора, вычисленные по показаниям четырех измерителей, по векторам в каждой группе рассчитывают средний вектор и показатели разброса относительно среднего вектора, находят минимальный из показателей разброса всех групп тракта в текущем цикле и средний вектор группы с минимальным показателем разброса принимают за достоверный вектор, ближайший к измеряемому в текущем цикле, отказы измерителей тракта идентифицируют, исходя из исправности измерителей, по показаниям которых вычислен достоверный вектор, и результата сравнения с допуском модуля разности фактического показания измерителя, которое не использовано в расчете достоверного вектора и его расчетного показания, при этом расчетное показание определяют как проекцию достоверного вектора на ось чувствительности проверяемого измерителя, если модуль разности фактического и расчетного показаний не превышает допуск, определяемый погрешностью измерений, проверяемый измеритель считают исправным, в противном случае его маркируют, как неисправный в текущем цикле с указанием номера.



 

Похожие патенты:

Изобретение относится к области управления системами навигации и ориентации, в частности к блокам коррекции погрешностей численных критериев степени наблюдаемости навигационных комплексов (НК) с инерциальной навигационной системой (ИНС).

Изобретение относится к области навигации движущихся объектов. Достигаемый технический результат - повышение точности навигации.

Изобретения относятся к области приборостроения и могут найти применение в системах ориентации и навигации летательных аппаратов (ЛА), предназначенных для вычисления и отображения основных пилотажно-навигационных параметров ЛА.

Изобретение относится к области приборостроения и может найти применение в системах навигации подвижных объектов, в частности летательных аппаратов (ЛА), для оценки ошибок и коррекции абсолютных координат местоположения, высоты и вертикальной скорости инерциальной навигационной системы (ИНС) по измерениям геометрической высоты и эталонным картам рельефа местности и могут быть использованы в системах управления движением ЛА.

Изобретение относится к области радиолокационной техники и может быть использовано при построении различных радиолокационных систем, предназначенных для управления движением летательных аппаратов.

Изобретение относится к области приборостроения и может быть использовано в системах программного позиционирования и ориентации подвижных объектов. Технический результат - расширение функциональных возможностей.

Изобретение относится к вычислительной технике. Технический результат заключается в возможности просматривать пользователем перекрывающиеся графические объекты без изменения уровня масштабирования.

Изобретение относится к области приборостроения и может быть использовано при разработке бесплатформенных инерциальных навигационных систем (БИНС) для решения задач управления доводочными ступенями (ДС) различного назначения.

Изобретение относится к области приборостроения и может быть использовано в позиционных системах ориентации подвижных объектов различной физической природы. .

Изобретение относится к области создания систем управления летательных аппаратов (ЛА), преимущественно к способам получения достоверной информации и диагностики работоспособности акселерометров и датчиков угловой скорости (ДУС) ЛА с избыточным числом измерителей и идентификацией их отказов. В способе отбора достоверной информации и идентификации измерителей, при шести измерителях в каждом тракте бесплатформенной инерциальной навигационной системы (БИНС), основанном на показаниях, полученных в результате циклического синхронного опроса измерителей, оси чувствительности любых трех из которых некомпланарны, и вычислении в каждом цикле векторов кажущегося ускорения и угловой скорости с использованием значений направляющих косинусов осей чувствительности измерителей, согласно изобретению, указанные векторы вычисляют при всех возможных комбинациях троек измерителей. Полученные векторы в каждом из трактов распределяют по группам, которые включают четыре вектора, вычисленные по показаниям четырех измерителей. По векторам каждой группы рассчитывают средний вектор и показатель разброса относительно среднего вектора, находят группу с минимальным показателем разброса из всех групп тракта в текущем цикле и средний вектор этой группы. Последовательно выполняют аналогичные действия применительно сначала к составу групп, который отличается от полного состава групп исключением группы с первым найденным, а затем с двумя найденными минимальными показателями разброса, рассчитывают модули разности между каждым из трех средних векторов упомянутых групп и средним вектором, который был вычислен и записан в память вычислителя как достоверный вектор предыдущего цикла. Находят минимальный модуль разности из трех. Средний вектор, модуль разности которого с достоверным вектором предыдущего цикла минимален, принимают за достоверный вектор текущего цикла. Отказы измерителей тракта идентифицируют исходя из исправности измерителей, по показаниям которых вычислен достоверный вектор, и результатов сравнения с допуском модуля разности фактического и расчетного показаний проверяемого измерителя, показания которого не использованы в расчете достоверного вектора. При этом расчетное показание определяют как проекцию достоверного вектора на ось чувствительности проверяемого измерителя. Техническим результатом изобретения является отбор достоверной информации и безотказная работа измерительного тракта до двух отказов в каждом тракте, идентификация отказов измерителей при избыточной информации в каждом тракте БИНС. 1 табл.

Группа изобретений относится к системе помощи водителю транспортного средства с прицепом. Система помощи при размещении метки на прицепе включает в себя камеру, устройство обработки изображения и дисплей. Камера установлена на буксирующем транспортном средстве и предназначена для получения изображения прицепа. Устройство обработки изображения выполнено с возможностью обрабатывать полученное изображение для определения области размещения метки и накладывать изображение метки на изображение области для ее размещения. Дисплей выполнен с возможностью отображения изображения прицепа с наложенной меткой. Достигается повышение возможности помощи водителю при управлении транспортным средством с прицепом. 2 н. и 18 з.п. ф-лы, 18 ил.

Изобретение относится к телекоммуникационным устройствам индивидуального пользования. Комплект содержит размещенный на одном из рукавов одежды дисплей с экраном, связанный по беспроводному интерфейсу с приемным блоком, служащим для приема, обработки и формирования навигационной информации сигналов ГЛОНАСС. Согласно изобретению комплект дополнительно снабжен видеокамерой, закрепленной на радиошлемофоне или спасательном жилете и планшетным компьютером или смартфоном, связанным с радиошлемофоном и с видеокамерой по протоколу беспроводной связи Blue Tooth, а также посредством преобразователя сигнала NMEA-2000 в Wi-Fi, по протоколу беспроводной связи Wi-Fi - с бортовой радиолокационной станцией и автоматизированной идентификационной системой. Техническим результатом изобретения является повышение безопасности плавания за счет своевременной и качественной оценки навигационной и гидрометеорологической обстановки. 3 з.п. ф-лы, 3 ил.

Изобретение относится к области автоматизированных систем. Технический результат - сокращение времени на получение от судов гидрографической информации, необходимой для корректировки электронных навигационных карт (ЭНК), и доведение ЭНК до судов в условиях отсутствия сотовой связи, а также повышение достоверности ЭНК, обусловленной оперативностью их актуализации. Система содержит аппаратно-программные комплексы (АПК) региональных центров, связанные по средствам спутниковой радиосвязи с АПК удаленной передачи ЭНК, которые по средствам радиосвязи Wi-Fi связаны с автоматизированными рабочими местами (АРМ) пользователей и АПК источников гидрографической информации. 4 з.п. ф-лы, 1 ил.

Изобретение относится к области навигации и топопривязки, в частности к способам спутниковой навигации и контроля качества навигационных полей космических навигационных систем ГЛОНАСС и GPS, формирования корректирующей информации и анализа ее качества. Способ анализа качества формирования и передачи дифференциальных поправок по запросу от топопривязчика потребителю включает прием спутниковой навигационной информации, проведение коррекции навигационной информации, поступающей от навигационных космических аппаратов, выполняемой в режиме контрольно-корректирующей станции, имеющей собственное программно-математическое обеспечение, выдачу выходных параметров навигации и корректирующей информации по сигналам навигационных космических аппаратов внешним потребителям по автономному каналу передачи данных, анализ качества корректирующей информации в режиме самотестирования контрольно-корректирующей станции, проведение анализа и оценки качества формирования топопривязчиком дифференциальных поправок для космических навигационных систем ГЛОНАСС и GPS и передачи их по запросу потребителю предполагает выполнение сравнения точности определения координат местоположения потребителя дифференциальных поправок с помощью аппаратуры спутниковой навигации при отсутствии дифференциальных поправок и с ними. Технический результат - формирование способа анализа качества формирования и передачи дифференциальных поправок по запросу от топопривязчика потребителю, обеспечивающего оценку режима работы навигационной аппаратуры топопривязчика и связанных с ним потребителей ГЛОНАСС/GPS в заданном районе с прецизионной точностью местоопределения, формирования корректирующей информации, включающей дифференциальные поправки и контроль качества сформированных дифференциальных поправок, качества сбора и обработки измерительной, навигационной и другой информации для выполнения топопривязчиком задач по назначению качества автоматизированной передачи данных по автономному каналу передачи данных. 2 ил.

Изобретение относится к области обработки и предоставления пользователю информации об объектах, а именно к генерированию и представлению информации о множестве точек интереса. Технический результат заключается в более компактном отображении наиболее значимой информации, что обеспечивает пользователю возможность более быстрого ориентирования в полученных данных. Для этого на сервере осуществляют получение карточки первой точки интереса и карточки второй точки интереса, каждая из которых включает в себя предопределенный набор параметров, описывающих соответствующий объект, и получение из каждой карточки множества параметров, включающего параметры местоположения и описательные параметры. Далее осуществляют расчет количественного показателя близости первой и второй точек интереса, указывающего на потенциальную возможность ассоциирования этих точек интереса, и в ответ на превышение количественным показателем близости порогового значения близости создают комплексную точку интереса. Комплексной точке интереса присваивают, хотя бы частично, информацию из информационной карточки одной из точек интереса, определенной как главная точка интереса. 2 н. и 22 з.п. ф-лы, 4 ил.

Изобретение относится к области навигации и может быть использовано при построении различных систем локации, предназначенных для навигации летательных аппаратов (ЛА). Достигаемый технический результат - повышение быстродействия навигации ЛА за счет оперативной обработки получаемой информации Указанный результат достигается за счет того, что способ навигации заключается в использовании эталонной карты местности, составленной до начала движения ЛА, выборе участка местности (мерный участок) эталонной карты, составлении текущей карты - измерением параметров мерного участка с помощью радиоволн с накоплением результатов однолучевых измерений высоты и увеличением размеров квадрата неопределенности в направлении движения ЛА в пределах мерного участка, сравнении полученных значений мерного участка текущей и эталонных карт, вычислении сигнала коррекции траектории движения по трем координатам эталонной карты на базе определения разности результатов измерений высоты, запоминании результатов измерений высоты, а также заключается в повторном вычислении сигнала коррекции при использовании координатной сетки со значительно меньшим шагом, который будет определять точность вычисления сигнала коррекции траектории движения ЛА, и последующем управлении движением ЛА путем коррекции их местоположения по мере прохождения мерного участка. 5 ил.

Изобретение относится к области комплексных навигационных систем, систем управления и наведения летательных аппаратов (ЛА). Технический результат – расширение функциональных возможностей. Указанный результат достигается за счет: - расширения традиционной модели ошибок инерциальной навигационной системы (ИНС) и включения в нее системы из трех взаимосвязанных дифференциальных уравнений 1-го порядка, описывающих изменение координат местоположения ИНС относительно доплеровского измерителя скорости (ДИСС) в проекциях на оси опорного трехгранника гироплатформы (ГП); - корректного формирования сигналов измерения, матрицы наблюдения и модели сообщения с использованием соотношений, связывающих ошибки счисления основной тройки навигационных параметров с малыми углами рассогласования реального и опорного трехгранников ГП ИНС. Высокая точность оценивания скоростных ошибок и углов ухода реальной ГП ИНС позволяет реализовать эффективную коррекцию навигационной и пилотажной информации и из двух потенциально равноточных ИНС определить ту, угловая информация которой наиболее приемлема для пилотирования и решения боевых и специальных задач. 4 ил.

Изобретение относится к области навигации движущихся объектов и может быть использовано при построении различных систем локации, предназначенных для определения местоположения движущихся объектов (ДО), управления их движением и обеспечения навигации ДО. Достигаемый технический результат - повышение точности навигации. Указанный результат достигается за счет того, что используют эталонную карту местности как априорную информацию о навигационном поле, выбирают участок местности (мерный участок), находящийся в пределах эталонной карты, составляют текущую карту путем вычисления плановых координат мерного участка на основе измерений дальностей с помощью многолучевого режима измерения при помощи радиоволн, находящихся в одной плоскости, и излучаемых в виде лучей, из которых первым излучают центральный, а потом - левый и правый боковые относительно центрального, при этом центральный луч перпендикулярен направлению движения движущихся объектов, плоскость лучей повернута вокруг центрального луча на угол равный 45 градусов относительно направления движения движущихся объектов, определяют разности результатов многолучевых измерений наклонных дальностей, определяют углы эволюции движущихся объектов по азимуту, крену и тангажу в динамике на основе анализа значений спектра доплеровских частот, возникающих при измерениях дальностей по каждому лучу, причем для анализа значений доплеровских частот используют массив значений средних доплеровских частот для каждого строба дальности по каждому лучу, полученный по измерениям спектров доплеровских частот для каждого луча, значение и знак углов азимута, крена и тангажа при каждом цикле измерений дальностей определяют изменением положения измеренного массива средних доплеровских частот относительно массива средних доплеровских частот, соответствующего нулевым значениям углов азимута, крена и тангажа, сравнивают значения плановых координат текущей и эталонной карт, вычисляют слагаемые показателя близости для всех возможных положений движущегося объекта, проводят поиск экстремума показателя близости, вычисляют высоты движущихся объектов в координатах мерного участка в точке определения местоположения движущихся объектов в плановых координатах мерного участка, вычисляют сигнал коррекции траектории движения, управляют движением движущихся объектов путем коррекции их местоположения по трем координатам эталонной карты (плановые координаты и высота) в координатах мерного участка за время движения движущихся объектов над мерным участком. 10 ил.

Изобретение относится к навигационному приборостроению и может найти применение в системах ориентирования подвижных объектов на основе применения спутниковых систем навигации. Технический результат – расширение функциональных возможностей. Для этого в способе с помощью мобильного устройства определяют начальную точку или вводят информацию о начальной точке маршрута, а также в вводят информацию о конечной точке маршрута и прокладывают маршрут по навигационной электронной карте, от спутников принимают на модуль приема и обработки сигналов навигационные информационные сообщения о координатах, обрабатывают информацию о продвижении пользователя по маршруту и при возникновении необходимости изменения направления следования в соответствии с проложенной картой маршрута или при отклонении пользователя от заданного маршрута и возникновении необходимости корректировки направления его перемещения на блок управления вибротактильными излучателями подается команда, в соответствии с которой формируется сигнал управления на тот вибротактильный излучатель, вибрация которого сигнализирует пользователю о необходимости изменения направления движения на направление, соответствующее коду вибротактильного излучателя. Блок ориентирования пользователя представляет собой носитель вибротактильных излучателей, в котором размещены модуль приема/передачи данных, использующий технологии беспроводной связи, вибротактильные излучатели, задающие код направления движения, блок управления вибротактильными излучателями на основе обработки информации, поступающей от модуля приема/передачи данных, а также источник питания и разъем для осуществления зарядки источника питания. При этом применение вибротактильного эффекта обеспечивает навигацию без звуковых оповещений и без визуального отслеживания по карте на дисплее правильности следования по выбранному маршруту. В результате предлагаемый способ и реализующее его устройство могут быть использованы людьми с ограниченными возможностями по зрению. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области создания систем управления летательных аппаратов, преимущественно к способам получения достоверной информации и диагностики работоспособности акселерометров и датчиков угловой скорости летательного аппарата с избыточным числом измерителей и идентификацией их отказов. В способе отбора достоверной информации и идентификации отказов измерителей, при пяти измерителях в каждом тракте в бесплатформенной инерциальной навигационной системе, основанном на показаниях, полученных в результате циклического синхронного опроса измерителей, оси чувствительности любых трех из которых некомпланарны, и вычислении в каждом цикле векторов кажущегося ускорения и угловой скорости с использованием значений направляющих косинусов осей чувствительности измерителей, согласно изобретению, указанные векторы вычисляют при всех возможных комбинациях троек измерителей. Полученные векторы в каждом из трактов распределяют по группам, которые включают четыре вектора, вычисленные по показаниям четырех измерителей. По векторам групп рассчитывают средние векторы и показатели разброса относительно среднего вектора, находят группу с минимальным показателем разброса в текущем цикле и средний вектор этой группы принимают за достоверный вектор текущего цикла. Отказы измерителей тракта идентифицируют, исходя из исправности измерителей, по показаниям которых вычислен достоверный вектор, и результата сравнения с допуском модуля разности фактического показания измерителя, которое не использовано в расчете достоверного вектора и его расчетного показания. При этом расчетное показание определяют как проекцию достоверного вектора на ось чувствительности проверяемого измерителя. Технический результат - отбор достоверной информации и безотказная работа измерительных трактов с одним отказом измерителя и идентификация отказов измерителей при избыточной информации в каждом тракте в БИНС. 1 табл.

Наверх