Устройство формирования сигналов квадратурной амплитудной манипуляции

Изобретение относится к радиотехнике, в частности к устройствам формирования сигналов квадратурной амплитудной манипуляции (КАМ), применяемых на линиях многоканальной цифровой связи. Технический результат - снижение пиковых напряжений сигнальных векторов формируемой сигнальной конструкции КАМ-16 без существенного увеличения значения средней энергии и повышение помехоустойчивости за счет формирования каждой точки сигнального созвездия с различными значениями синфазной и квадратурной составляющих. В устройство формирования сигналов КАМ методом сложения значений синфазных и квадратурных составляющих на выходе сумматора дополнительно введены блок формирования коэффициентов квадратурной составляющей (БФККС), блок формирования коэффициентов синфазной составляющей (БФКСС), первый и второй блоки перемножителей (БП), первый, второй и третий блоки коммутации (БК), а также первый и второй дешифраторы. БФККС состоит из восьми формирователей коэффициентов квадратурной составляющей. БФКСС состоит из восьми формирователей коэффициентов синфазной составляющей. Первый и второй БП состоят из восьми перемножителей. Первый БК состоит из четырех, а второй и третий БК из восьми электронных ключей. 5 з.п. ф-лы, 7 ил.

 

Изобретение относится к радиотехнике, в частности к устройствам формирования сигналов квадратурной амплитудной манипуляции (КАМ), применяемых на линиях многоканальной цифровой связи, а также в области цифрового радиовещания и цифрового телевидения.

Известно устройство для управления передачей данных по радиоканалу (Патент РФ №2205518, МПК7 H04L 27/20, 2001 г.), содержащее источник сообщения, подключенный к первому входу 1-го синхронизатора, выход которого подключен к первому входу 1-го фазового манипулятора (ФМ), выход которого подключен к первому входу 1-го балансного модулятора, выход которого подключен к первому входу сумматора, выход которого является выходом устройства, второй вход которого подключен к выходу 2-го ФМ, вход которого подключен ко входу 2-го фазовращателя (ФВ), вход которого объединен и подключен ко входу 2-го делителя напряжения (ДН) и входу 1-го ФМ, выход 2-го ДН подключен ко входу 1-го ДН и 1-го балансного модулятора, выход 2-го ФВ подключен ко второму входу 2-го ФМ, выход второго источника сообщения подключен ко второму входу 2-го синхронизатора.

Недостатком данного устройства является относительно низкая помехоустойчивость вследствие относительно высокого пик-фактора (ПФ) формируемой сигнальной конструкции.

Известно устройство формирования сигналов квадратурной амплитудной модуляции (Патент РФ №2365050, МПК H04L 27/06, 2008 г.), содержащее общий задающий генератор (ЗГ), 1-й, 2-й, 3-й ФВ, 1-й, 2-й, 3-й, 4-й КН, сумматор, 1-й, второй управляемый ДН, вычислитель отношений, ДН на два. Входы 1-го, 2-го ФВ и первый вход 1-го КН и выход общего ЗГ соединены. Выход 1-го ФВ подключен ко входу 3-го ФВ и к первому входу 2-го КН. Выход 3-го ФВ соединен со вторым входом 2-го КН. Первый выход 2-го КН соединен с первым входом 4-го КН. Второй выход 2-го КН соединен с первым входом 2-го управляемого ДН. Выход 2-го управляемого ДН подключен ко второму входу 4-го КН. Выход 4-го КН соединен со вторым входом сумматора. Выход 2-го ФВ соединен со вторым входом 1-го КН. Первый выход 1-го КН соединен с первым входом 3-го КН. Второй выход 1-го КН подключен к первому входу 1-го управляемого ДН. Выход 1-го управляемого ДН подключен с первым входом 3-го КН. Выход 3-го КН соединен с первым входом сумматора. Вход ДН на два соединен с демодулятором приемника. Выход ДН на два подключен ко входу вычислителя отношения. Выход вычислителя отношения соединен со вторыми входами управляемых ДН. Выход информационного канала 1-го информационного бита (ИБ) соединен с третьим входом 1-го КН. Выход информационного канала 2-го ИБ соединен с третьим входом 3-го КН. Выход информационного канала 3-го ИБ подключен к третьему входу 2-го КН. Выход информационного канала 4-го ИБ соединен с третьим входом 4-го КН. Выход сумматора является выходом устройства.

Недостатком устройства является относительно высокий уровень ПФ формируемой сигнальной конструкции, что приводит к снижению помехоустойчивости ее приема.

Наиболее близким по технической сущности и выполняемым функциям к заявляемому устройству является устройство формирования сигналов КАМ (см. Патент РФ 2439819, опубликованный 10.01.2012, бюл. №1).

Устройство-прототип содержит ЗГ, выход которого подключен ко входам 1-го, 2-го ФВ и к первому входу 1-го КН, второй вход которого подключен к выходу 2-го ФВ, первый выход 1-го КН подключен к первому входу 3-го КН, второй вход которого подключен к выходу 1-го ДН, вход которого подключен ко второму выходу 1-го КН, выход 3-го КН подключен к первому входу сумматора, второй вход которого подключен к выходу 4-го КН, второй вход которого подключен к выходу 4-го ДН, вход которого подключен к второму выходу 2-го КН, первый выход которого подключен к первому входу 4-го КН, первый и второй входы 2-го КН подключены соответственно к первому выходу 1-го ФВ и выходу 3-го ФВ, вход которого подключен ко второму выходу 1-го ФВ, причем 1-й и 2-й КН снабжены цифровыми входами соответственно 1-го и 2-го ИБ, а 3-й и 4-й КН снабжены входами 3-го и 4-го ИБ, а выход сумматора является выходом устройства, дополнительно введены 2-й, 3-й, 5-й и 6-й ДН. Входы 5-го и 6-го ДН объединены и подключены к второму выходу 2-го КН. Входы 2-го и 3-го ДН объединены и подключены к второму выходу 1-го КН. Выходы 2-го и 3-го ДН подключены соответственно к третьему и четвертому входам 3-го КН. Выходы 5-го и 6-го ДН подключены соответственно к третьему и четвертому входам 4-го КН, причем вход 3-го ИБ 3-го КН соединен с входом 3-го ИБ 4-го КН, вход 4-го ИБ соединен с входом 4-го ИБ 3-го КН.

Однако недостатком устройства-прототипа является большие значения амплитуд формируемых векторов сигнального созвездия (ВСС), что определяет увеличение мощности, затрачиваемой на формирование сигнала. Кроме того, в устройстве-прототипе низкое значение помехоустойчивости формируемого сигнала, так как любые две точки формируемого сигнального созвездия имеют одинаковые значения синфазной или квадратурной составляющих.

Целью заявленного технического решения является устройство формирования сигналов КАМ со сниженным значением средней мощности и увеличенным значением помехоустойчивости их приема.

Поставленная цель достигается за счет уменьшения различий амплитудных значений ВСС и установления максимальной величины амплитуды ВСС, равной исходному амплитудному значению напряжения СС u и с х I и u и с х Q . Кроме того, каждая точка формируемого сигнального созвездия имеет различные значения синфазной и квадратурной составляющих. Благодаря новой совокупности указанных признаков обеспечивается повышение помехоустойчивости формируемых сигналов КАМ.

Заявляемое устройство поясняется чертежами.

Фиг. 1 - устройство формирования сигналов КАМ.

Фиг. 2 - первый блок коммутации (БК) (2).

Фиг. 3 - первый блок перемножителей (БП) (6).

Фиг. 4 - блок формирования коэффициентов квадратурной составляющей (БФККС) (4).

Фиг. 5 - второй дешифратор (9).

Фиг. 6 - второй блок коммутации (БК) (8).

Фиг. 7 - сигнальное созвездие сформированной конструкции КАМ.

Заявленное устройство, показанное на фиг. 1, состоит из: задающего генератора ЗГ (1), выход (1.1) которого подключен к входу (2.1.1) первого БК (2), а выходы (1.2-1.4) ЗГ (1) подключены к входам первого БК (2) через соответствующие фазовращатели (ФВ) (11), (12), (13). К управляющим входам (2.1.5-2.1.8) БК (2) подключены соответствующие управляющие выходы (3.1-3.4) первого дешифратора (3). К первому и второму ходам первого дешифратора (3) подключены информационные входы r1, r2, которые являются входами устройства. Первый (2.1.9) и второй (2.1.10) выходы первого БК (2) подключены соответственно к квадратурному входу (6.1.9) первого БП (6) и синфазному входу (7.1.9) второго БП (7). Информационные выходы (4.1.1-4.1.8) БФККС (4) подключены к соответствующим входам (6.1.1-6.1.8) первого БП (6). Выходы (6.1.10-6.1.17) первого БП (6) подключены к соответствующим информационным входам (8.1.1.-8.1.8) второго БК (8), выход (8.1.17) которого подключен к первому входу (14.1) сумматора (14). Информационные выходы (5.1.1-5.1.8) блока формирования коэффициентов квадратурной составляющей (БФКСС) (5) подключены к соответствующим информационным входам (7.1.1-7.1.8) второго БП (7). Выходы (7.1.10-7.1.17) второго БП (7) подключены к соответствующим информационным входам (10.1.1-10.1.8) третьего БК (10), выход (10.1.17) которого подключен к второму входу (14.2) сумматора (14). Выход сумматора (14) является выходом устройства. Первая группа управляющих выходов (9.1.1-9.1.8) второго дешифратора (9) подключена к соответствующим управляющим входам (8.1.9-8.1.16) второго БК (8), а вторая группа управляющих выходов (9.1.9-9.1.16) второго дешифратора (9), подключена к соответствующим управляющим входам (10.1.9-10.1.16) третьего БК(10).

ЗГ (1) предназначен для генерации напряжения косинусоидальной формы. В качестве ЗГ может быть использована схема мостового генератора косинусоидальных сигналов (генератор Вина) (см. Достал И. Операционные усилители. - М.: Мир, 1982. - С. 200-201, рис. 6.27).

Первый БК (2) предназначен для коммутации исходных синфазных и квадратурных составляющих сигнального созвездия. Первый БК (2) состоит из первого (2.1), второго (2.2), третьего (2.3) и четвертого (2.4) электронных ключей (ЭК). Вход (2.1.1) первого БК (2) подключен к информационному входу ЭК (2.1), вход (2.1.2) первого БК (2) подключен к информационному входу ЭК (2.2), вход (2.1.3) первого БК (2) подключен к информационному входу ЭК (2.3), вход (2.1.4) первого БК (2) подключен к информационному входу ЭК (2.4). Управляющий вход (2.1.5) первого БК (2) подключен к управляющему входу ЭК (2.1), управляющий вход (2.1.6) первого БК (2) подключен к управляющему входу ЭК (2.2), управляющий вход (2.1.7) первого БК (2) подключен к управляющему входу ЭК (2.3), управляющий вход (2.1.8) первого БК (2) подключен к управляющему входу ЭК (2.4). Информационные выходы первого (2.1) и второго (2.2) ЭК объединены и подключены к выходу (2.1.9) первого БК (2). Информационные выходы третьего (2.3) и четвертого (2.4) ЭК объединены и подключены к выходу (2.1.10) первого БК (2).

Электронные ключи (2.1-2.4) предназначены для коммутации исходных синфазных и квадратурных составляющих сигнального созвездия на выход первого БК (2). Реализация электронных ключей известна и описана в патенте РФ №2037265 09.06.1995.

Дешифратор (3) предназначен для формирования управляющего напряжения на выходах в зависимости от поступившей информационной битовой последовательности (ИБП) на его информационные входы (r1, r2). В качестве дешифратора возможно использование дешифратора, описанного в патенте РФ №2017208 от 30.07.1994.

БФККС (4) предназначен для формирования напряжений квадратурных составляющих сигнального созвездия. БФККС (4) состоит из первого (4.1), второго (4.2), третьего (4.3), четвертого (4.4), пятого (4.5), шестого (4.6), седьмого (4.7), восьмого (4.8) формирователей коэффициентов квадратурных составляющих (ФККС). Выходы первого (4.1), второго (4.2), третьего (4.3), четвертого (4.4), пятого (4.5), шестого (4.6), седьмого (4.7), восьмого (4.8) ФККС подключены соответственно к выходам (4.1.1-4.1.8) БФККС (4).

ФККС (4.1-4.8) предназначены для формирования уровней напряжений, определяющих значения квадратурных оставляющих. Схема блока формирования коэффициентов известна и представлена в патенте на изобретение SU 1322272 от 07.07.1987.

БФКСС (5) предназначен для формирования напряжений синфазных составляющих сигнального созвездия. БФКСС (5) состоит из первого (5.1), второго (5.2), третьего (5.3), четвертого (5.4), пятого (5.5), шестого (5.6), седьмого (5.7), восьмого (5.8) формирователей коэффициентов синфазных составляющих (ФКСС). Выходы первого (5.1), второго (5.2), третьего (5.3), четвертого (5.4), пятого (5.5), шестого (5.6), седьмого (5.7), восьмого (5.8) ФКСС подключены соответственно к выходам (5.1.1-5.1.8) БФКСС (5).

ФКСС (4.1-4.8) предназначены для формирования уровней напряжений определяющих значения синфазных оставляющих. Схема блока формирования коэффициентов известна и представлена в патенте на изобретение SU 1322272 от 07.07.1987.

Первый БП (6) предназначен для формирования квадратурных составляющих сигнального созвездия в зависимости от ИБП. Первый БП (6) состоит из первого (6.1), второго (6.2), третьего (6.3), четвертого (6.4), пятого (6.5), шестого (6.6), седьмого (6.7), восьмого (6.8) перемножителей. Первые входы перемножителей (6.1-6.8) подключены к соответствующим входам (6.1.1-6.1.8) первого БП (6). Вторые входы перемножителей (6.1-6.8) объединены и подключены к входу (6.1.9) первого БП (6). Выходы перемножителей (6.1-6.8) подключены соответственно к выходам (6.1.10-6.1.17) первого БП (6).

Перемножители (6.1-6.8) предназначены для формирования квадратурных составляющих сигнального созвездия. Реализация перемножителя известна и представлена в патенте РФ №2419145 от 20.05.2011.

Второй БП (7) предназначен для формирования синфазных составляющих сигнального созвездия в зависимости от ИБП. Второй БП (7) состоит из первого (7.1), второго (7.2), третьего (7.3), четвертого (7.4), пятого (7.5), шестого (7.6), седьмого (7.7), восьмого (7.8) перемножителей. Первые входы перемножителей (7.1-7.8) подключены к соответствующим входам (7.1.1-7.1.8) второго БП (7). Вторые входы перемножителей (7.1-7.8) объединены и подключены к входу (7.1.9) второго БП (7). Выходы перемножителей (7.1-7.8) подключены соответственно к выходам (7.1.10-7.1.17) второго БП (7).

Перемножители (7.1-7.8) предназначены для формирования синфазных составляющих сигнального созвездия. Реализация перемножителя известна и представлена в патенте РФ №2419145 от 20.05.2011.

Второй БК (8) предназначен для коммутации сформированных квадратурных составляющих сигнального созвездия. Второй БК (8) состоит из первого (8.1), второго (8.2), третьего (8.3), четвертого (8.4), пятого (8.5), шестого (8.6), седьмого (8.7) и восьмого (8.8) ЭК. Информационные входы ЭК (8.1-8.8) подключены соответственно к информационным входам (8.1.1-8.1.8) второго БК (8). Управляющие входы ЭК (8.1-8.8) подключены соответственно к управляющим входам (8.1.9-8.1.16) второго БК (8). Информационные выходы ЭК (8.1 -8.8) объединены и подключены к выходу (8.1.17) второго БК(8).

Электронные ключи (8.1-8.8) предназначены для коммутации сформированных квадратурных составляющих сигнального созвездия на выход второго БК (8). Реализация электронных ключей известна и описана в патенте РФ №2037265, 09.06.1995.

Второй дешифратор (9) предназначен для формирования сигналов управления электронными ключами в зависимости от поступившей на его вход ИБП. Второй дешифратор (9) состоит из первого (9.1) и второго (9.2) дешифраторов. Входы r1, r2, r3, r4 являются входами одновременно первого (9.1) и второго (9.2) дешифраторов, выходы первого дешифратора (9.1) являются выходами (9.1.1-9.1.8) дешифратора (9), а выходы второго дешифратора (9.2) являются выходами (9.1.9-9.1.16) дешифратора (9).

Реализация дешифраторов известна и описана в патенте РФ №2017208 от 30.07.1994.

Третий БК (10) предназначены для коммутации сформированных синфазных составляющих сигнального созвездия. Третий БК (10) состоит из первого (10.1), второго (10.2), третьего (10.3), четвертого (10.4), пятого (10.5), шестого (10.6), седьмого (10.7) и восьмого (10.8) ЭК. Информационные входы ЭК (10.1-10.8) подключены соответственно к информационным входам (10.1.1-10.1.8) третьего БК (10). Управляющие входы ЭК (10.1-10.8) подключены соответственно к управляющим входам (10.1.9-10.1.16) третьего БК (10). Информационные выходы ЭК (10.1-10.8) объединены и подключены к выходу (10.1.17) третьего БК(10).

Электронные ключи (10.1-10.8) предназначены для коммутации сформированных инфазных составляющих сигнального созвездия на выход третьего БК (10). Реализация электронных ключей известна и описана в патенте РФ №2037265 09.06.1995.

Фазовращатель (11) на 180° предназначен для изменения фазы косинусоидального сигнала на 180°. В качестве фазовращателя 180° может быть использована схема инвертора напряжения (см. Достал И. Операционные усилители. - М.: Мир, 1982. - С. 182-184, рис. 6.6).

Фазовращатель (12) на 90° предназначен для изменения фазы косинусоидального сигнала на 90°. Реализация фазовращателя известна (см. Достал И. Операционные усилители. - М.: Мир, 1982. - С. 196, рис. 6.20).

Фазовращатель (13) на 270° предназначен для сдвига фазы косинусоидального сигнала на 270°. В качестве фазовращателя 270° возможно совместное использование фазовращателя 90° и фазовращателя 180°, подключенных последовательно.

Сумматор (14) предназначен для сложения сформированных синфазной и квадратурной составляющих сигнального созвездия. В качестве сумматора (14) использована схема суммирующего усилителя (см. Достал И. Операционные усилители. - М.: Мир, 1982. - С. 184-185, рис. 6.7).

Заявленное устройство формирования сигналов КАМ работает следующим образом. Исходная информационная битовая последовательность, разбитая на блоки по четыре информационных бита в каждом, поступает на информационные входы r1, r2, r3, r4.

При поступлении на информационные входы устройства значений ИБП r1=0, r2=0, r3=1, r4=0 на выходе (3.1) дешифратора (3) формируется управляющее напряжение, которое поступает на управляющий вход (2.1.5) первого БК (2). В результате с выхода (1.1) ЗГ (1) не инвертированное косинусоидальное колебание, поступающее на вход (2.1.1) первого БК (2), подключается на его выход (2.1.9), с которого поступает на вход (6.1.9) первого БП (6). В первом БП (6) это колебание перемножается с напряжением коэффициента квадратурной составляющей cos(60+α), поступившего на его вход (6.1.1) с выхода (4.1.1) БФККС (4), а затем сформированное в результате этого квадратурная составляющая (КС) сигнала поступает на выход (6.1.10) первого БП (6). Одновременно на выходе (9.1.1) дешифратора (9) формируется управляющее напряжение, которое подается на управляющий вход (8.1.9) второго БК (8). В результате чего поступившая с выхода (6.1.10) первого БП (6) на вход (8.1.1) второго БК (8) КС подключается на выход (8.1.17) второго БК (8), с которого она поступает на вход (14.1) сумматора (14).

В то же время на выходе (3.3) дешифратора (3) формируется единичное напряжение, которое поступает на управляющий вход (2.1.7) первого БК (2). В результате не инвертированное косинусоидальное колебание, поступившее с выхода (1.3) ЗГ (1) на вход фазовращателя (12) и сдвинутое на 90°, поступает на вход (2.1.3) первого БК (2) и подключается на его выход (2.1.10), с которого поступает на вход (7.1.9) второго БП (7). Во втором БП (7) это колебание перемножается с напряжением коэффициента синфазной составляющей sin(60+α), поступившего на его вход (7.1.1) с выхода (5.1.1) БФКСС (5), и затем сформированное в результате этого синфазная составляющая (СС) сигнала поступает на выход (7.1.10) второго БП (7). Одновременно на выходе (9.1.9) дешифратора (9) формируется управляющее напряжение, которое подается на управляющий вход (10.1.9) третьего БК (10). В результате чего поступившая с выхода (7.1.10) второго БП (7) на вход (10.1.1) третьего БК (10) СС подключается на выход (10.1.17) третьего БК (10), с которого она поступает поступает на вход (14.2) сумматора (14). В сумматоре производится сложение КС и СС, в результате чего на выходе сумматора формируется результирующее колебание, соответствующее точке сигнального созвездия (фиг. 7 (б), точка А3).

При поступлении на информационные входы устройства значение ИБП r1=1, r2=1, r3=1, r4=0 устройство работает аналогичным образом, как и в случае, если на информационные входы устройства поступает значение ИБП r1=0, r2=0, r3=1, r4=0, за исключением того, что единичное напряжение формируется на втором (3.2) и четвертом (3.4) выходе первого дешифратора (3). В результате чего инвертированное косинусоидальное колебание с фазовращателя (11), поступившее на вход (2.1.2) первого БК (2), подключается на его выход (2.1.9), а инвертированное синусоидальное колебание фазовращателя (13), поступившее на вход (2.1.4) первого БК (2), подлючается на его выход (2.1.10). В результате этого на выходе сумматора формируется результирующее колебание, соответствующее точке сигнального созвездия (фиг. 7 (в), точка А14).

При поступлении на информационные входы устройства значений ИБП r1=0, r2=0, r3=0, r4=0 на выходе (3.1) дешифратора (3) формируется управляющее напряжение, которое поступает на управляющий вход (2.1.5) первого БК (2). В результате с выхода (1.1) ЗГ (1) не инвертированное косинусоидальное колебание, поступающее на вход (2.1.1) первого БК (2), подключается на его выход (2.1.9), с которого поступает на вход (6.1.9) первого БП (6). В первом БП (6) это колебание перемножается с напряжением коэффициента квадратурной составляющей cos(30+α), поступившего на его вход (6.1.2) с выхода (4.1.2) БФККС (4), а затем сформированное в результате этого КС поступает на выход (6.1.11) первого БП (6). Одновременно на выходе (9.1.2) дешифратора (9) формируется управляющее напряжение, которое подается на управляющий вход (8.1.10) второго БК (8). В результате чего поступившая с выхода (6.1.11) первого БП (6) на вход (8.1.2) второго БК (8) КС подключается на выход (8.1.17) второго БК (8), с которого она поступает на вход (14.1) сумматора (14).

В то же время на выходе (3.3) дешифратора (3) формируется единичное напряжение, которое поступает на управляющий вход (2.1.7) первого БК (2). В результате, не инвертированное косинусоидальное колебание, поступившее с выхода (1.3) ЗГ (1) на вход фазовращателя (12) и сдвинутое на 90°, поступает на вход (2.1.3) первого БК (2) и подключается на его выход (2.1.10), с которого поступает на вход (7.1.9) второго БП (7). Во втором БП (7) это колебание перемножается с напряжением коэффициента синфазной составляющей sin(30+α), поступившего на его вход (7.1.2) с выхода (5.1.2) БФКСС (5), и затем сформированное в результате этого СС поступает на выход (7.1.11) второго БП (7). Одновременно на выходе (9.1.10) дешифратора (9) формируется управляющее напряжение, которое подается на управляющий вход (10.1.10) третьего БК (10). В результате чего поступившая с выхода (7.1.11) второго БП (7) на вход (10.1.2) третьего БК (10) СС подключается на выход (10.1.17) третьего БК (10), с которого она поступает на вход (14.2) сумматора (14). В сумматоре производится сложение КС и СС, в результате чего на выходе сумматора формируется результирующее колебание, соответствующее точке сигнального созвездия (фиг. 7 (б), точка A4).

При поступлении на информационные входы устройства значение ИБП r1=1, r2=1, r3=0, r4=0 устройство работает аналогичным образом, как и в случае, если на информационные входы устройства поступает значение ИБП r1=0, r2=0, r3=0, r4=0, за исключением того, что единичное напряжение формируется на втором (3.2) и четвертом (3.4) выходе первого дешифратора (3). В результате чего инвертированное косинусоидальное колебание с фазовращателя (11), поступившее на вход (2.1.2) первого БК (2), подключается на его выход (2.1.9), а инвертированное синусоидальное колебание фазовращателя (13), поступившее на вход (2.1.4) первого БК (2), подключается на его выход (2.1.10). В результате этого на выходе сумматора формируется результирующее колебание, соответствующее точке сигнального созвездия (фиг. 7 (в), точка А13).

При поступлении на информационные входы устройства значений ИБП r1=0, r2=0, r3=0, r4=1 на выходе (3.1) дешифратора (3) формируется управляющее напряжение, которое поступает на управляющий вход (2.1.5) первого БК (2). В результате с выхода (1.1) ЗГ (1) не инвертированное косинусоидальное колебание, поступающее на вход (2.1.1) первого БК (2), подключается на его выход (2.1.9), с которого поступает на вход (6.1.9) первого БП (6). В первом БП (6) это колебание перемножается с напряжением коэффициента квадратурной составляющей cos(α), поступившего на его вход (6.1.3) с выхода (4.1.3) БФККС (4), а затем сформированное в результате этого КС поступает на выход (6.1.12) первого БП (6). Одновременно на выходе (9.1.3) дешифратора (9) формируется управляющее напряжение, которое подается на управляющий вход (8.1.11) второго БК (8). В результате чего поступившая с выхода (6.1.12) первого БП (6) на вход (8.1.3) второго БК (8) КС подключается на выход (8.1.17) второго БК (8), с которого она поступает на вход (14.1) сумматора (14).

В то же время на выходе (3.3) дешифратора (3) формируется управляющее напряжение, которое поступает на управляющий вход (2.1.7) первого БК (2). В результате не инвертированное косинусоидальное колебание, поступившее с выхода (1.3) ЗГ (1) на вход фазовращателя (12) и сдвинутое на 90°, поступает на вход (2.1.3) первого БК (2) и подключается на его выход (2.1.10), с которого поступает на вход (7.1.9) второго БП (7). Во втором БП (7) это колебание перемножается с напряжением коэффициента синфазной составляющей sin(α), поступившего на его вход (7.1.3) с выхода (5.1.3) БФКСС (5), и затем сформированное в результате этого СС поступает на выход (7.1.12) второго БП (7). Одновременно на выходе (9.1.11) дешифратора (9) формируется управляющее напряжение, которое подается на управляющий вход (10.1.11) третьего БК (10). В результате чего поступившая с выхода (7.1.12) второго БП (7) на вход (10.1.3) третьего БК (10) СС подключается на выход (10.1.17) третьего БК (10), с которого она поступает на вход (14.2) сумматора (14). В сумматоре производится сложение КС и СС, в результате чего на выходе сумматора формируется результирующее колебание, соответствующее точке сигнального созвездия (фиг. 7 (б), точка A8).

При поступлении на информационные входы устройства значение ИБП r1=1, r2=1, r3=0, r4=1 устройство работает аналогичным образом, как и в случае если на информационные входы устройства поступает значение ИБП r1=0, r2=0, r3=0, r4=1, за исключением того, что единичное напряжение формируется на втором (3.2) и четвертом (3.4) выходе первого дешифратора (3). В результате чего инвертированное косинусоидальное колебание с фазовращателя (11), поступившее на вход (2.1.2) первого БК (2), подключается на его выход (2.1.9), а инвертированное синусоидальное колебание фазовращателя (13), поступившее на вход (2.1.4) первого БК (2), подключается на его выход (2.1.10). В результате этого на выходе сумматора формируется результирующее колебание, соответствующее точке сигнального созвездия (фиг. 7 (в), точка A9).

При поступлении на информационные входы устройства значений ИБП r1=0, r2=0, r3=1, r4=1 на выходе (3.1) дешифратора (3) формируется управляющее напряжение, которое поступает на управляющий вход (2.1.5) первого БК (2). В результате с выхода (1.1) ЗГ (1) не инвертированное косинусоидальное колебание, поступающее на вход (2.1.1) первого БК (2), подключается на его выход (2.1.9), с которого поступает на вход (6.1.9) первого БП (6). В первом БП (6) это колебание перемножается с напряжением коэффициента квадратурной составляющей β×cos(30+α), поступившего на его вход (6.1.4) с выхода (4.1.4) БФККС (4), а затем сформированное в результате этого КС поступает на выход (6.1.13) первого БП (6). Одновременно на выходе (9.1.4) дешифратора (9) формируется управляющее напряжение, которое подается на управляющий вход (8.1.12) второго БК (8). В результате чего поступившая с выхода (6.1.13) первого БП (6) на вход (8.1.4) второго БК (8) КС подключается на выход (8.1.17) второго БК (8), с которого она поступает на вход (14.1) сумматора (14).

В то же время на выходе (3.3) дешифратора (3) формируется управляющее напряжение, которое поступает на управляющий вход (2.1.7) первого БК (2). В результате не инвертированное косинусоидальное колебание, поступившее с выхода (1.3) ЗГ (1) на вход фазовращателя (12) и сдвинутое на 90°, поступает на вход (2.1.3) первого БК (2) и подключается на его выход (2.1.10), с которого поступает на вход (7.1.9) второго БП (7). Во втором БП (7) это колебание перемножается с напряжением коэффициента синфазной составляющей β×sin(30+α), поступившего на его вход (7.1.4) с выхода (5.1.4) БФКСС (5), и затем сформированное в результате этого СС поступает на выход (7.1.13) второго БП (7). Одновременно на выходе (9.1.12) дешифратора (9) формируется управляющее напряжение, которое подается на управляющий вход (10.1.12) третьего БК (10). В результате чего поступившая с выхода (7.1.13) второго БП (7) на вход (10.1.4) третьего БК (10) СС подключается на выход (10.1.17) третьего БК (10), с которого она поступает на вход (14.2) сумматора (14). В сумматоре производится сложение КС и СС, в результате чего на выходе сумматора формируется результирующее колебание, соответствующее точке сигнального созвездия (фиг. 7 (б), точка А7).

При поступлении на информационные входы устройства значение ИБП r1=1, r2=1, r3=1, r4=1 устройство работает аналогичным образом, как и в случае, если на информационные входы устройства поступает значение ИБП r1=0, r2=0, r3=1, r4=1, за исключением того, что единичное напряжение формируется на втором (3.2) и четвертом (3.4) выходе первого дешифратора (3). В результате чего инвертированное косинусоидальное колебание с фазовращателя (11), поступившее на вход (2.1.2) первого БК (2), подключается на его выход (2.1.9), а инвертированное синусоидальное колебание с фазовращателя (13), поступившее на вход (2.1.4) первого БК (2), подключается на его выход (2.1.10). В результате этого на выходе сумматора формируется результирующее колебание, соответствующее точке сигнального созвездия (фиг. 7 (в), точка А10).

При поступлении на информационные входы устройства значений ИБП r1=0, r2=1, r3=1, r4=0 на выходе (3.2) дешифратора (3) формируется управляющее напряжение, которое поступает на управляющий вход (2.1.6) первого БК (2). В результате с выхода (1.2) ЗГ (1) через фазовращатель (11) инвертированное косинусоидальное колебание, поступающее на вход (2.1.2) первого БК (2), подключается на его выход (2.1.9), с которого поступает на вход (6.1.9) первого БП (6). В первом БП (6) это колебание перемножается с напряжением коэффициента квадратурной составляющей cos(90-α), поступившего на его вход (6.1.5) с выхода (4.1.5) БФККС (4), а затем сформированное в результате этого КС поступает на выход (6.1.14) первого БП (6). Одновременно на выходе (9.1.5) дешифратора (9) формируется управляющее напряжение, которое подается на управляющий вход (8.1.13) второго БК (8). В результате чего поступившая с выхода (6.1.14) первого БП (6) на вход (8.1.5) второго БК (8) КС подключается на выход (8.1.17) второго БК (8), с которого она поступает на вход (14.1) сумматора (14).

В то же время на выходе (3.3) дешифратора (3) формируется управляющее напряжение, которое поступает на управляющий вход (2.1.7) первого БК (2). В результате не инвертированное косинусоидальное колебание, поступившее с выхода (1.3) ЗГ (1) на вход фазовращателя (12) и сдвинутое на 90°, поступает на вход (2.1.3) первого БК (2) и подключается на его выход (2.1.10), с которого поступает на вход (7.1.9) второго БП (7). Во втором БП (7) это колебание перемножается с напряжением коэффициента синфазной составляющей sin(90-α), поступившего на его вход (7.1.5) с выхода (5.1.5) БФКСС (5), и затем сформированное в результате этого СС поступает на выход (7.1.14) второго БП (7). Одновременно на выходе (9.1.13) дешифратора (9) формируется управляющее напряжение, которое подается на управляющий вход (10.1.13) третьего БК (10). В результате чего поступившая с выхода (7.1.14) второго БП (7) на вход (10.1.5) третьего БК (10) СС подключается на выход (10.1.17) третьего БК (10), с которого она поступает на вход (14.2) сумматора (14). В сумматоре производится сложение КС и СС, в результате чего на выходе сумматора формируется результирующее колебание, соответствующее точке сигнального созвездия (фиг. 7 (б), точка А2).

При поступлении на информационные входы устройства значение ИБП r1=1, r2=0, r3=1, r4=0 устройство работает аналогичным образом, как и в случае, если на информационные входы устройства поступает значение ИБП r1=0, r2=1, r3=1, r4=0, за исключением того, что единичное напряжение формируется на втором (3.1) и четвертом (3.4) выходе первого дешифратора (3). В результате чего не инвертированное косинусоидальное колебание, поступившее на вход (2.1.1) первого БК (2), подключается на его выход (2.1.9), а инвертированное синусоидальное колебание, поступившее на вход (2.1.4) первого БК (2), подключается на его выход (2.1.10). В результате этого на выходе сумматора формируется результирующее колебание, соответствующее точке сигнального созвездия (фиг. 7 (в), точка A15).

При поступлении на информационные входы устройства значений ИБП r1=0, r2=1, r3=0, r4=0 на выходе (3.2) дешифратора (3) формируется управляющее напряжение, которое поступает на управляющий вход (2.1.6) первого БК (2). В результате с выхода (1.2) ЗГ (1) через фазовращатель (11) инвертированное косинусоидальное колебание, поступающее на вход (2.1.2) первого БК (2), подключается на его выход (2.1.9), с которого поступает на вход (6.1.9) первого БП (6). В первом БП (6) это колебание перемножается с напряжением коэффициента квадратурной составляющей cos(60-α), поступившего на его вход (6.1.6) с выхода (4.1.6) БФККС (4), а затем сформированное в результате этого КС поступает на выход (6.1.15) первого БП (6). Одновременно на выходе (9.1.6) дешифратора (9) формируется управляющее напряжение, которое подается на управляющий вход (8.1.14) второго БК (8). В результате чего поступившая с выхода (6.1.15) первого БП (6) на вход (8.1.5) второго БК (8) КС подключается на выход (8.1.17) второго БК (8), с которого она поступает на вход (14.1) сумматора (14).

В то же время на выходе (3.3) дешифратора (3) формируется управляющее напряжение, которое поступает на управляющий вход (2.1.7) первого БК (2). В результате не инвертированное косинусоидальное колебание, поступившее с выхода (1.3) ЗГ (1) на вход фазовращателя (12) и сдвинутое на 90°, поступает на вход (2.1.3) первого БК (2) и подключается на его выход (2.1.10), с которого поступает на вход (7.1.9) второго БП (7). Во втором БП (7) это колебание перемножается с напряжением коэффициента синфазной составляющей sin(60-α), поступившего на его вход (7.1.6) с выхода (5.1.6) БФКСС (5), и затем сформированное в результате этого СС поступает на выход (7.1.15) второго БП (7). Одновременно на выходе (9.1.14) дешифратора (9) формируется управляющее напряжение, которое подается на управляющий вход (10.1.14) третьего БК (10). В результате чего поступившая с выхода (7.1.15) второго БП (7) на вход (10.1.6) третьего БК (10) СС подключается на выход (10.1.17) третьего БК (10), с которого она поступает на вход (14.2) сумматора (14). В сумматоре производится сложение КС и СС, в результате чего на выходе сумматора формируется результирующее колебание, соответствующее точке сигнального созвездия (фиг. 7 (б), точка A1).

При поступлении на информационные входы устройства значение ИБП r1=1, r2=0, r3=0, r4=0 устройство работает аналогичным образом, как и в случае, если на информационные входы устройства поступает значение ИБП r1=0, r2=1, r3=1, r4=0, за исключением того, что единичное напряжение формируется на втором (3.1) и четвертом (3.4) выходе первого дешифратора (3). В результате чего не инвертированное косинусоидальное колебание, поступившее на вход (2.1.1) первого БК (2), подключается на его выход (2.1.9), а инвертированное синусоидальное колебание, поступившее на вход (2.1.4) первого БК (2), подключается на его выход (2.1.10). В результате этого на выходе сумматора формируется результирующее колебание, соответствующее точке сигнального созвездия (фиг. 7 (в), точка А16).

При поступлении на информационные входы устройства значений ИБП r1=0, r2=1, r3=0, r4=1 на выходе (3.2) дешифратора (3) формируется управляющее напряжение, которое поступает на управляющий вход (2.1.6) первого БК (2). В результате с выхода (1.2) ЗГ (1) через фазовращатель (11) инвертированное косинусоидальное колебание, поступающее на вход (2.1.2) первого БК (2), подключается на его выход (2.1.9), с которого поступает на вход (6.1.9) первого БП (6). В первом БП (6) это колебание перемножается с напряжением коэффициента квадратурной составляющей cos(30-α), поступившего на его вход (6.1.7) с выхода (4.1.7) БФККС (4), а затем сформированное в результате этого КС поступает на выход (6.1.16) первого БП (6). Одновременно на выходе (9.1.7) дешифратора (9) формируется управляющее напряжение, которое подается на управляющий вход (8.1.15) второго БК (8). В результате чего поступившая с выхода (6.1.16) первого БП (6) на вход (8.1.6) второго БК (8) КС подключается на выход (8.1.17) второго БК (8), с которого она поступает на вход (14.1) сумматора (14).

В то же время на выходе (3.3) дешифратора (3) формируется управляющее напряжение, которое поступает на управляющий вход (2.1.7) первого БК (2). В результате не инвертированное косинусоидальное колебание, поступившее с выхода (1.3) ЗГ (1) на вход фазовращателя (12) и сдвинутое на 90°, поступает на вход (2.1.3) первого БК (2) и подключается на его выход (2.1.10), с которого поступает на вход (7.1.9) второго БП (7). Во втором БП (7) это колебание перемножается с напряжением коэффициента синфазной составляющей sin(30-α), поступившего на его вход (7.1.7) с выхода (5.1.7) БФКСС (5), и затем сформированное в результате этого СС поступает на выход (7.1.16) второго БП (7). Одновременно на выходе (9.1.15) дешифратора (9) формируется управляющее напряжение, которое подается на управляющий вход (10.1.15) третьего БК (10). В результате чего поступившая с выхода (7.1.16) второго БП (7) на вход (10.1.7) третьего БК (10) СС подключается на выход (10.1.17) третьего БК (10), с которого она поступает на вход (14.2) сумматора (14). В сумматоре производится сложение КС и СС, в результате чего на выходе сумматора формируется результирующее колебание, соответствующее точке сигнального созвездия (фиг. 7 (б), точка A5).

При поступлении на информационные входы устройства значение ИБП r1=1, r2=0, r3=0, r4=1 устройство работает аналогичным образом, как и в случае, если на информационные входы устройства поступает значение ИБП r1=0, r2=1, r3=0, r4=1, за исключением того, что единичное напряжение формируется на втором (3.1) и четвертом (3.4) выходе первого дешифратора (3). В результате чего не инвертированное косинусоидальное колебание, поступившее на вход (2.1.1) первого БК (2), подключается на его выход (2.1.9), а инвертированное синусоидальное колебание, поступившее на вход (2.1.4) первого БК (2), подключается на его выход (2.1.10). В результате этого на выходе сумматора формируется результирующее колебание, соответствующее точке сигнального созвездия (фиг. 7 (в), точка А12).

При поступлении на информационные входы устройства значений ИБП r1=0, r2=1, r3=1, r4=1 на выходе (3.2) дешифратора (3) формируется управляющее напряжение, которое поступает на управляющий вход (2.1.6) первого БК (2). В результате с выхода (1.2) ЗГ (1) через фазовращатель (11) инвертированное косинусоидальное колебание, поступающее на вход (2.1.2) первого БК (2), подключается на его выход (2.1.9), с которого поступает на вход (6.1.9) первого БП (6). В первом БП (6) это колебание перемножается с напряжением коэффициента квадратурной составляющей β×cos(60-α), поступившего на его вход (6.1.8) с выхода (4.1.8) БФККС (4), а затем сформированное в результате этого КС поступает на выход (6.1.17) первого БП (6). Одновременно на выходе (9.1.8) дешифратора (9) формируется управляющее напряжение, которое подается на управляющий вход (8.1.16) второго БК (8). В результате чего поступившая с выхода (6.1.17) первого БП (6) на вход (8.1.8) второго БК (8) КС подключается на выход (8.1.17) второго БК (8), с которого она поступает на вход (14.1) сумматора (14).

В то же время на выходе (3.3) дешифратора (3) формируется управляющее напряжение, которое поступает на управляющий вход (2.1.7) первого БК (2). В результате не инвертированное косинусоидальное колебание, поступившее с выхода (1.3) ЗГ (1) на вход фазовращателя (12) и сдвинутое на 90°, поступает на вход (2.1.3) первого БК (2) и подключается на его выход (2.1.10), с которого поступает на вход (7.1.9) второго БП (7). Во втором БП (7) это колебание перемножается с напряжением коэффициента синфазной составляющей β×sin(60-α), поступившего на его вход (7.1.8) с выхода (5.1.8) БФКСС (5), и затем сформированное в результате этого СС поступает на выход (7.1.17) второго БП (7). Одновременно на выходе (9.1.16) дешифратора (9) формируется управляющее напряжение, которое подается на управляющий вход (10.1.16) третьего БК (10). В результате чего поступившая с выхода (7.1.17) второго БП (7) на вход (10.1.8) третьего БК (10) СС подключается на выход (10.1.17) третьего БК (10), с которого она поступает на вход (14.2) сумматора (14). В сумматоре производится сложение КС и СС, в результате чего на выходе сумматора формируется результирующее колебание, соответствующее точке сигнального созвездия (фиг. 7 (б), точка A6).

При поступлении на информационные входы устройства значение ИБП r1=1, r2=0, r3=1, r4=1 устройство работает аналогичным образом, как и в случа, если на информационные входы устройства поступает значение ИБП r1=0, r2=1, r3=1, r4=1, за исключением того, что единичное напряжение формируется на втором (3.1) и четвертом (3.4) выходе первого дешифратора (3). В результате чего не инвертированное косинусоидальное колебание, поступившее на вход (2.1.1) первого БК (2), подключается на его выход (2.1.9), а инвертированное синусоидальное колебание, поступившее на вход (2.1.4) первого БК (2) подключается на его выход (2.1.10). В результате этого на выходе сумматора формируется результирующее колебание, соответствующее точке сигнального созвездия (фиг. 7 (в), точка А11).

Первый БК (2) работает следующим образом.

Когда на управляющий вход (2.1.5) подается управляющее напряжение, то ЭК (2.1) соединяет информационный вход (2.1.1) с информационным выходом (2.1.9) первого БК (2). Когда на управляющий вход (2.1.6) подается управляющее напряжение, то ЭК (2.2) соединяет информационный вход (2.1.2) с информационным выходом (2.1.9) первого БК (2). Когда на управляющий вход (2.1.7) подается управляющее напряжение, то ЭК (2.3) соединяет информационный вход (2.1.3) с информационным выходом (2.1.10) первого БК (2). Когда на управляющий вход (2.1.8) подается управляющее напряжение, то ЭК (2.4) соединяет информационный вход (2.1.4) с информационным выходом (2.1.10) первого БК (2).

Первый дешифратор (3) работает следующим образом.

При поступлении на его информационные входы значение ИБП r1=0, r2=0 управляющие напряжение формируется на его выходах (3.1) и (3.3). При поступлении на его информационные входы значение ИБП r1=0, r2=1 управляющие напряжение формируется на его выходах (3.2) и (3.3). При поступлении на его информационные входы значение ИБП r1=1, r2=0 управляющие напряжение формируется на его выходах (3.1) и (3.4). При поступлении на его информационные входы значение ИБП r1=1, r2=1 управляющие напряжение формируется на его выходах (3.2) и (3.4).

БФККС (4) работает следующим образом.

ФККС (4.1) формирует напряжение коэффициента квадратурной составляющей cos(60+α), которое подается на выход (4.1.1) БФККС (4). ФККС (4.2) формирует напряжение коэффициента квадратурной составляющей cos(30+α), которое подается на выход (4.1.2) БФККС (4). ФККС (4.3) формирует напряжение коэффициента квадратурной составляющей cos α, которое подается на выход (4.1.3) БФККС (4). ФККС (4.4) формирует напряжение коэффициента квадратурной составляющей β×cos(30+α), которое подается на выход (4.1.4) БФККС (4). ФККС (4.5) формирует напряжение коэффициента квадратурной составляющей cos(90-α), которое подается на выход (4.1.5) БФККС (4). ФККС (4.6) формирует напряжение коэффициента квадратурной составляющей cos(60-α), которое подается на выход (4.1.6) БФККС (4). ФККС (4.7) формирует напряжение коэффициента квадратурной составляющей cos(30-α), которое подается на выход (4.1.7) БФККС (4). ФККС (4.8) формирует напряжение коэффициента квадратурной составляющей β×cos(60-α), которое подается на выход (4.1.8) БФККС (4). Параметр α целесообразно изменять в пределах от 0° до 30° (выбирается изготовителем), а коэффициент β необходимо выбирать равным (1-2sin15°) (приложение 1).

БФКСС (5) работает следующим образом.

ФКСС (5.1) формирует напряжение коэффициента синфазной составляющей sin(60+α), которое подается на выход (5.1.1) БФКСС (4). ФКСС (5.2) формирует напряжение коэффициента синфазной составляющей sin(30+α), которое подается на выход (5.1.2) БФКСС (5). ФКСС (5.3) формирует напряжение коэффициента синфазной составляющей sin α, которое подается на выход (5.1.3) БФКСС (5). ФКСС (5.4) формирует напряжение коэффициента синфазной составляющей β×sin(30+α), которое подается на выход (5.1.4) БФКСС (5). ФКСС (5.5) формирует напряжение коэффициента синфазной составляющей sin(90-α), которое подается на выход (5.1.5) БФКСС (5). ФКСС (5.6) формирует напряжение коэффициента синфазной составляющей sin(60-α), которое подается на выход (5.1.6) БФКСС (5). ФКСС (5.7) формирует напряжение коэффициента синфазной составляющей sin(30-α), которое подается на выход (5.1.7) БФКСС (5). ФКСС (5.8) формирует напряжение коэффициента синфазной составляющей β×sin(60-α), которое подается на выход (5.1.8) БФКСС (5). Параметр α целесообразно изменять в пределах от 0° до 30° (выбирается изготовителем), а коэффициент β необходимо выбирать равным (1-2sin15°) (приложение 1).

Первый БП (6) работает следующим образом. Не инвертированное или инвертированное косинусоидальное колебание, поступающее на вход (6.1.9) первого БП (6), подается на второй вход перемножителя (6.1) и перемножается с напряжением коэффициента квадратурной составляющей, поступающего на его первый вход с входа (6.1.1) первого БП (6). Сформированная в результате перемножения квадратурная составляющая с выхода перемножителя (6.1) поступает на выход (6.1.10) первого БП (6). Не инвертированное или инвертированное косинусоидальное колебание, поступающее на вход (6.1.9) первого БП (6), подается также на второй вход перемножителя (6.2) и перемножается с напряжением коэффициента квадратурной составляющей, поступающего на его первый вход с входа (6.1.2) первого БП (6). Сформированная в результате перемножения квадратурная составляющая с выхода перемножителя (6.1.1) поступает на выход (6.1.11) первого БП (6). Не инвертированное или инвертированное косинусоидальное колебание, поступающее на вход (6.1.9) первого БП (6), подается на второй вход перемножителя (6.3) и перемножается с напряжением коэффициента квадратурной составляющей, поступающего на его первый вход с входа (6.1.3) первого БП (6). Сформированная в результате перемножения квадратурная составляющая с выхода перемножителя (6.3) поступает на выход (6.1.12) первого БП (6). Не инвертированное или инвертированное косинусоидальное колебание, поступающее на вход (6.1.9) первого БП (6), подается на второй вход перемножителя (6.4) и перемножается с напряжением коэффициента квадратурной составляющей, поступающего на его первый вход с входа (6.1.4) первого БП (6). Сформированная в результате перемножения квадратурная составляющая с выхода перемножителя (6.1) поступает на выход (6.1.13) первого БП (6). Не инвертированное или инвертированное косинусоидальное колебание, поступающее на вход (6.1.9) первого БП (6), подается на второй вход перемножителя (6.5) и перемножается с напряжением коэффициента квадратурной составляющей, поступающего на его первый вход с входа (6.1.5) первого БП (6). Сформированная в результате перемножения квадратурная составляющая с выхода перемножителя (6.5) поступает на выход (6.1.14) первого БП (6). Не инвертированное или инвертированное косинусоидальное колебание, поступающее на вход (6.1.9) первого БП (6), подается на второй вход перемножителя (6.6) и перемножается с напряжением коэффициента квадратурной составляющей, поступающего на его первый вход с входа (6.1.6) первого БП (6). Сформированная в результате перемножения квадратурная составляющая с выхода перемножителя (6.6) поступает на выход (6.1.15) первого БП (6). Не инвертированное или инвертированное косинусоидальное колебание, поступающее на вход (6.1.9) первого БП (6), подается на второй вход перемножителя (6.7) и перемножается с напряжением коэффициента квадратурной составляющей, поступающего на его первый вход с входа (6.1.7) первого БП (6). Сформированная в результате перемножения квадратурная составляющая с выхода перемножителя (6.7) поступает на выход (6.1.16) первого БП (6). Не инвертированное или инвертированное косинусоидальное колебание, поступающее на вход (6.1.9) первого БП (6), подается на второй вход перемножителя (6.8) и перемножается с напряжением коэффициента квадратурной составляющей, поступающего на его первый вход с входа (6.1.8) первого БП (6). Сформированная в результате перемножения квадратурная составляющая с выхода перемножителя (6.8) поступает на выход (6.1.17) первого БП (6).

Второй БП (7) работает точно так же, как первый БП (6).

Второй БК (8) работает следующим образом.

Когда на управляющий вход (8.1.9) подается управляющее напряжение, то ЭК (8.1) соединяет информационный вход (8.1.1) с информационным выходом (8.1.17) второго БК (8). Когда на управляющий вход (8.1.10) подается управляющее напряжение, то ЭК (8.2) соединяет информационный вход (8.1.2) с информационным выходом (8.1.17) второго БК (8). Когда на управляющий вход (8.1.11) подается управляющее напряжение, то ЭК (8.3) соединяет информационный вход (8.1.3) с информационным выходом (8.1.17) второго БК (8). Когда на управляющий вход (8.1.12) подается управляющее напряжение, то ЭК (8.4) соединяет информационный вход (8.1.4) с информационным выходом (8.1.17) второго БК (8). Когда на управляющий вход (8.1.13) подается управляющее напряжение, то ЭК (8.5) соединяет информационный вход (8.1.5) с информационным выходом (8.1.17) второго БК (8). Когда на управляющий вход (8.1.14) подается управляющее напряжение, то ЭК (8.6) соединяет, информационный вход (8.1.6) с информационным выходом (8.1.17) второго БК (8). Когда на убавляющий вход (8.1.16) подается управляющее напряжение, то ЭК (8.8) соединяет информационный вход (8.1.8) с информационным выходом (8.1.17) второго БК (8).

Второй дешифратор (9) работает следующим образом.

При поступлении на его информационные входы значение ИБП r1=0, r2=0, r3=1, r4=0, управляющие напряжение формируется на его выходах (9.1.1) и (9.1.9). При поступлении на его информационные входы значение ИБП r1=0, r2=0, r3=0, r4=0 управляющие напряжение формируется на его выходах (9.1.2) и (9.1.10). При поступлении на его информационные входы значение ИБП r1=0, r2=0, r3=0, r4=1 управляющие напряжение формируется на его выходах (9.1.3) и (9.1.11). При поступлении на его информационные входы значение ИБП r1=0, r2=0, r3=1, r4=1 управляющие напряжение формируется на его выходах (9.1.4) и (9.1.12). При поступлении на его информационные входы значение ИБП r1=0, r2=1, r3=1, r4=0 управляющие напряжение формируется на его выходах (9.1.5) и (9.1.13). При поступлении на его информационные входы значение ИБП r1=0, r2=1, r3=0, r4=0 управляющие напряжение формируется на его выходах (9.1.6) и (9.1.14). При поступлении на его информационные входы значение ИБП r1=0, r2=1, r3=1, r4=1 управляющие напряжение формируется на его выходах (9.1.7) и (9.1.15). При поступлении на его информационные входы значение ИБП r1=0, r2=1, r3=1, r4=1 управляющие напряжение формируется на его выходах (9.1.8) и (9.1.16).

Третий БК (10) работает точно так же, как второй БК (8).

Результатом работы заявленного устройства является формирование сигнальной конструкции КАМ, представленной на фиг. 7. Благодаря достигнутому результату каждая точка сигнальной конструкции определяется различными и неповторяющимися значениями синфазной и квадратурной составляющих. Это обуславливает повышение помехоустойчивости формирования сигналов КАМ по сравнению с устройством-прототипом.

Выбор коэффициентов трансформации и выигрыш в средней энергии сформированных сигналов КАМ по сравнению с устройством-прототипом приведен в приложении 1.

Приложение 1

ОЦЕНКА УРОВНЯ СРЕДНЕЙ МОЩНОСТИ И ПИК-ФАКТОРА СИГНАЛЬНОЙ КОНСТРУКЦИИ ПРИ ИЗМЕНЕНИИ АМПЛИТУДНЫХ ЗНАЧЕНИЙ ВЕКТОРА СИГНАЛЬНОГО СОЗВЕЗДИЯ В ЗАЯВЛЯЕМОМ УСТРОЙСТВЕ

Поскольку в сигнальной конструкции (СК) КАМ значения точек векторов сигнального созвездия (ВСС) в каждом из квадрантов имеют одинаковые энергетические значения, то все расчеты проведем только для второго (правого верхнего) квадранта (см. фиг. 7).

Средняя амплитуда U с р ' и пиковая амплитуда U п ' СК КАМ в устройстве-прототипе имеют следующие значения U п ' = 2 U 1,41 U , где U - результат сложения манипулированных значений напряжений СС u и с х I и u и с х Q . Соответственно, U с р ' = 2 U 4 ( 3 + с ) 1,21 U , где с = 1 1 + 2 0,41421 (см. стр. 17 формула 20, 24 и 26, патент РФ №2439819 С1, опубл. бюл. №1 от 10.01.2012 г.).

Пиковая амплитуда U п ' ' СК в заявленном устройстве равна |OA8|, т.к. у формируемой СК КАМ одинаковые значения у следующих ВСС |OA3|=|OA4|=|OA8|. При этом , а значение |OA7|=β|OA4|=(1-2sin15°)U≈0,48U.

Средняя амплитуда U с р ' ' СК КАМ в заявленном устройстве равна

Таким образом, среднее значение мощности в заявленном устройстве в 1,4 раза меньше по отношению к устройству-прототипу. Это указывает на достижение цели заявляемого технического решения, направленной на снижение величины средней мощности.

Выбор значения β=(1-2sin15°) обусловлен следующими соображениями. В заявленном устройстве значение евклидова расстояния d для ВСС |OA3|, |OA4|, |OA8| будет определяться, как у сигналов двенадцати позиционной фазовой манипуляции d=2Usin15°. В тоже время ВСС |OA7| лежит на одной прямой с ВСС |OA4| и связаны между собой соотношением |OA7|=β|OA4|, следовательно, для обеспечения такого же значения d между |OA7| и |OA4| необходимо определить множитель β=(1-2sin15°). В этом случае минимальное евклидово расстояние для СК КАМ в заявленном устройстве будет равно dmin=2Usin15°≈0,52U.

При этом среднее значение мощности в заявленном устройстве в 1,4 раза меньше по отношению к устройству-прототипу. Это указывает на достижение цели заявляемого технического решения, направленной на снижение величины средней мощности и значения пик-фактора формируемой СК КАМ, и как следствие повышение помехоустойчивости.

1. Устройство формирования сигналов квадратурной амплитудной манипуляции (КАМ) методом сложения значений синфазных и квадратурных составляющих, содержащее задающий генератор (1) (ЗГ), имеющий первый (1.1), второй (1.2), третий (1.3) и четвертый (1.4) информационные выходы, первый (11), второй (12), третий (13) фазовращатели и сумматор (14), выход которого является выходом устройства, второй (1.2), третий (1.3) и четвертый (1.4) информационные выходы ЗГ (1) подключены к входам соответственно первого (11), второго (12) и третьего (13) фазовращателей, отличающееся тем, что в устройство дополнительно введены блок формирования коэффициентов квадратурной составляющей (4) (БФККС), блок формирования коэффициентов синфазной составляющей (5) (БФКСС), первый (6) и второй (7) блоки перемножителей (БП), первый (2), второй (8) и третий (10) блоки коммутации (БК), а также первый (3) и второй (9) дешифраторы, причем выходы первого (11), второго (12) и третьего (13) фазовращателей соответственно подключены ко второму (2.1.2), третьему (2.1.3) и четвертому (2.1.4) информационным входам первого БК (2), информационный вход (2.1.1) которого подключен к первому информационному выходу ЗГ (1), информационные входы r1, r2, r3, r4 второго дешифратора (9) являются соответствующими информационными входами устройства, первая группа управляющих выходов (9.1.1-9.1.8) второго дешифратора (9) подключена к соответствующим управляющим входам (8.1.9-8.1.16) второго БК (8), а вторая группа управляющих выходов (9.1.9-9.1.16) второго дешифратора (9) подключена к соответствующим управляющим входам (10.1.9-10.1.16) третьего БК (10), кроме того, информационные входы r1, r2 подключены к первому и второму информационным входам первого дешифратора (3), выходы которого (3.1-3.4) подключены к соответствующим управляющим входам (2.1.5-2.1.8) первого БК (2), первый (2.1.9) и второй (2.1.10) выходы которого подключены соответственно к квадратурному входу (6.1.9) первого БП (6) и синфазному входу (7.1.9) второго БП (7), информационные выходы (4.1.1-4.1.8) БФККС (4) подключены к соответствующим входам (6.1.1-6.1.8) первого БП (6), выходы которого (6.1.10-6.1.17) подключены к соответствующим информационным входам (8.1.1.-8.1.8) второго БК (8), выход которого подключен к первому входу (14.1) сумматора (14), информационные выходы (5.1.1-5.1.8) БФКСС (5) подключены к соответствующим информационным входам (7.1.1-7.1.8) второго БП (7), выходы (7.1.10-7.1.17) которого подключены к соответствующим информационным входам (10.1.1-10.1.8) третьего БК (10), выход которого подключен к второму входу (14.2) сумматора (14).

2. Устройство формирования сигналов КАМ по п. 1, отличающееся тем, что первый БК (2) состоит из первого (2.1), второго (2.2), третьего (2.3) и четвертого (2.4) электронных ключей (ЭК), причем вход блока (2.1.1) является информационным входом первого ЭК (2.1), а вход блока (2.1.5) является управляющим входом первого ЭК (2.1), вход блока (2.1.2) является информационным входом второго ЭК (2.2), а вход блока (2.1.6) является управляющим входом второго ЭК (2.2), выходы ЭК (2.1) и ЭК (2.2) объединены и являются выходом блока (2.1.9), вход блока (2.1.3) является информационным входом третьего ЭК (2.3), а вход блока (2.1.7) является управляющим входом третьего ЭК (2.3), вход блока (2.1.4) является информационным входом четвертого ЭК (2.4), а вход блока (2.1.8) является управляющим входом четвертого ЭК (2.4), выходы ЭК (2.3) и ЭК (2.4) объединены и являются выходом блока (2.1.10).

3. Устройство формирования сигналов квадратурной амплитудной манипуляции по п. 1, отличающееся тем, что БФККС состоит из первого (4.1), второго (4.2), третьего (4.3), четвертого (4.4), пятого (4.5), шестого (4.6), седьмого (4.7), восьмого (4.8) формирователей коэффициентов квадратурной составляющей (ФККС), причем выход первого ФККС (4.1) является выходом (4.1.1) БФККС, выход второго ФККС (4.2) является выходом (4.1.2) БФККС, выход третьего ФККС (4.3) является выходом (4.1.3) БФККС, выход четвертого ФККС (4.4) является выходом (4.1.4) БФККС, выход пятого ФККС (4.5) является выходом (4.1.5) БФККС, выход шестого ФККС (4.6) является выходом (4.1.6) БФККС, выход седьмого ФККС (4.7) является выходом (4.1.7) БФККС, выход восьмого ФККС (4.8) является выходом (4.1.8) БФККС.

4. Устройство формирования сигналов КАМ по п. 1, отличающееся тем, что БП (6) состоит из первого (6.1), второго (6.2), третьего (6.3), четвертого (6.4), пятого (6.5), шестого (6.6), седьмого (6.7), восьмого (6.8) перемножителей, причем вход (6.1.1) БП (6) является первым входом первого перемножителя (6.1), а его выход является выходом (6.1.10) БП (6), вход (6.1.2) БП (6) является первым входом второго перемножителя (6.2), а его выход является выходом (6.1.11) БП (6), вход (6.1.3) БП (6) является первым входом третьего перемножителя (6.1.3), а его выход является выходом (6.1.12) БП (6), вход (6.1.4) БП (6) является первым входом четвертого перемножителя (6.4), а его выход является выходом (6.1.13) БП (6), вход (6.1.5) БП (6) является первым входом пятого перемножителя (6.5), а его выход является выходом (6.1.14) БП (6), вход (6.1.6) БП (6) является первым входом шестого перемножителя (6.1), а его выход является выходом (6.1.15) БП (6), вход (6.1.7) БП (6) является первым входом седьмого перемножителя (6.7), а его выход является выходом (6.1.16) БП (6), вход (6.1.8) БП (6) является первым входом восьмого перемножителя (6.8), а его выход является выходом (6.1.17) БП (6), на вторые входы перемножителей подключен вход (6.1.9) БП (6).

5. Устройство формирования сигналов КАМ по п. 1, отличающееся тем, что БК (8) состоит из первого (8.1), второго (8.2), третьего (8.3), четвертого (8.4), пятого (8.5), шестого (8.6), седьмого (8.7), восьмого (8.8) ЭК, причем вход (8.1.1) БК (8) является информационным входом первого ЭК (8.1), а к его управляющему входу подключен вход (8.1.9) БК (8), вход (8.1.2) БК (8) является информационным входом второго ЭК (8.2), а к его управляющему входу подключен вход (8.1.10) БК (8), вход (8.1.3) БК (8) является информационным входом третьего ЭК (8.3), а к его управляющему входу подключен вход (8.1.11) БК (8), вход (8.1.4) БК (8) является информационным входом четвертого ЭК (8.4), а к его управляющему входу подключен вход (8.1.12) БК (8), вход (8.1.5) БК (8) является информационным входом пятого ЭК (8.5), а к его управляющему входу подключен вход (8.1.13) БК (8), вход (8.1.6) БК (8) является информационным входом шестого ЭК (8.6), а к его управляющему входу подключен вход (8.1.14) БК (8), вход (8.1.7) БК (8) является информационным входом седьмого ЭК (8.7), а к его управляющему входу подключен вход (8.1.15) БК (8), вход (8.1.8) БК (8) является информационным входом восьмого ЭК (8.8), а к его управляющему входу подключен вход (8.1.16) БК (8), выходы электронных ключей объединены и являются выходом (8.1.17) БК (8).

6. Устройство формирования сигналов КАМ по п. 1, отличающееся тем, что второй дешифратор (9) состоит из первого (9.1) и второго (9.2) дешифраторов, причем входы r1, r2, r3, r4 являются входами одновременно первого (9.1) и второго (9.2) дешифраторов, выходы первого дешифратора (9.1) являются выходами (9.1.1-9.1.8) дешифратора (9), а выходы второго дешифратора (9.2) являются выходами (9.1.9 - 9.1.16) дешифратора (9).



 

Похожие патенты:

Изобретение относится к области передачи дискретной информации или передачи данных и предназначено для применения в устройствах приема (декодирования) сигналов в системах связи, в частности в каналах с многолучевым распространением.

Изобретение относится к технике связи и может использоваться в системах беспроводной связи. Технический результат состоит в повышении эффективности передачи данных в полосе беспроводной передачи при условии, при котором применяются схема адаптивной модуляции и схема FDD, и сигналы с фиксированной скоростью и сигнал с переменной скоростью передаются с мультиплексированием.

Изобретение относится к способам формирования сигналов квадратурной амплитудной манипуляции (КАМ-16), применяемым на линиях многоканальной цифровой связи, цифрового радиовещания и телевидения.

Изобретение относится к области электросвязи и может быть использовано для определения состояния беспроводной сети связи, обнаружения в ней атак и повышения достоверности принятия решения системами обнаружения атак в беспроводных сетях.

Изобретение относится к области радиосвязи. Технический результат изобретения заключается в обеспечении надежного приема квадратурно-модулированных сигналов повышенной структурной скрытности.

Изобретение относится к области связи. Техническим результатом является снижение ошибок флуктуации уровня, обусловленных замиранием, и гарантирование требуемого качества SCCH.

Изобретение относится к области электронной обработки сигналов и предназначено для использования в радиоприемных системах. Достигаемый технический результат - обеспечение возможности однозначного обнаружения модуляции несущей частоты импульсов периодической последовательности.

Изобретение относится к устройству и способу для приема сигналов. Технический результат состоит в возможности вычисления среднего значения принятых сигналов для каждой сигнальной точки.

Изобретение относится к компьютерной технике, а именно к структуре кодовой комбинации для передачи фреймов и сигналов в системах с множеством несущих. Технический результат - обеспечение возможности гибкой настройки на требуемую часть полосы пропускания передачи и малое содержание служебных данных.

Изобретение относится к связи. Предложено устройство связи, которое обеспечивает улучшение пропускной способности системы связи посредством снижения различия по мощности передачи между SCCH и SDCH, чтобы, в силу этого, удовлетворять требуемому качеству PAPR.

Изобретение относится к скоростным модуляторам и может использоваться в бортовых передатчиках спутниковой системы связи и в системах дистанционного зондирования земли. Достигаемый технический результат - осуществление управления выходной мощностью сигнала, формирование любой фазовой, амплитудно-фазовой и квадратурно-амплитудной модуляции, осуществление цифровой обработки передаваемых данных, повышение скорости передачи. Высокоскоростной бортовой модулятор содержит основной и резервный буферы, программируемую логическую интегральную схему, постоянное запоминающее устройство, синтезатор частот, три цифроаналоговых преобразователя, квадратурный модулятор, вентиль, датчик температуры, усилитель и аттенюатор. 2 ил.

Изобретение относится к системам связи, в частности к системе связи ближнего радиуса действия для осуществления беспроводной связи на близком расстоянии, и предназначено для обеспечения интерфейса, который может быть совместим со случаем, при котором регистрируется множество видов целевых объектов и протоколов. Устройство связи включает в себя первый блок обработки, который обнаруживает объект и принимает первую команду активации интерфейса после обнаружении целевого объекта, второй блок обработки, который обменивается данными с целевым объектом посредством первого блока обработки, интерфейс между первым блоком обработки и вторым блоком обработки, первый блок обработки выбирает заранее заданный интерфейсный уровень из множества интерфейсных уровней на основе первой команды и обменивается данными со вторым блоком обработки на основе заранее заданного интерфейсного уровня. 3 н. и 17 з.п. ф-лы, 15 ил.

Изобретение относится к технике связи и может использоваться для создания систем беспроводной связи с распределенными входами и распределенными выходами, содержащих базовую станцию с M приемопередатчиками и N абонентских устройств, где N меньше или равно M. Технический результат - повышение отношения сигнал/шум при количестве работающих абонентских устройств, меньшем, чем число приемопередатчиков антенн базовой станции. Для этого при обработке сигналов на базовой станции используется решение системы из N уравнений с M неизвестными (N меньше или равно M) с использованием псевдообратной матрицы от прямоугольной характеристической матрицы канала, что позволило обеспечить формирование и разделение обрабатываемых сигналов. 7 ил.

Изобретение относится к области радиотехники и может быть использовано при организации систем связи с увеличенным количеством каналов, а также в измерительной технике, где требуется перестройка частоты с малым шагом. В основу изобретения поставлена задача получения микроволновых колебаний с малым шагом сетки частот, низким уровнем фазовых шумов и малым временем перестройки частоты. Для этого частоту опорного генератора, задающую частоту сравнения в фазовом детекторе синтезатора косвенного типа, выбирают в полосе ультракоротких волн. При этом частоту высокостабильного опорного генератора предварительно сдвигают на некоторую небольшую величину, задающую малый шаг сетки частот. Для чего сигнал опорного генератора подают на радиочастотный вход квадратурного модулятора, модулируемого низкочастотными квадратурными сигналами одинаковой частоты и амплитуды, но со сдвигом фаз 90°. Тогда частота сравнения отлична от частоты опорного генератора на значение частоты этих низкочастотных сигналов. Трансформированный по частоте сигнал с выхода квадратурного модулятора подают на первый вход частотно-фазового детектора. Частоту микроволнового генератора управляемого напряжением делят делителем с переменным коэффициентом, и подают на второй вход частотно-фазового детектора. С помощью фильтра нижних частот подавляют продукты сравнения переменного тока, а сигнал постоянного тока подают на вход микроволнового генератора управляемого напряжением. Такой способ позволяет формировать микроволновые колебания с шагом в единицы килогерц, при этом не повышая времени перестройки синтезатора, не повышая уровня фазовых шумов и сохраняя стабильность частоты синтезатора, определяемую стабильностью частоты опорного генератора, которая, например, достигает 10-7-10-8.

Изобретение относится к области техники связи и предназначено для уменьшения помехи в символах опорных сигналов пользователей на границе соты и уменьшения несбалансированности выходной мощности символов опорных сигналов. Изобретение раскрывает способ и устройство для преобразования ресурсов и мультиплексирования с кодовым разделением каналов. В настоящем изобретении каждая сота выбирает схему преобразования, по меньшей мере, из двух схем преобразования, чтобы реализовывать преобразование ресурсов, которое эффективно уменьшает помехи, накладываемые на символы опорных сигналов пользователей на границе соты; векторное переключение выполняется для ортогональной матрицы, чтобы получать несколько различных последовательностей кодовых слов и реализовывать расчет кодовых слов. 8 н. и 32 з.п. ф-лы, 6 табл., 8 ил.

Изобретение относится к области электронной техники и предназначено для определения режима аудиомодуляции, для быстрого взаимодействия данных, путем самоадаптации режима модуляции аудиосообщений. Изобретение раскрывает, в частности, способ самоадаптации режима модуляции аудиосообщений, который включает следующие этапы: первое устройство модулирует первые аудиоданные с использованием, по меньшей мере, двух режимов модуляции для генерирования первых потоков кадров аудиоданных и сращивает их в первый поток аудиоданных для отправки на второе устройство; второе устройство определяет на основе первого потока аудиоданных режимы модуляции, корректно принятые и поддерживаемые первым устройством; модуляцию вторых аудиоданных посредством, по меньшей мере, двух режимов модуляции, корректно принятых и поддерживаемых первым устройством для генерирования вторых потоков кадров аудиоданных, их сращивание во второй поток аудиоданных для отправки первому устройству; первое устройство определяет на основе второго потока аудиоданных режимы модуляции, корректно принятые и поддерживаемые вторым устройством; и первое устройство выбирает из используемых оптимальный режим модуляции и режим модуляции, используемый вторым устройством. 4 н. и 19 з.п. ф-лы, 4 ил.

Изобретение относится к технике связи. Технический результат – повышение помехоустойчивости передаваемых сигналов и спектральной эффективности. Для этого на предающей стороне пакет информационных бит разделяют на блоки по K бит в каждом, где число возможных комбинаций бит в блоке составляет М=2K, каждой из М комбинаций бит ставятся в соответствие L КАМ символов, значения которых определяются точками соответствующих созвездий сигналов, формируют L гармонических сигналов с использованием полученных значений L КАМ символов, объединяют L гармонических сигналов в один групповой сигнал несущей частоты, усиливают и передают групповой сигнал в канал связи, где групповой сигнал принимается, усиливается и фильтруется аналоговым приемником, из полученного отфильтрованного сигнала выделяются все L гармонических сигналов и осуществляется их общая демодуляция путем вычисления суммы квадратов модулей разностей между принятыми значениями квадратурных составляющих L гармонических сигналов и М возможными значениями соответствующих L созвездий, а каждая сумма квадратов соответствует своей комбинации K переданных бит, для которой эта сумма минимальна, и является наиболее вероятной переданной комбинацией. 1 з.п. ф-лы, 5 ил.

Изобретение относится к области передачи цифровой информации и может быть использовано в приемных устройствах систем синхронной цифровой связи, работающих в условиях наличия межсимвольной интерференции (МСИ) Технический результат - снижение его вычислительной сложности. В способе приема цифрового сообщения в целом в условиях многолучевого распространения осуществляется формирование решающей статистики поэлементного приема, что позволяет лавинообразное размножение возможных вариантов элементарных посылок в сообщение путем ограничения сверху количества рассматриваемых далее решающих статистик поэлементного приема на каждом такте известного фрагмента интервала времени приема сообщения. 1 ил.

Изобретение относится к области радиотехники и может быть использовано для измерения уровней помех и импульсных электромагнитных сигналов. Технический результат изобретения заключается в повышении чувствительности, линейности и расширении динамического диапазона амплитудного детектора. Технический результат достигается за счет высокочувствительного амплитудного детектора, содержащего колебательный контур, первый диод, гридлик, два параллельно расположенных резистора, второй диод, третий диод, генератор тока, фильтр нижних частот, первый повторитель, сумматор-инвертор и второй повторитель. 1 ил.

Изобретение относится к области беспроводной связи. Технический результат изобретения заключается в сокращении нагрузки на нисходящую линию связи LTE в лицензируемом спектре путем выгрузки ее в нелицензируемый спектр. Способ включает в себя этапы передачи первого связного сигнала множественного доступа с ортогональным частотным разделением (OFDMA) на беспроводной узел в лицензируемом спектре, и передачи параллельно передаче первого связного сигнала OFDMA второго связного сигнала OFDMA на беспроводной узел в нелицензируемом спектре. Кроме того, способ включает в себя этапы формирования периодического селекторного интервала для нисходящей линии сотовой связи в нелицензируемом спектре, и синхронизации по меньшей мере одной границы периодического селекторного интервала с по меньшей мере одной границей периодической структуры кадра, связанной с первичной компонентной несущей нисходящей линии сотовой связи. 8 н. и 61 з.п. ф-лы, 56 ил.
Наверх